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Various models for stimulus recognition data were -
compared in terms of their goodness of fit (GOF). The -
models considered include the unrestricted similarity model, -
the euclidean distance model and the unique feature model.
In all cases Luce's choice model was used to link the
stimulus (dis)similarities to confusion probabilities. A -
maximum likelihood estimation procedure was developed to fit -/
these models, and their GOF compared through the AIC
statistic. Results were reported in detail for one data set
(Keren & Baggen's data). Major findings were: (1) The-
unrestricted similarity choice model was found to be the
best fitting model. (2) The euclidean distance model did -
not fit the data very well. (3) The unique feature model -
with the sets of features used in this study did not fit the
data even as well as the poorly fitted euclidean distance
model.

INTRODUCT ION

In a recognition accuracy experiment a stimulus is randouly
chosen from a set of n stimuli in each trial, and is presented-to
the subject under degraded stimulus presentation conditions. The
subject's task is to identify the stimulus. For f; replicated
presentations of stimulus i we obtain a set of £y KD frequencies: -
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with which stimulus i is judged as stimulus j. A varietv of
models have been proposed for stimulus recognition data (e.x.,
Luce, 1963; Townsend, 1971; Nakatani, 1972;: Keren & Basgen,
1981). These models attempt to predict a set of confusion
orobabilities, Py that stimulus i is judged as stimulus §.
Some attempts have been made to tomoare various asoects of thase
models (Townsend & Ashby, 1982; Townsend & Landon, 1962; Acvelmen
& Mayzner, 1982), but no svstematic comoarisons have vet hesn
made on the hasis of a rigorous statistical criterion. In this
vaner we compare GOF of these models using the AIC statistde
(Akaike, 1974).

All substantive models to be considered in this paver are
based on stimulus similarities. The stimulus similarities are
then assumed related to the observed form of data, confusipn
freouencies (probasbilities), in a specific wav. Thus, there are
two major components in the models; a wmodel of stimules
similarities and a model that relates stimulus similarities. .fo
confusion probsbilities. The former is called the representatien
model of stimuli (or simplv the similaritv model) since it stetes
a certain relationshio among the stimuli. The latter is oalled
the response model of data, since it links the reoresented
relationship among stimuli to a specific form of data (Takane,
1981; Takane & Carroll, 1982)., The followine three similarisy
models will de considered in this paver: the unconstrained
similarity model, the euclidean distance model and the unicue
feature model which is similar to Tversky's (1977) feature
matching model. Combined with these similaritv models Luce's
choice model (Luce, 1959) is used to relate the stimules
similarities to observed confusion probablilities. LG

Nakatani's (1972) confusion choice model has also heen tried
as a response model. However, due to space limitation, results
of this model will not be presented in this oaver. (See ‘l'lmé"&
Shihavams, in preparation.) Also, other models of ltiluli.p
recosnition data, such as the all-or-none sctivation model qg
- the overlap activation model (Townsend, 1971), have not heen
attempted, since these models have been consistently fdnh!
inferior to the unrestricted similaritv-choice model (Tounuui
Ashby, 1982; Townsend & Landon, 1982), These models 413'
interesting, however, and are worthv of a separate maidoutw
since thev are both special cases of the unrestricted similaritys
cholice model and of the sophisticated ruessing model, of vht&ﬁ
Nakatani's confusion choice model is also a svoecial ocase
(Pachella, Smith & Stanoviteh, 1978; Smith, 1980; Townsend &
Landon, 1982),
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The three models and their variations were fitted to several
sets of real data for goodness of fit comparisons. In this paper
we report only one of them in some detail, namely Keren &
Baggen's (1981) data on the recognition of segmented numerals.
Their data have previously been analyzed by their own model
(which is similar to our unique feature-choice model) as well as
by the unrestricted similarity-choice model.

THE MODELS TO BE CONSIDERED

In this section we describe, in some detail, the models to
be compared. Where appropriate we discuss interesting
relationships among them and other existing models.

As stated earlier, models of stimulus recognition data
predict confusion probabilities, Pyge Different models are
distinguished by different substructures they impose on Pyge
There 1is one model, however, which does not assume any specific
substructures on py ¥ All the other models are considered special
cases of this model.

