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cases. Nonlinear renewal theory has been
applied to approximate the properties of sev-
eral sequential tests and estimates (see SE-
QUENTIAL ANALYSIS). The recent monograph
by Woodroofe [15] and text by Siegmund
[12] describe the development of nonlinear
renewal theory and its applications to statis-
tics. They include references to statistical
applications. See also Lalley [11].
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NONMETRIC DATA ANALYSIS

Nonmetric data analysis in its broader sense
refers to a set of models and techniques for
analysis of nonmetric data. Nonmetric data

PYRIGHT i
LEY & SONS, inC. ’

here refer to nominal or ordinal data (see
NOMINAL DATA and ORDINAL DATA) as op-
posed to metric data, which refer to interval
or ratio data [17] (see MEASUREMENT STRUC-
TURES AND STATISTICS). Nonmetric data
(sometimes called qualitative or categorical
data) are obtained in a variety of ways. For
example, in attitude surveys, the respondent
may be asked to endorse attitude statements
with which he or she agrees. In some mental
tests, the examinee either passes or fails test
items. In consumer research, the subject may
be asked to rank-order food products ac-
cording to preference. In' multidimensional
scaling*, stimulus confusion data which are
used as (inverse) ordinal measures of subjec-
tive distances between the stimuli, may be
taken. In some instances metric data may be
“discretized” for the purpose of data analy-
sis. -

Methods to analyze nonmetric data may
be classified into two major approaches. One
is quantitative analysis of qualitative data [23],
and the other is parametric approaches to
nonmetric scaling [18-20). The first approach
is primarily descriptive but is more general
in its applicability. Nonmetric data analysis,
in its narrower sense, usually refers to this
first approach. The second approach is less
general but is more powerful in situations
for which particular models are intended.
For other approaches to nonmetric data
analysis, see related entries listed after the
references. ‘

The essential idea behind the first ap-
proach is that nonmetric data are nonlinear
transformations of metric data. Thus if an
appropriate transformation is applied, the
transformed data may be analyzed by a
“quantitative” model. Unlike other methods
that require data transformations, a specific
transformation to be applied does not have
to be predetermined in this approach. Both
the best data transformation and the best
parameter estimates of models are obtained
on the basis of a single optimization crite-
rion. '

Let y; denote the ith original observation.
This y, is assumed to be quantified a priori.
For example, y,=1 or 0 depending on
whether person i passes or fails a certain test




item, or y, =2, y, =3, and y; =1, if the y,
are rank-ordered and it is observed that y,
> y, > y3. The numbers are assigned and
interpreted “nonmetrically.” That is, for
nominal data, only identity or nonidentity of
the numbers (i.e., for any two numbers,
a = b or a+ b) is meaningful, whereas for
ordinal data, ordinal properties of the num-
bers (i.e., for a = b, either a < b or a > b)

are also meaningful. However, in either case

neither the difference nor the ratio of two
numbers is meaningful. The y, is trans-
formed by function f, and f(y,), the trans-
formed data, is fitted by model g(X,a),
where X, is some auxiliary information
about i (if there is any), and a is a vector of
unknown parameters. Both f and g are real-
valued functions, possibly defined only at
discrete values of their arguments. The prob-
lem is to find f and g such that an overall
discrepancy between f(y;) and g(X;,a), i
=1, ..., 1Iis a minimum. More specifically,
define a least-squares* loss function,

1
Stress = gl (fO) — g(X; ’“))2'

This criterion is minimized with respect to
both f and a under some appropriate nor-
malization restriction.

General forms of f must be consistent
with nonmetric properties of the data. That
is, f must be such that the basic properties of
nonmetric data are preserved through the
transformation. (Such transformations are
called admissible transformations.) This im-
plies that f must be monotonic (order pre-
serving) when the data are ordinal, and it
must be one to one (identity preserving)
when the data are nominal. Within the ad-
missible types of transformations, a specific
form of f is determined that minimizes
Stress. For a given g the best monotonic
transformation is obtained by Kruskal’s [10]
least-squares monotonic regression algo-
rithm, and the best one-to-one transforma-
tion, by least-squares nominal transforma-
tion [5)]. Since f is determined in such a way
that it is closest to g among all admissible
transformations, it may be considered to
possess the same scale level as model g,
provided that model g is appropriate for the
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data. The scale level of a model is the type
of admissible transformations by which de-
fining properties of the model are not de-
stroyed. For example, if g is a distance
model, which is a ratio model since the
defining properties of the distance (the met-
ric axioms) are preserved by multiplying the
distance by a positive constant, f is also
considered ratio at least approximately. The
nonmetric data are, so to speak, “scaled up”
by fto g.

