BOOK REVIEW

Elements of Dual Scaling: An Introduction to
Practical Data Analysis

by Shizuhiko Nishisato
Hillsdale NJ: Erlbaum, 1994, 381 pp., $79.95

Elements of Dual Scaling: An Introduction to Practical Data Analysis discusses dual scaling, a collec-
tion of techniques for the analysis of discrete multivariate data. Dual scaling also is known as quantifica-
tion theory in Japan (Hayashi, 1952), correspondence analysis in France (Greenacre, 1984, 1993), and
homogeneity analysis in the Netherlands (Gifi, 1990).

This is the second book on the topic by the same author. Whereas the first book, Analysis of Categorical
Data: Dual Scaling and Its Applications (Nishisato, 1980), primarily emphasized the mathematical expo-
sition of dual scaling, this new book, Elements of Dual Scaling: An Introduction to Practical Data Analy-
sis, reviews applications and developments in dual scaling that have taken place in the past 15 years. The
book is lucidly written, and provides an excellent text for a one-semester course on dual scaling at an
advanced undergraduate or graduate level. Indeed, a copy of the book arrived when I was teaching dual
scaling in my scaling course last year, and I could not help but immediately borrow several examples of
applications from this book.

One aspect of the book that I particularly like is the well-balanced treatment of dual scaling. It is not too
mathematical (even for nonquantitative students) nor is it too cookbookish. Part I provides a very informal
introduction to dual scaling and its use, and gradually explains its basic mechanics. Parts II and III provide
a more detailed account of applications to two representative types of data—incidence data (Part II) and
dominance data (Part III). The incidence data discussed include contingency tables, multiple-choice data,
and sorting data; the dominance data discussed include pair-comparison, rank-order, and successive-cat-
egories (rating) data. Part IV discusses topics of special interest that represent newer developments in dual
scaling such as forced classification, graphical display, outliers and missing data, analysis of multiway
data, and other miscellaneous topics.

Nishisato’s books always are thought-provoking. That was the impression I had about his first book
(Takane, 1982) and I have exactly the same impression about the new one.

Partl

on A R N NG A . S g s

Part I is superbly written, except for a minor misquotation in section 2.5. The example on p. 19 of a
possible violation of triangular inequality in similarity judgments originally actually comes from Tversky
(1977).

Part I1
Part II is also nicely written. The inclusion of a chapter on sorting data is particularly nice. My only
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quibble is the title of this part, “Incidence Data.” Although all data types discussed are of this type, this
unnecessarily limits the scope of dual scaling. The version of dual scaling applicable to incidence data
should be equally applicable to any kind of proximity data (Coombs, 1964), of which incidence data are
but a special case.

Part III

Extensions of dual scaling to dominance data (Coombs, 1964) are primarily due to Nishisato. These
extensions are all intuitively appealing. But what criterion do they optimize? Is it in any sense comparable
to Guttman’s (1941) internal consistency criterion? These questions keep hovering in my mind. It seems,
however, that various extensions of dual scaling in Parts III and IV—as well as the original version de-
scribed in Part II—can all be viewed as a reduced-rank approximation technique with or without external
constraints and special metrics used to evaluate the goodness of approximations. Takane & Shibayama
(1991) call this general technique constrained principal component analysis (CPCA).

Part IV

Forced classification. The problem to be dealt with seems to be that of weighting a particular item
more heavily than others. In the framework of CPCA mentioned above, this amounts to supplying a special
metric matrix. There is a minor error on pp. 254-255. The A* should be

.~ -

1 -1 0 0
3 03 0
Aol 0 0 -
0 1 -1 0 M
0 1 0 -l
0 0 1 -1

and F,A* on the previous line should be FA*,

The problem of outliers. Low frequency categories, when they exist, tend to dominate dual scaling
solutions. Nishisato proposes robust techniques against outliers. But what really is causing the problem?
Dual scaling allows for individual differences. The marginal variance in selecting a category should be (at
times substantially) larger than that deduced from a binomial or multinomial distribution. This phenom-
enon is known as “over dispersion” in the statistical literature (e.g., McCullagh & Nelder, 1989). This
implies that metric matrices should be used other than those normally used in dual scaling.