The Null Model. It is well known that the maximum likelihood
estimate of Pyj is given by fij’fi when no further structural
assumptions are made on Py 4 This is the least restrictive model
for pyy and thus serves as 2 benchmark model for the stisulus
recognition data. In the context of the log-linear model
(Bishop, Fienberg & Holland, 1975) this model is analogous to the
saturated model. Since r“ is minimal sufficient for Py ys RO
other models of Py can possibly fit the data at hand better than
this model. However, this model uses the largest number of
parameters among the models to be considered. The effeotive
nunber of parameters in this model is n(n-1) where n is the
number of stimuli used in an experiment. We have n2 paranesters,
but for each i; we have to have pij z 1, hence the effective
number of parameters is reduced by n. This number of paraneters
taken into consideration, this model may not be the best model.

The Unrestricted Similarity-Choice Model. Based on the prim.nple
of "independence from irrelevant alternatives®, Luce (1959)
proposed a2 general choice model which has been widely used in
diverse fields of scientific disciplines. The basic preaise of
the model is that each choice alternative is associated with a
response strength which is assumed invariant over sets of choice
alternatives, and that the probability of a particular eholce
alternative being chosen is proportional to its response strength
(Constant Ratio Rule).
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In the stimulus recognition context the Constant Ratioc Rule
leads to o

tes v
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where t, 4, which is not necessarily symmetric, is the response
strength of stimulus j, when stimulus i is presented. Model (1)
applied to a single confusion matrix, where the responss
alternatives are common across trials, is called the weak CRR
model (Townadne & Landon, 1982). The weak CRR model, however, is
not any more restrictive than the null model. There is a scale
indeterminacy in t“, for each i, and by setting z‘ik s 1t to
remove this ;ndetcrninacy. we obtain p“ = e“, which is
equivalent to the null model.

Luce (1963) postulated that the response strength was
proportional to both stimulus similarity and response bias, ‘and
arrived at the following model: '

Y5 %13
piJ = - ] (2)

Tw 8
kki.k

where 3,, is the similarity between stimuli i and J, and vy is
the response bias of ‘atmulus J. It is usually assumed that 844
® 8,4, 3nd that 8, = 132 844 for all i and j&4i and LA 311.
The latter restrictions are necessary in order to remove scale
indeterminacies. '

The above model is motivated by the fact that the more
similar two stimuli are, the greater the chance is that they are
confused. It is also the case that the greater the bias is for a
particular resonse, the higher the probability is that the
response is chosen. The response bias here refers to the
"tendency of the subject to use some responses more frequently
than others® (Smith, 1980). Whereas 343 represents a certain
perceptual quality (difference) between stimuli 1 and J, wy is
assumed to be independent of such a perceptual quality. Ra
it is assumed more of a function of such circumstantial factors

as frequency of ocourrence. Among stimuli having a same dodr'u
of similarity those which are more familiar to the subject temd




- PROBABILISTIC AND STATISTICAL ASPECTS 123-

to be chosen as a response more frequently than less familiar
stimuli. Model (2) will be referred to as the unconstrained
similarity-choice model in this paper, unconstrained in the sense
that no further structural assumption is made on the similarity
parameter.

It has been pointed out (Smith, 1982; Townsend & Landon,
1982) that the unconstrained similarity-choice model is
equivalent to the log-linear quasi-symmetry model (Caussinus,
1965), which is stated as

pij g .i bJ cij . ! (3)

where Ta, = Tb, =z Te s Te z ! and ¢ s e 40 Although

184 3= (%14 joid- i3 J1
pannetrizati&ns look different, one-to-one correspondence
between (2) and (3) can be easily est.-bliished by setting w, = b,,
844 = cgy/(eyqey )=1/2 and ( w3, )" = g a,. An importast
property of the ‘quasi-symmetry model is the cycle condition,
namely

P1s Pyk Pk = Py1 Pyx Pyy ()

(Bishop, Fienberg & Holland, 1975). Furthermore, from the theory
of maximum likelihood estimation in the exponential family, of
which the log-linear model is a special case, we immediately know
that the maximum likelihood estimates in the unrestricted
similarity-choice model satisfy: (1) Row and column marginals
are always perfectly fit. (2) Discrepancies between observed and
predicted confusion frequencies are skew-symmetric, which in turn
implies that diagonals are always perfectly fit. These
properties can be effectively used to check proper convergence of
iterative procedures used to obtain the maximum likelihood
estimates, (Note, however, that these properties do not
generally hold for models in which 844 and/or wq are further
constrained; e.g., the euclidean distance~choice model and the
unique feature-choice model to be discussed in the following
sections.)

