
PCA with missing data 

 

1. I’m now an adjunct professor at UVic, an unpaid employee of the University but without obvious 
duties. The benefit on my side is the access to the library, attendance to lectures and colloquia, 
and email facility. 

2. Today I’d like to talk about missing data in PCA. 
3. But before we jump into the topic, I’d like to briefly introduce projectors that appear throughout 

my talk. Here is the orthogonal projector onto Sp(Z), and its complement. And this is the 
projector onto Sp(Z) along Ker(Z’W) for an nnd metric matrix W that satisfy this rank condition. 

4. I need several other symbols to begin my talk: 
X = […, x_j, …] 
1_n 
D_wj 
F 
A 
u_j, u_0j 
x*_j 

5. There have been at least two approaches to missing data in PCA. One is based on HA, and the 
other on WLRA. In HA we set up a criterion like this to be minimized. That is, the data vectors 
and the constant term are weighted such a way that the resultant matrices are all as close as 
possible to the matrix o component scores. Here, the indicator matrices D_wj are used to weigh 
the element of the SS terms. In the original formulation of the problem by Meulman (1982), the 
columnwise centered vector x*_j was used instead of the raw data vector x_j and the constant 
terms were forced to be zero. We presented here a little more general formulation in which we 
use x_j and include nonzero constant terms. 

6. The second approach, on the other hand, set up a criterion like this, called the WLRA. Here we 
approximate the data X* by a low rank matrix. This criterion was first proposed by Gabriel and 
Zamir (1979). We could have used the raw data vector x_j here and include the constant term in 
line with the HA criterion. We will discuss this extension later on. However, it will introduce 
some complication in the algorithm used to estimate parameters. 

7. Three remarks: (a) The criteria similar in form were originally proposed by Meredith (1964) in 
the context of factor matching. (b) They are simply related when the data are complete. They 
are, however, distinct when there are missing data. (c) HA leads to closed-form solutions, while 
WLRA iterative solutions. 

8. We start with HA. There are two alternative solutions to the HA problem that I am aware: One is 
called the MDP solution originally proposed for multiple correspondence analysis with missing 
data. The other is called the TE method proposed by Shibayama (1988) in the context of test 
equation. In university entrance examinations in Japan, not all applicants take exactly the same 
examinations, some English as the second foreign language, others French, for example. This 
creates massive missing data, yet the test administrator has to come up with a set of scores 
which can rank order all applicants for admission. These two methods of solutions were 
invented in completely different contexts, and were thought to be distinct. This turned out to be 
false in 2003. 



9. To show their essential equivalence, we first rewrite the HA criterion without using the 
summation mark. This simplifies the solution, although not necessarily computationally more 
efficient. Let 
J_n: p identity matrices of order n placed on top of each other 
D_1: a variable indicator marix 
D_X: a block diagonal matrix of x_j 
D_w: a block diagonal matrix of D_wj 
U’ and U_0’: matrices of u_j’ and u_0j 
Then, \phi can be rewritten in this form. 

10.  The MDP method minimizes \phi in this order: First, wrt U_0 conditional on U and F, then wrt U 
conditional on F, and finally wrt to F under these restrictions on F. These restrictions are 
necessary because \phi can be trivially made zero by setting all parameter matrices to zero 
matrices, and J_n and D_1 are not disjoint. Anyway, this leads to the GEQ of this form, where 
\tilde{Q} is … 

11. In the TE method, the same criterion is minimized in a different order, which entails different 
restrictions under which \phi is minimized, which in turn leads to different parameter values. So 
let us rewrite the criterion using different symbols for parameter matrices (G for F, and V and 
V_0 for U ad u-0, respectively), and call this criterion \psi, 

12. which is minimized first wrt G conditional on V nd V_0, then wrt V_0 conditinal on V, and finally 
wrt V under these restrictions. This leads to this GEQ of this form. This looks different from the 
one derived previously. 

13. However, the two GEQ are simply related. Let X* be defined this way, and note that Q defined 
previously has this expression, and that this expression in the second GEQ can be rewritten as 
this due to a lemma given by Takane and Zhou (2012). Then, the two GEQ can be rewritten as 

   
  
               respectively. Now the relationship is obvious. This is like the EQ for A’A and this AA’, which are 
               simply related via GSVD of this matrix with metric matrices Q and S. 

14.  Perhaps the most economical way of calculating the parameter estimates would be to use the 
second GEQ to obtain V from which F and U can be easily calculated, and finally U_0. 

15. Now we are going to talk about the second approach to missing data in PCA, namely the one 
based on WLRA, which allows low rank approximations of data matrices under an extremely 
flexible weighting scheme. Let x* = vec(X*), and the vectorized version of a low rank 
approximation to X*, denoted by x_0 = vec(X_0). Remember that here we use the columnwise 
centred data matrix X*. We minimize this criterion wrt x_0, where $W* is an np by np matrix of 
weights, which can be any symmetric pd matrix.  
         This criterion cannot be minimized in closed form except in the special case in which W* 
can be factored into the Kronecker product of two pd matrices, in which case it reduces to 
GSVD(X*)_{K,L}. 

16. For a fixed rank r, X_0 can be reparameterized as FA’, so that x_0 has two alternative 
expressions, x_0 = (A \otimes I_n) vec(F) =  (I_p \otimes F)\vec(A’). We may use these 
expressions to develop a monotonically convergent iterative algorithm to update F and A 
alternately. 



17. This is the most general algorithm, which can be simplified considerably when W* is diagonal. In 
this case, \tau can be rewritten two alternative ways, one given here and the other on the next 
slide. This indicates a_j can be updated separately for each j, and 

18. this indicates f_i can be updated separately for each i. Again we iterate between updatings of A 
and F until convergence. 

19. So far in LRA, we have assumed that we have the columnwise centered data matrix. In this case 
the centring is performed wrt non-missing observations, which is fine if missing data occur 
randomly. In this case the mean calculated based on observed data are fairly close to those that 
would have been obtained if the data re complete. This may not be so in entrance examinations 
because applicants choose to take exams they think they are good at, and indeed this was the 
basic motivation to use the raw data matrix and the constant terms in the TE method. What if 
we use the raw data and include the constant term in the WLRA method. In this case we 
minimize this criterion wrt to F, A and m, which leads to the updates of m and a given here, 
where Q_j is given by …. This Q_j matrix is not diagonal, and when \tau* is minimize wrt F, it is 
no longer separable wrt i, which entails a full version of the algorithm in this phase of updating. 

20. I tend to prefer the method based HA on a priori grounds, 
 

 
although systematic Monte Carlo studies are essential to compare te two techniques. 

 
 
 
  
 
 

 

 