Graphical display. How to display row and column configurations simultaneously has been an issue
of fierce debate over the past several years. Assuming that the interpretable relations in dual scaling are
interpoint distances, Nishisato rejects the idea of a joint display. Is it, however, always the distance that is
interpretable, or is the scalar product a more natural candidate? If so, a joint display still seems feasible.

Analysis of multiway data.  Nishisato proposes three alternative approaches. According to the frame-
work of CPCA, however, only the projection operator method makes sense. Nishisato, however, dismisses
the projection method for computational economy. I disagree.

Let P; =G(G’G) G’ and P, = H{HH'H)” H’ be two orthogonal projection operators, and let Z denote a
data matrix. We would like to obtain the singular value decomposition (SVD) of J = P,ZP,.. There is an
efficient method to obtain the SVD of a matrix of the above form (Takane & Shibayama, 1991). Let F, sand F,
be columnwise orthogonal matrices spanning the column spaces of G and H, respectively. Then, the above J
can be rewritten as J = F;(F;ZF, ) F;, = F; KF;;, where K = F;ZF,. Let the svD of K be K = U* D* V*,
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Then the SVD of J = UDV’ can be obtained by U=F,U* V=F_ V* and D=D*. Note that the size of K is
usually much smaller than that of J.

Horseshoe effects. Dual scaling allows for multiple quantifications of categories. When the catego-
ries are obtained by discretizing continuous variables, multiple quantifications may be viewed as mul-
tiple nonlinear transformations of the discretized continuous variables (Gifi, 1990). The first nonlinear
transformation (Solution 1 or Dimension 1) may be monotonic with the discretized variables, but not
subsequent transformations. These are called horseshoe effects. A popular view is that they are some-
thing undesirable. My opinion is to the contrary. Horseshoe effects are a natural consequence of mul-
tiple nonlinear transformations, so they are meaningful to the extent that multiple nonmonotonic
transformations of the underlying continuous variables are meaningful. In fact, horseshoe effects occur
all the time (even for unordered categorical data) in the sense that all the subsequent dimensions are
some nonlinear transformations of the first dimension.

Nonlinear transformations. Nonlinear transformations expand the scope of data analysis. In dual scaling,
nonlinear transformations are operationally realized by linear transformations of dummy-coded categori-
cal variables. The nonlinear transformations must, therefore, be identity preserving. If too few observation
categories are used, there may be a loss of information. There also is another kind of limitation. In dual
scaling, only univariate transformations are feasible. This means that, for example, interactions among
variables cannot be captured, unless they are explicitly coded as part of the data. Artificial neural network
models, recently popular in pattern recognition and cognitive psychology, have some generality over dual
scaling in this respect. They are capable of automatically capturing important interactions among vari-
ables. This is done by allowing multivariate nonlinear transformations. :

Amount of information that can be explained by each dimension. The following three have to be distin-
guished: (1) the absolute amount of the sum of squares (SS) explained, given by 1Z; (2) the total SS to be
explained, given by tr(C) = Zn}; and (3) the maximum possible total ss. What (1)/(2) and (1)/(3) indicate
seems obvious. (1)/(2) can be large if (2) is small (which means there is not much association between the
rows and columns of a data matrix initially) or it can be small if (1) is large and (2) is even larger. (1)/(3),
however, does not depend on how much association there is to be explained in a particular data matrix (2).

Statistical inference. Assessing the reliability of the results is always important. Nishisato, however,
leaves the subject for future investigations. But why not bootstrap? It should be usable without much
future investigation. Also, techniques are available for sensitivity analysis based on perturbation theory
(Tanaka, 1984). Modelling approaches are also interesting, such as ideal point discriminant analysis (IPDA;
Takane, 1987), latent class analysis (LCA; e.g., Hagenaars, 1990), and association models (Goodman, 1986).
These methods are equipped with statistical model evaluation capabilities based on a large sample ratio-
nale. They have recently been reviewed by van der Heijden, Mooijaart, & Takane (1994).

Quality Issues

The print quality of the book is not optimal. In particular, the first few lines of each page are not aligned
properly. It took me awhile to get used to this. However, the print quality has nothing to do with the quality
of the content. It is an excellent book, and I would like to thank “Nishi” on behalf of all potential readers of
the book for his painstaking effort to produce such an excellent book.

Yoshio Takane
McGill University
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