The unconstrained similarity-choice model has been shown to
account for stimulus recognition data very well in ‘many
situations (Townsend, 1971; Townsend & Landon, 1982). Keren &
Baggen (1981), however, eriticized the model on several accounts,
of which we mention only those critically relevant for our
purposes, and add our comments.

(1) The bias parameters are not perceptually independent of the
stimulus similarities. For example, Keren & Baggen found strong
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negative correlations between vy and sy 3 Indeed there does not
seen t0 be any good reason to believe that Wy is independent of
perceptual qualities of the stimulus. On the contrary, it
represents whatever is related to stimulus j, which makes
stimulus j more or less plausible as a response. Since s, is
also part of "stimulus characteristics® of stimulus j, it is mo
wonder that w, is in some way related to 8440 Recent evidenoe
(Krumhansl, 1978; Podgorny & Garner, 1979) indicates that w, is
affected by such stimulus characteristics as stimulus
discriminadility (stimulus density around the stimulus) and
stimulus complexity (difficulty of encoding the stimulus into a
psychological representation) as well as other circumstantial
factors. Indeed, psychological status of the bias parameters is
at best ambiguous (Keren & Baggen, 1981). However, this does ‘not
imply that the bias parameters are unimportant. In fact, as
pointed out by Smith (1982), Keren-Baggen's model {(our unigue
feature-choice model), proposed as an alternative to the
unrestricted simil arity-choice model, also has a restricted form
of bias components.

(2) The model uses too many parameters. Indeed it uses
{(n-1)(n+2) /2 parameters, which is the sum of th® n(n-1)/2
similarity parameters and n-1, the number of bias pannqtfm’
minus 1. Although this number is substantial ly smal ler than nin-
1), the effective number of parameters in the null model, 1{\3
still quite large. It seems advisable to attempt teo reduéc:ﬁb
number of parameters dy hypothesizing some substructures on 8,..
(3) There is no substantive theory behind 8 40 i.e., no tlih'y
regarding hov similarity between two stimull is perceived. Aé.ln
this motivates some model for »;y (i.e., some specific
substructures on s,,). In fact this a3 well as the argument’ in
(2) has lead Keren & Baggen to develop their own, nore
parsimonious model for stimulus recognition data using T vcrdb‘l
feature matching model to account for stimulus simil arities. ’;

The Euclidean Distance-Choice Model. The problem now is vt
substructures we may impose on s;4. One outstanding possibility
is the distance model that has been quite successfully used in
mul tidimensional scaling. If we further assume that a functf_hn

relating the distance to the similarity is an exponential degay
function, we obtain

v, exp{ =d, ) -
Ol @
W, exp( =
k k ik
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Tnis specialized similaritv-choice model will be called the
euclidean distance-choice model, since the euclidean distance
model is consistentlv used in this paper. The euclidean distance
is formallv defined, for a prescrihed dimensionalitv A, as

A , Y1/
dgg = {:;1 (Xyp = Xy) } , (6)

where x;, and X4a 8are coordinates of stimuli i and J§,
respectivelv, on dimension a. The effective numher of parsmeters
in the euclidean distance model depends on the dimensionalityv,
and is civen bv nA~A(A+1)/2, This is usual lv much smal ler than
n(n=-1)/2 for ’13‘ The total number of parameters in the
euclidean distance-choice model is thus (n-1)enA<A({A+1)/2,

The euclidean distance-choice model is not at a2l new,
althoush to the best of the authors' knowledge it has never bheen
fitted directlv (but see Getty, et al., 1979; Heiser, 1985.) As
early as in 1957 (which even predates Luce's choice model)
Stepard oroposed a model identical in form to (5) in the stimulus
generalization context. He also derived a formula for obtaining
an estimate of dij from observed confusion probahilities, which
mav be used to ohtain initial estimates of Xia¢

