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Multidimensional Scaling

of Sorting Data*

Yoshio Takane

McGill University

1. Introduction

In the stimulus sorting method the subjects are asked to sort a set of
stimuli into as many sorting clusters as they wish so that the stimuli in a
cluster are more similar to each other than those in different clusters.
This method has enjoyed great popularity among social scientists as a quick
and easy data collection method for similarities. 1In this paper we develop
a multidimensional quantification method for the sorting. data collected over
a sample of subjects. Given multiple sets of sorting data this method finds,
in a multidimensional Euclidian space, a configuration of points in such a
way that a weighted sum of squared distances between cluster centroids averaged
over the subjects is maximized under suitable normalization restrictionms. ‘

\
\\

2. The Method
Let us assume that each of N individuals has sorted a set of n stimuli
into Nk (k=1,...,N) clusters (groups) in terms of similarity among the stimuli.

For each subject define an n by Nk matrix gk of dummy variables indicating a

group to which each of the n stimuli belongs. That is,

(k)

(1) gk - [gir 1, (i=1,...,n;vr=1,...,N s k=1,...,0),

®) 1, if stimulus 1 is classified into cluster r by subject k
where g -

ir 0, otherwise.
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Let X denote an n by t matrix of stimulus coordinates common to all individuals,
where t 1s the dimensionality of the representation space. Without loss of gen-
erality we assume that X is columnwise centered.
That is,

@ Lx-g
(where (_)t is the t-component zero vector), or more indirectly,

(3 I'xex,

where m- is the centering matrix of order n.

We now define an n(n-1)/2 by n design matrix A for every possible pair~
wise comparison between stiﬁlus coordinates. Let D be the matrix of Euclid-
1an distances between stimuli. .

We have

0 a2, = 3trp? = tr(AXX'A") = ntr(Xn*X) = ntr(x'X)

z
1,51 i3
(Takane, 1977). Note that A'A = n_I_l;.. Similarly, the sum of squared Euclid-

ian distances between cluster centroids for subject k is given by

(k) (k) _(k) 2 ] ]
G I o n(d ") = tr(An, XX'm, A")
r,8<r s s =G, —ck

= ntr(X'I, B, X
I, X,
G

are the numbers of stimuli put in clusters r and s, res-

= ntr(X'

()

and n
s

(k)

r
pectively, by subject k, ES;) is the Euclidfan distance between centroids of

where n

clusters r and s, and where

©® I - &(Ee)7g
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We have an identity,
(0 3ted? = aex(x'x) = Aler® L 0 + @R D,

where i =1 -1I for each k. The second term on the right hand side of
—Gk - —Gk

the avobe identity represents the sum of squared Euclidian distances between

stimulus points and their corresponding cluster centroids. If we divide both

sides of (7) by n and take an average over subjects, we obtain

N
(8) tr(X'D =& I [er(X'I D + @' D)

Ny=1 "

- tr[X(> g )X] + tr(x' & - )X
TNy SN -

k=1 Ok

= tr(X'BX) + tr(X'E'D),

-

N N
1 L

where B=< I I and B~ = In. .

N =1 G k=1 Ok

tr(X'BX) is maximized for a fixed value of tr(X'X), say tr(X'X) = 1. This

We might determine X so that

Z e

is quite sensible, bec’ausﬂe tr(X'BX) represents the portion of tr(X'X) which
is sn_-ictly related to inter-cluster distances. However, when t>1 (the
multidimensional case), we need an additional restriction on X. It is con-
venient to require J

D XX=1.
It is well known that the maximum of tr(X'BX) under this restriction is
given by the matrix of normalized eigenvectors of B corresponding to its
t dominant eigenvalues. However, X should also satisfy the centering
restriction (2). Fortunately, this can be handled rather trivially,
since B has an eigenvector proportional to :—L-n (Bl = ln) and all other

~—n

elgenvectors are orthogonal to this vector. We should simply avoid the
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constant eigenvector to be included in X. This amounts to defining

(10) 3*=B-11'/n
= =7 =

and obtaining t eigenvectors of gf (corresponding to its t dominant eigen~
values), assuming that §f has at least t nonzero eigenvalues.
Once X is obtained, the cluster centroids for each subject can be
obtained by
1

an y - (c'cl)’ GiX, (k=1,...,N).

This !k provides information concerning individual differences in sorting

behavior.