Similarly, specific models (g) to be fitted
depend on the nature of the data. For exam-
ple, if the data are similarity data (see MUL-
TIDIMENSIONAL SCALING), a distance model
may be employed. If the data are conjoint
data (see MEASUREMENT STRUCTURES AND
STATISTICS), an additive model may be ap-
propriate. Other models that may be fitted
include linear regression* models, bilinear
models (principal components* and factor
analysis* models), and a variety of distance
models including the Minkowski and the
weighted distance models [3, 9] and the un-
folding model [4] (see MULTIVARIATE ANALY-
SIS and MULTIDIMENSIONAL SCALING). Which-
ever model is chosen, model parameters are
determined in such a way that Stress is a
minimum. For a given f, least-squares esti-
mates of model parameters are obtained as
if the current f were metric data.

To illustrate, consider the situation in
which ordinal data are analyzed by the re-
gression model. Such a situation arises, for
example, when we wish to find out why
some cars are regarded as more desirable
than others, based on various attributes (e.g.,
gas mileage) of cars and a preference rank-
ing among them. Let y; be the ith observa-
tion on the dependent variable (the prefer-
ence rank of the ith car) and X, the corre-
sponding observations on the independent
variables (the values of the attributes). The
dependent variable (y,) is monotonically
transformed (so that if y; > y;, then )
> f(y)), and the regression coefficients (a)
are estimated in such a way that Stress is a
minimum. Two algorithms are currently in
use for minimizing Stress with respect to f
and a. One is the steepest descent algorithm
(see also OPTIMIZATION and SADDLE-POINT
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APPROXIMATIONS) used originally by Kruskal
[10] for his nonmetric multidimensional scal-
ing. The other is the alternating least squares
(ALS) algorithm developed by Young, de
Leeuw, and Takane. (This work is summa-
rized in Young [23].) In the steepest descent
algorithm, f, which minimizes Stress for a
fixed g, is expressed as a function of g(a)
and then substituted in Stress. The Stress,
which is now expressed as a function of a
only, is then minimized with respect to a. In
the ALS algorithm, LS estimates of f and g
are obtained alternately with one of them
fixed while the other is updated. This algo-
rithm is monotonically convergent.

The origin of the quantitative analysis of
qualitative data can be traced back to
Guttman’s scale analysis [8]. This method is
still widely used and has regained consid-
erable theoretical interest in recent years
[6, 15] (see CORRESPONDENCE ANALYSIS).
Coombs’ unfolding analysis [4] is important
in that it was the first to suggest the possibil-
ity of recovering metric information from
nonmetric data. The current trend in the
quantitative analysis of qualitative data be-
gan with Shepard’s [16] and Kruskal’s [9]
landmark work on nonmetric multidimen-
sional scaling. Following their work, it was
soon realized that models other than the
distance model could be fitted to nonmetric
data in a similar manner, and several fitting
procedures were developed along this line [9,
22]. More recently the ALS algorithm was
proposed as a unified algorithmic framework
for the quantitative analysis of qualitative
data; this has considerably widened the
scope of models that can be fitted [6, 23].
For a list of currently available procedures,
see Young [23].

In the parametric approaches to nonmet-
ric scaling, nonmetric data are viewed as
incomplete data. That is, a complete metric
process is supposed to underlie the nonmet-
ric data generation process, but the metric
information is assumed to be lost when the
observations are made, leaving only ordinal
or nominal information in the observed
data. Thus, if this information reduction
mechanism can be captured in a model, the

metric information may be recovered from
the nonmetric data by working backward
from the data.

As an example, let us discuss Thurstone’s
[2, 21] classical pair comparison model. In a
pair comparison experiment, stimuli are pre-
sented in pairs, and the subject is asked to
choose one member of a pair according to
some prescribed criterion. The data are a
collection of partial rank orders. Suppose
stimuli / and j are compared in a particular
trial. It is hypothesized that each stimulus,
upon presentation, generates a latent metric
process that varies randomly from trial to
trial. Let X; and X; denote the random vari-
ables for the latent processes of stimuli / and
Jj» respectively. For simplicity let us assume
that X;,~N(p;,3) and X;~N(p;,3). (The g,
and y; represent the mean subjective values
of the two stimuli. The variances of X; and
X; are assumed to be equal, but their size
can be arbitrarily set.) It is assumed that
stimulus i is chosen when X; > X; and stimu-
lus j is chosen when X; < X;. Under the
distributional assumptions on X the proba-
bility ( p;) of stimulus i over stimulus j can
be stated as

where ¢ is the distribution function of the
standard normal distribution*. The likeli-
hood* of observed data is stated as a func-
tion of parameters in the latent processes.
For computational convenience, ¢ may be
replaced by the logistic distribution* [14]. In
any case p; and p, may be estimated to
maximize p; if in fact stimulus i is chosen
over stimulus ;.