Tt is interesting to note that model (5) can alse be
derived from s seeminglv unrelated model. Krumhansl (1978; see
2also Bentler & Weeds, 1978; Takane & Sergent, 1083; Carroll,
1983; Winsherz & Carroll, 1984) proposed tre distance-densitv
model to account for the effect of stimulus density around a
particular stimulus. The stimulus densitv affects stimulus
discriminabilitv, which in turn causes violations of minimalisvy
and svmmetrv (T verskv, 1977) required of the distance. In order
to account for the effect she proposed a model whieh is a
combination of rezular distance function (usual 1v euclidean) and
densitv components. Specificallv, her model is:

Zij s dij * aci + bej y (7\

where a'ij is the "distance-densitv" between stimuli i and 3, d“
is the usual euclidean distance hetween stimuli i and Jy ey and
ey {2 0) are density parameters, and a and b are the weights to
account for asvmmetrv. The denaitv parameters are supposed to
take a larger value when the stimulus density around a particul ar
point is higher, and conseguentlv stimulus discriminabilitv is
lower for the stimulus. Wien there are a 1ot of stimuli similar
to the stimulus, stimulus similarities hetween the stimulus and
all other stimuli tend to be "diluted."
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Podgornv and Garner (1979) gave a different
interpretation to Xrumhansl's model io the choice resction time
context. Since it takes more time to judge less similar stimmli
the same, and also more time to identifv more complicated
stimuli, the density parameter in Xrumhansl's model should he, in
some wav, related to the stimulus complexitv. Under this new
interpretation ¢; does not even have to be nonnegative.
Furthermore, we mav completelv distinguish hetween stinulhl
complexity and response complexitvy, and replace agy and be, bv
less restrictive parameters, a, and b1. Then the model heecm

-~

duzd“¢ai¢b3. ®

T alane and Serzent (1983) eall ay and hy stimulus specifinitiss
fol lowing the terminology used in common factor tnnlvdl
Carroll (1983) called tw ahove model the "common dhunagon
model.®

If we assume tiJ s exp(-dij) in (1), it can he m;_ﬁm

that
exp(-d, ,) w, expl{-4d,.,)
P+ L R T )
i ex\';(-dik i ukexo(-dik)

where Wy s exo(—b,) which is identical to model (%). Thus, ome

interpretation of the hias parameter is stimulus simplicity.
Another intervretation is stimulus discriminabilitv (wich™ts
inverselv related to the stimulus density). This explains uhv'v
tends to be negativelv correlated to 85. If stimulus § s
similar to manv stimuli (manv large 84 's), the stimulus dma&.v
around the stimulus is heh, its dhcrhnnlhuitv low, and tm
response hias tends to be small. It seems that the bin
parameter is a manv-faceted entity. T

A comparison between the euc lidean distance-choice model
5) and the unique feature-choice model (Keren-Bazzen's model) to
he described in the next section is interesting, oarticularly in
the light of the relationship between Shepard's model (the
euclidean distance-choice model) and Krumhansl's distance-density
model, as il lustrated above. Krumhansl (1982) Aid not seem to Be

avare of this relationsnip in discussing the relationship betutﬁ~

her model and Xeren-Baggen's.
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The Unioue Feature-Choice Model. The standard distance model is
not the onlv wav to constrain the similaritv parameters or the
response strength. For example, il stimuli are characterized hv
a set of identifiable features, stimulus dissimilaritv between
two stimuli may be defined as a linear combhination of features
not commonlv possessed by the two. Let

1, 4if stimulus i possesses feature a,
Yia *
0, otherwise,

(D;) (DZ) (Dy)
and define xija = yn”“'ja) and x“. s y:‘aﬁ-yu). Then X“a

takes the value of one, if stimulus i, but not stimulus J,
possesses feature a, and 2ero, otherwise. Similarly, X“. tales
the value of one, if stimulus j, but not stimulus i, possesses
feature a, and zero, otherwise. The linear combination of the
unicue features mav then be written as

~ (D) (D)

813 E (xiji b! * Xiji c.)' (10)

a

where b (2 0) and ¢,( 2 0) are the weights representinz importance
of unique feature a in overall disaimilaritv. Note that in
general Eij "?11' If we riblace dij in (9) bdbv E'l’, or
equivalent lv assume "13 =z exb(-g“) in (1), we ohtain

exp(-8, )

Pyy = — (1)
Z pr(.zik)
k B

Model (11) is called the unique feature-choice model in this
paper.

