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1. Let me start by saying that this is primarily an expository talk; there is nothing 
radically new, but it will very informative, particularly because so many people 
(including myself) have made essentially the same mistake repeatedly in the past. 

2. There are a number of models in psychometrics having dimensional structure. 
Here I have several examples of such models; MDS, FA/PCA, … and so on. 
These models require judicious choice of dimensionality.  

3. When we have two nested models (one is a special case of the other), the LR 
statistic between the two models “usually” follows an asymptotic chi-square 
distribution (with df’s equal to the difference in the effective number of 
parameters in the two models) under the hypothesis that the more restricted model 
is correct. Here Model B is nested within A, which in turn is nested within the 
saturated model. The LR statistic between any of these two models is 
asymptotically chi-square ((1) versus (2) with a df, (2) vs (3) with b df, and then 
(1) vs (3) χ2 with a+b df (by the reproducibility of the χ2 distribution). 

4. So we are tempted to use the same scheme to test the dimensionality. (The r-
dimensional model is a special case of the (r+1)-dimensional model.) 
Unfortunately, this LR statistic is not likely to follow an asymptotic chi-square 
distribution. Here, (1) vs (3) is asymptotic χ2, provided that (3) is correct but (4) is 
not. However, neither (1) vs (2) (unless (3) is incorrect) nor (2) vs (3) is likely to 
follow asymptotic χ2. 

5. So what’s so special in this situation? To explain we introduce the notion of local 
regularity due to Shapiro (1986). “A point θ0 in the parameter space Ω is said to 
be locally regular if the rank of the Jacobian matrix stays the same for all θ in a 
neighborhood θ0, where the Jacobian matrix is defined as the matrix of the  
derivatives of model predictions wrt model parameters. This  definition also 
implies that θ0 lies in the interior (not on the boundary) of Ω, so that there is a 
neighborhood of θ0 in Ω. When the local regularity is violated the LR statistic is 
not guaranteed to follow an asymptotic chi-square.  

6. Let us illustrate. Here we have 4 stimuli represented in a 2-dimensional Euclidean 
space. This is the matrix of stimulus coordinates, where we fixed these elements 
to zero to eliminate the rotational and translational indeterminacies in the 
Euclidean distance model. So the parameter vector has 5 elements, and the model 
vector has 6 elements.  

7. The Jacobian matrix looks like this. (It is a 5 by 6 matrix obtained by 
differentiating each element of the model vector wrt each element of the 
parameter vector.) δija is as defined here, where we assumed that no dij’s are zero.  

8. Let’s look at the following two cases. In the first case we are testing if this 
particular element (x32) is 0 or not. The rank(J) is 5 x32 = 0, and that stays the same 
for all values of x32 near 0, so that the local regularity condition holds, and the LR 
statistic (λc) between H0 and H1 has an asymptotic chi-square distribution with 1 



df. Now consider the second case. We are testing if the model is 1-dimensional or 
2-dimensional.  The null hypo. (H0) states that x32 = x42 = 0. The rank(J) is 3 under 
H0, but it suddenly becomes 5 as soon as it departs from this point (that is, under 
H1). The local regularity is violated, and the LR statistic (λc) is not guaranteed to 
follow an asymptotic chi-square dist. (Note, however, the LR statistic (λs) defined 
between the saturated model and the 1-dimensional model follows an asymptotic 
chi-square, unless the 0-dimensional model is also true.) 

9. I am putting the wording carefully. A violation of local regularity does not imply 
that λc is never asymptotically chi-square. It is just that it is not guaranteed to 
follow an asymptotic chi-square, because the local regularity is a sufficient, but 
not a necessary, condition for asymptotic chi-square. This means that when this 
condition is violated, the asymptotic distribution of λc has to be examined in each 
specific situation. It is also the case that the theory presented does not tell us how 
much the distribution of λc deviates from a chi-square distribution.  

10. So a Monte Carlo study is in order. We again consider an MDS situation where 
we have 10 stimuli represented in a two-dimensional Euclidean space. (This is the 
true model.) The data were generated in tetradic form according to a prescribed 
conf., and MAXSCAL-4, a maximum likelihood MDS program, was used for 
parameter estimation. Both λc (the comparison between the 2- and 3-dimensional 
solutions) and λs (the comparison between the 2-dimensional and the saturated 
models) were calculated for each of the 100 data sets. 

11. Here are q-q plots of the LR statistics against the theoretical distributions. Left 
panels are for λc and the right λs for 4 replicated observations (top) and 20 
replicated observations (bottom). While λs converges nicely to a theoretical 
distribution rather quickly, that is not the case for λc.  

12. This persists when the replication size was increased to 500 and 2000, although 
the departure from the chi-square dist. is not that big in this particular case. 

13. Conclusion: 1). Use λs as much as possible. (You first compare the 0- or 1-
dimensional model against the saturated. If it is significant, increase the 
dimension by one, and compare that against the saturated, and so on, until no 
significant difference is found.)  2). However, there are models for which no 
saturated model exists (e.g., RA, parametric mixture models, NN models, etc.)  3). 
May have to resort to some numerical methods such as permutation tests, 
parametric Bootstrap, etc. 4). There are attempts to find the true dist of λc. 5). 
There are also cases the true dist. of λc is known. 