This basic principle can be extended in
various ways. Suppose that: y, represents a
combined effect of one or more factors. It
may then be appropriate to characterize the
p; by an additive function of these factors.
Pair comparisons of such y; provide the data
for additive conjoint analysis [19]). As an-
other example, suppose two pairs of stimuli
are presented and the subject is asked to
choose a more similar pair (this method is
called the method of tetrads, which involves




pair comparisons of two similarities). Then
stimulus (dis)similarities may be represented
by a distance model, and then they are sub-
ject to pair comparisons. Nonmetric multidi-
mensional scaling (in the sense of the second
approach) is feasible with the pair compari-
son data [20]. As in the first approach, vari-
ous other models may be fitted in a way that
is consistent with the nature of the data.

Another line of extension is possible with
regard to the kinds of judgments that are
made. Stimuli may be rank-ordered. They
may be rated on a categorical rating scale. A
choice may be required among several com-
parison stimuli. In each case a specific
model of information reduction mechanism
(similar to that used in pair comparison situ-
ation) may be built into parameter estima-
tion procedures. Then essentially the same
analysis can be done as in the pair compari-
son case. Such procedures have been devel-
oped for similarity ratings [18], for similarity
rankings [20], and for additivity analysis of
rating and ranking data [19].

The history of the parametric approaches
to nonmetric scaling is even older than the
quantitative analysis of qualitative data.
Thurstone’s pair comparison model was
originally proposed in the 1920s [21]. A simi-
lar model was developed in mental testing
situations [13] in the early fifties. Around the
same time, latent structure analysis* [12] was
proposed, which accounts for observed re-
sponse patterns to items by hypothesizing
latent structures. (Again, conceptually, this is
very similar to Thurstone’s approach.) See
Andersen [1], Bock and Jones {2], and Good-
man [7] for recent developments in these
models. More recently, Takane [18-20] has
developed the conceptual framework for the
parametric approaches to nonmetric scaling
that is presented here.
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NONOBSERVABLE ERRORS

In the general linear model*
Y=XB+e¢

where Y is a k X 1 vector of observed sample
values the random component € is often
referred to as nonobservable errors.

(GENERAL LINEAR MODEL)

NONPARAMETRIC
CLUSTERING TECHNIQUES

Write N for the number of clusters in a set
of multivariate observations; given N, nu-
merous clustering techniques estimate the
cluster membership of each observation.
Most of these techniques lack a statistical
basis, making determination of N problem-
atical.

One statistical formalization of the cluster-
ing problem assumes the data come from a
mixture* of normal distributions. This as-
sumption allows determination of N using
a likelihood* or other statistical criterion
since, under the assumption, N equals the

<7/

number of component distributions. Several
current clustering algorithms use this ap-
proach; see, e.g., Lennington and Rassbach
[3]. The normality assumption is frequently
violated, making interpretation of the result-
ing clusters difficult. :

A generalization of the-normal mixture
model supposes the observations arise from
a mixture of unspecified distributions [2, p.
205]). Based on this supposition, the cluster-
ing problem reduces to obtaining a nonpara-
metric estimate of the underlying density
function. -

One nonparametric density estimate uses
the equal cell histogram. Given a threshold,
the clusters are the connected regions above
the threshold level. No theoretically defined
threshold currently exists, although some au-
thors suggest the expected value of the den-
sity given a uniform distribution over the
range of the observations. Goldberg and
Shlien [1] apply this technique to obtain a
preliminary clustering of LANDSAT data.
Each observation consists of four measure-
ments in the range from 0 to 127; the num-
ber of cells equals the number of possible
combinations, 64*, and the threshold value is
the average number of observations per non-
empty cell. All contiguous cells with density
above the threshold are connected, and then
all cells with density below the threshold are
joined to the nearest connected set; N is the
number of connected sets.

An improved estimate can be obtained by
allowing the data to determine the cells, as
in ref. 6, in which Wong partitions the data
space into k regions, for k between N and
the number of observations, obtaining a den-
sity estimate inversely proportional to the
volume of the regions. The k regions are the
partition of the data space minimizing the
within region sum of squares of the observa-
tions and correspond to the clusters found
by the k-means clustering algorithm. This
set of estimates is then used to assign the
observations in each region ‘to the appropri-
ate cluster.

An alternative approach to nonparametric
density estimation and hence to the problem
of estimating N and cluster assignment, uses '