The above model is essentiallv equivalent to the general
version of Keren-Baggen's (1981) model, which was initially
derived from T versky's (1977) feature matching model. In
T versikv's model features commonly possessed bv two stimuli are
also supposed to take vart in overall (dis)similarity betwesn the
two stimuli. The common features mav he indicated bv X,S:.) . V4a
Vi4a- However, model (11) is invariant over the transformation of
the form, 'i’ij -— E’ij + B (where 'gz'i s soe?&f}e to 1), and as
pointed out bv Smith (1982), x(f,, and xuli are completely
redundant in the context of stimulus rzecsoqnition e ts.
This can be easilv seen by vointing out xu, vy - "1511 and y
is constant for specific i. Thus, either one of x“), and ‘x(i_i;
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can be dropped without 1oss of meneralitv. We arbitarily droooed
xi‘f.’ in (10). The rank deficiency and conseguent parameter
indeterminacies in the original Keren-Baggen's model were
overlooked by Keren & Baggen (1982; also Krumhansl, 1962),

Smith (1982) has pointed out that exp(~;,) in (11) can be
rewritten in the form, Wy 34, 80 that the unique feature-choioe
model is indeed a special case of the unrestricted similarity-
choice model with particular constraints on vy and 840 That is,

v
"j s T (“.) J.
a

and

l’ia - v5l®

T A , rz 1,
2

vhere 1n u, = (by = ca}¥/2 and 1n vy = =(by + ¢,),72( 50),
Furthermore,

R
“ln 2.y = Zv.lyh-yd.lf' . (413

where v: z -1ln v‘-( 20), can be interpreted as the r-th power of
the Minkowski power distance with the power ecual to r. .-Wwmn
rz1, the unique feature-choice model is ecuivalent to the citye
block distance-~choice model with stimulus features serving as
(prescribed) dimensions. Each dimension{zfeature) has onlvy twe
levels, Yia=! or 0, according to pressnce or ahsence of tm
feature.
It follows from (10) that

(D) (D) byec (D) (D) b,
By I{"‘u- + xé.”-;—” s (Xggy - xxx:f “'“’} .
2

@) ) (D)) _ (Dy)
Note that Xij +* x“. s |vh-vj.| and X”.-Xij. s Vu -"J + 80

that, with the above definations of Wy, Wy and 833

~ wy :
m(-gij) ® === 844,
vy
which in turn is equal to nu/b11 sceording to (2). Since 1Iw1
cancels out in the nuwerator and the denominator, (11) reduces in
form to (2). It is interesting to note that 1n 8 pcrtum 0
symmetric and 1ln vy~ ln Wy to skew-svmmetric part of -g“.
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When it is ms.sume'ilnbP = be, (the weights applied to the same
features in x(&g) and xijza are proportional) in (10), we obtain

-

_ ®) ()
gij = E(xij. b+ xiJ.)c-g . (13)

which is eguivalent to the restricted version of Keren-Baggen's
model. Whereas the general uniqul; )t‘eaturﬁ)cgoiee model has 2m
independent parameters (assuming 1}‘ and 1132‘ are 2all linearly
independent), model (13) has only m+1 parameters, where m is the
number of features. If further b zc, is assumed in (10) (or b=l

is assumed in (13)), we obtain

- (o) _(02) |
Byt (Xyga + Xi32)Cqr (1)

r *
wy= 1 for all § and ~1n 844 sg(c:)lyn'yn‘ y Where ¢, = =1ln
Cq, Wmch is essential 1y how similarity between two stimuli 1is
defined in Medin & Schaffer's (1978) cue context model for
classification learning. :

The fact that the unique feature-choice model is a specisl
case of the unrestricted aimil arity-choice model, and that it is
alsc a special case of the distance-choice model, makes
comparisons among these models even more 1ntcrest1ng.