The proposed method has a rather straightforward relationship to
conventional dual scaling (Nishisato, 1980), also known as the type IIIL
quantification method (Hayashi, 1952) or correspondence analysis (Benzécri,
et.al., 1973). This, as well as other details of the derivation of the
method, is fully described in Takane (1980). ‘

3. A Similar Method

The total sum of squared distances (4) can be decompoéed in another
interesting way. A distance is defined éither between two stimuli in a
same cluster or between two stimuli in different clusters. A set of dis-
tances can thus be partitioned uniquely into two mutually exclusive subsets.
Let a diagonal matrix QBk of order nx(n-1)/2 whose mth diagonal eleménf is

th

one, if a pair of stimuli corresponding to the m row of matrix A are

put into different clusters by subject k, and zero, otherwise, and

=1 - D, . Then we have
% "Iz T B8

(12) @D = er@XED + rQED,
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= A i = A’ .
where 5‘ A ang._/n and Ek A _D"kgln, and, by averaging (12) ‘over N subjects,
we obtain ' :

(13)  tr(X'®) = tr(X'EY) + tr(X'EX)

N © N N N
1 ~ ~ X 1

h H= IH/N=A'[C L (D, /n)JAandH = ZE]/N-A'[— b3 (g” /n) JA.

B =N ey By k=1 N1

The X which maximizes tr(X'HX) under restriction (9) can be obtained by solving
for the eigenvectors of H corresponding to its A dominant eigenvalues.

The above procedure happens to be equivalent to Hayashi's (1952) type IV
quantification method, which obtains eigenvectors of matrix A'D -eé (Takane,
1977), where D_e is any diagonal matrix of dissimilarity constructed in a
manner similar to I_)Bk In the present case we set D_e = % kgl(l)ak/n). Our
experience indicates that this method also gives results similar to those

obtained by the method developed in section 2.

4. Process Model for Sorting

The criterion of maximizing the weighted sum of squared distances be-
tween cluster centroids may be somewhat arbitrary from an empirical point of
view. In particular it does not seem to have anything to do with the way il‘l
which the subjects perform the sorting task. It still remains an empirical
question whether sorting clusters are actually conceived by the subjects as
such. In what follows we develop a psychological'model of sorting behavior.

Takane (1980) discuss a close relationship between the proposed method
and Coombs' (1964) unfolding model. In constructing the psychological model
for sorting we take the idea underlying the unfolding model as a point of
departure. We assume that each subject has an ideal point for each sorting
cluster, and that the ideal point for a cluster is given by the cluster cen~

troid. We further assume that the closer a stimulus point to the ideal, the
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higher is the probability that the stimulus is classified infg the cluster
of the ideal. The probability should be small, if the stimulés is located
far away from the ideal. Thus, we may explicitly state the pfobability of a
particular stimulus put into a certain cluster as some decreﬁsing function of
the distances between the stimulus point and the ideal points of clusters.
The problem of determining X then is to maximize the probability of obtaining
observed clusters over N subjects. We use Luce's (1959) type choice model to
specify the probability. Let Ei:) represent the distance between stimulus i
and the centroid of cluster r by subject k. Then under this mﬁdel the probab-

k
ility pir) that subject k puts stimulus i into cluster r is given by

(k)
exp(-d; )
1) pi‘:.) e ir
~(k)
L exp(-d;”’).
s=1 is

A particular stimulus can be put into any one of Nk clusters by subject

k. The multinomial distribution is appropriate for this kind of situation.

Let pik) denote the probability that stimulus i 1is put into a certain cluster
by subject k. Then
N (k)
k g
k k), "1
as) oM - 1 My,
r=1

and the likelihood function for the total set of observations, may now be
stated as

(16) L= T pik) )
k,1

We obtain X which maximizes the likelihood. The likelihood can be maximized
numerically using the scoring method.
Again, our experience shows that this new criterion gives similar re-

sults to those obtained by the method developed in section 2, justifying the
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criterion employed previously.

7. Concluding Remarks

. In this paper we proposed a method of multdimensional scaling for sorting
data. This method is simple and has a special advantage when one wishes to
obtain a quick multidimensional scaling solution from the sorting data. Unlike
conventional multidimensional scaling procedures, it requires no prior con-
versions of the sorting data into similarity data. Furthermore, it permits
a sort of individual differences analysis with the sorting data. The straight-
forward relationship of the method to dual scaling as well as to the unfolding
model adds further credibility to the proposed method. It has been shown that
it could provide reasonable approximations to a psychological process model of
sorting behavior.

It might be interesting to extend the proposed method to three-way cases

allowing individual differences in the stimulus configuration. If the

conceived space is the weighted Euclidian, then CANDECOMP (Carroll and
Chang, 1970) type algorithm should directly apply to this situation. Pro-
grams are now available for both the method proposed in this paper (Takane,

1981) and its three-way extension (Takane, 1983).
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