Goodneas of Fit Evaluation. As pointed out earlier the different
models are basically distinguished by different substructures
they impose on Pygy- However, once Py is specified, the
likelinood of the total set of observations is stated in the same

way (in the form of product multinomials) for all the models; i.e.,

f
L= = (pij) 1 .

i1
One sdvantage of the maximum lielihood method is that we
can calculate the AIC statistic (Akaiee, 1974) for relatively

straight forward goodness of fit comparisons. This statistic is
defined as

AIC=z -2 1nL" « 2q ,

where L® is the maximized value of L and q is the effective
number of parameters in the fitted model; The smaller the value
of AIC, the better the fit of the model.
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The maximized log livelihood indicates a goodness of fit of
a model to the data at hand. In meneral we can imorove this kind
of goodness of fit by including more parameters in the model.
However, it is not neceasarilv the case that this inflated model
performs better for future observations, because a larger numbher
of parameters tend to oroduce less reliable parameter estimates.
THs leads to the idea that the maximum limlihood mouldv_,h
penalized for additional use of parameters. Specifically, the
log likelinood is penalized by -q in order to obtain an unbissed
estimate of the expected loz likelihood, which is the basic
construction of the AIC statistic. The use of the AIC statistic
for model evaluations has successful 1y been demonstrated in a
variety of psychometric models (Talane, 1981; Taane & Carroll,
1981; Takane & Serzent, 1983),

EMPIRICAL RESULTS

The models descridbed in the previous sections were aoplisd
to several data sets. In this paper we revort onlv one of them
in some detail, namelv Keren & Baggen's (1981) data. (For other
results, see Ta\ane & Shibavama, in preparation.) Their data
were oreviously analyzed by Smith (1982), using both the
unrestricted similaritv-choice model and the unioue feature-
choice model. Our results are somewmat different from his, sinoe
the former are based on Keren & Bagezen's original data, while the
latter on the data recovered from observed oroportions reported
in Keren & Bagzen (1981) by multiplving the total number of
replications ver stimulus. In this recovery process, existence of
missing data was completelv ignored. ]

Keren & Baggen (1981) conducted a recognition exoeripent
with ten segmented numerals (digits O throush 9). Seven line
sezments (tiree horizontal and four vertical) were arranged in
the shape of 8 (see Figure 1), and each of ten single-disit
numerals was defined bv a subset of the seven line segments. For
example, 2 is composed of line sezments 1, 3, 4, 5 and 7, and t I
of line secments 2, 3, % and 6, etc.
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Figure 1. The seven segmental features

1

7

Each numeral was presented 36 times to each of eight suhjects for
a total of 288 resoonses to each stimulus. Stimulus exvosure
time was adjusted for each subject to make the average rate of
correct resoonses about .7 for each sudbject. The data were
agrregated over the subjects, assuming there were no substantial
individual differences. "No response™ was allowed to avoid
guessing, There were about L€ of the trials in which the "no
response”™ was elicited. Those trials were omitted fronm
subsecuent analvses. Thus, strictly speakinz the total number of
"valid" responses, ri, for each i should be treated as a randonm
variahle. In the present analysis, however, fi was treated as
fixed. This can be justified, since so far as we assume a same
model for f,, that part of the likelihood function (pertaining to
this model) cancels out in the model comparison process, and the
likelihood (1) mav be treated as if it were a conditicnal
1ie1ihood, conditional upon fi.

Table 1 summarizes the results of fitting the models to the
data. All the three models described in the previous sections
were applied. Both the general and the restricted versions, (10}
& (13), of the unique feature model were fitted. Features used in
the unioue feature model are the seven sezmental features used to
construct the stimuli (7-feature case). Two additional features,
deemed psychologically important, were original 1v conceived by
Keren & Baggen and analvses were repeated including these two
features (9-feature case). Those additional features were "open
to the left" and "ovpen to the right."™ Digits 2, %, 5, 7 and @
are open to the left, while digits 2, 5, and 6 are open to the
right. (While this definition conforms with that of Smith's
(1982), there is no guarantee that it acrees with Keren &
Baggen's (19R1) who did not provide the information.)

The values of the AIC statistic indicate that the
unrestricted simil aritv-choice model is the hest fitting model.
The four-dimensional euclidean solution is the best solution
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Table 1. Summary of GOF statisties for

Keren-Baggen's data

17.8
0. Null Model (90)
Similarity Model
1. Unrestricted 5.6¢
Similarity Model (s54)
2. Euclidean Distance
Model ,
dims? '220.3
(26)
dim=2 79.2 k
(313)
(39) -
dimss 4n.9
(uh)
3. General Unique :
Feature Model
7 features 199.3
QL)
9 features Qe5.3
(16) »
4, Restricted Unioue N
Feature Model
7 features 273.7
(8)
9 features 122.%
(10)

AIC-6170 (top)
effective number of model parameters in parentheses (bottom)
*minimum AIC solution ‘ ¥
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among the euclidean distance-choice models obtained by
systematical ly varying the dimensiona 1ity from two to five. But
even the best euclidean solution is nowhere near the performance
of the unrestricted similarity-choice model. Increasing
the dimensionality beyond four dimensions does not improve the
GOF of the euclidean distance model. This suggests that the
euclidean distance model is not appropriate for the data. -

This is quite a contrast to other stimul us recognition
situations in which the euclidean distance model perforned
reasonably well. In these situations, however, sets of stimuli
employed are characterized by sets of attributes on which the
stimuli are distinguished in the amounts of the atributes they
possess (e.g., tones defined by intensity, frequency and duration
in Hodge & Pol lack's (1962) data). The attributes always exist.
Only their amounts differ. In contrast the digits used in Keren
& Baggen's experiment are made up of features which are e¢either
present or absent. The binary features are not easily amenable
to a simple dimensional organization. (See, however, the
argument leading to (12).)

The above explanation for the poor fit of the euclidean
distance model to Keren & Baggen's data, however, is not as
straight forward as it seems. For example, Sergent & Takane (in
preparation) found a remariably good fit of two-dimensional
euclidean representations of the same set of stimull using two-
choice resction time data. This suggests that the "nature® of
stimuli alone does not completely determine the bdest
representation. It is more likely that the "nature" of stimuli
interacts with the kind of simil arity measures and stimul us
presentation conditions employed, to determine the best
representation of the stimuli. The stimulus recognition data
used in the present study are usual ly taken under much more
adverse stimulus presentation conditions (in order to create
confusions purposely) than the reaction time data. The latter
are usually taken under clear viewing, longer stimulus exposure
conditions in order to minimize the number of errors (Talkane &
Sergent, 1983). As such, the two measures may reflect different
aspects of underlying processes (Santee & Egeth, 1982; Sergent &
Takane, 1985).

There are other conceivable reasons for the poor fit of the
euclidean distance model. The conditions under which Keren &
Baggen's data were obtained are still much more favoradble than
those typical of stimulus recognition dlt.l- As a consequence the
data are extremely diagonally donminant. The average diagonal
entry (zcorrect identification rate) is approximately .7 with ten
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stimuli, which makes off-diagonal entries (proper confusion
rates) rather small. This in turn makes the stimulus more
discriminable, less similar to eadh other. However, large
distances are precisely where the euclidesn distance model tends
to bresk down, and where bad fits count most. A larger
dimenaionality may be necessary to accommodate larger distanees.
This is indicated by the limiting situation in which the data are
perfect 1y diagonal. In such a casen stimuli are represented as
an infinitely large n-1 dimensional simplex. Under the
assumption that s;qy = exp(- d“). the effect of the viewing
conditions s:ould come in the form of a power function on .1
(L.e., (’13) ), in order to be completely absorbed by the unirorl
expansion or contraction of the stimulus configuration. Howovn.
no systematic investigation has yet been conducted to assess the
exact nature of the various experimental conditions on the
recognition probabilities. The best representation may .un
differ depending on the experimental conditions, even if the ulo
measure of stimulus similarity is used, since the ditrcmt
experimental conditions may require different procuﬁn;
strategies. :

The goodness of fit of the unique feature model 1is. ntu'
disappointing. The best fit is obtained in the 9-feature gmﬂl
version of the model. (Note that the effective nunbcr of
parameters for this solution is 16 instead of 18, 'rm is
because of linear dependencies among X1 a s.) Still, it is gud!
worse than that of the unconstrained similarity-choice model, It
is even worse than that of the four-dimensional ouelf;dun
distance model. This is consistent with Smith (1982), “but
contrary to Keren & Baggen's conclusion that their model ﬁtt‘d
the dats reasonably well; i.e., their model could oueemtu_i ly
reduce the number of parameters in the unconstrained similarity-
choice model without significantly impairing the goodness 'og' it
of the model. Indeed, the number of parameters was mtly
reduced. However, the price they had to pay for this seems tp be .
tooc high. Although what is a satisfactory model is ultmatoly s
. matter of subjective judgment, the use of a relntiv‘ly
insensitive criterion for goodness of fit is often mlu‘m;.
It tends to overlook relatively small, yet empirieally
meaningful regularities in the data.

ot




- PROBABILISTIC AND STATISTICAL ASPECTS 135 -

However, all these by no means imply that the unique
feature model is hopeless. For éxample, with many fewer
parameters the two versions of the 9-feature unique feature model
performed much better than the two-dimensional euclidean distance
model. This suggests that if only we can find an appropriate set
of features that define stimulus dissimilarities, the uaique
feature model may turn out to be the better model. In particular
the list of features used in this study may be quite incomplete.
Furthermore, except those two appended features (which may be
viewed as interactions among the seven segmental features),
features were assumed to be independent. It is quite possible
that some of these segments do interact. For example, a
combination of segments 3 and 6 may define a new feature. It is
rather arbitrary to take these segments always as separate
features.

One disadvantage of the unique feature model is that & set
of features defining the stimulus dissimilarity have to be imown
in advance in order to fit the model. There are 2P posaible
features for n stimull, which are all possible subsets of the n
stimuli., A systematic way to obtain a minimal and sufficient set
of features from this list is urgently needed. The kind of -error
analysis done by Smith (1982) may be quite useful in detecting
features effective to account for stimulus similarities
underlying the stimulus recognition data. For examle, stimulus
pairs 1-6 (also 6-1), 5-1 (also 1-5), 4-2, and 1-2 have large
standardized residuals using the nine features. This gives sobe
insight into what is possibly wrong with the nine features (e.g.,
Digit "1" should not be defined solely in terms of features 3 and
6. Features 2 and 5 are equally good to define "1".) and what
additional features may have to be taken into account. It would
also be helpful to devise a computer program to do multiple
comparisons interactively in the context of the log-linear quasi-
symmetry model. .

CONCLUDING REMARKS

In this paper we presented a fairly elaborate analysis of
a set of stimulus recognition data. Although our conclusions
differ, we support Keren-Baggen's venture to find a more
parsimoneous representation for the digits. Although our attempt
is not yet successful, we contend our general methodology, the
maximum likelihood estimation of model parsmeters and the GOF
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comparisons through AIC, 1is quite effective in detecting wat
components and further studies are necessary to develop a yet
better model for the stimulus recognitf.on data.

One potential obstacle in our attempt is the posaidble
individual differences. Since the data were provided in an
aggregated form, there was no way to detect the possidle
systematic individual differences in Keren & Baggen's data.
However, quite often the subjects differ in their perceptual
ability, response style, response strategy, etc. which tend to
influence the results of stimulus recognition experiments. PFor
example, Sergent & Takane (in preparation), uaing the reaction
time data, found remariable individual differences in the wvay the
digit stimuli are processed by two subjects. Although in Keren &
Baggen's experiment stimulus display conditions were adjusted-for
each subject 3o that the average error rate was approximately
equal across the subjects, it by no means guarantees complete
elimination of the individual differences. If such is the casse,
an error model (in the form of product multinomials) is not
completely justified. Ideally individual (unaggregated) dats
have to be analyzed. Unfortunately most of the published data
are in an aggregated forn.
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DECONFUSING CONFUSION MATRICES

DISCUSSION OF THE PAPER BY
TAKANE AND SHIBAYAMA

Ivo W. Molenaar
University of Groningen

The paper ‘'Comparison of models for stimulus recognition data' by
Takane and Shibayama is highly welzome: researchers have analyzed
data of this type for several decades now, but systematic. com-
parisons of different models have been rare, and not all con-
tributions in the past have been based on clearly specified -
statistical models and efficient estimation procedures. Hopefully
the present comment will be helpful in obtaining still more
progress and clarity. After some general questions about stimulus
recognition data, this comment discusses one by one the models
introduced by T & S, with a few remarks onvthe specific data that
they reanalyzed and a sketch of a very crude nonparametric model.

ESTABLISHING CONFUSION

In a typical paper on stimulus recognition data, an experiment of the
following type is reported. Some four to eight students are used as
experimental subjects. The stimulus set contains n elements, where n
varies between & and 26 depending on the experiment. Stimuli can be e.g.
tones, or shades of red, that are manipulated to vary in a few relevant
dimensions. Other experiments use the digits 0,1,...9 or the 26 letters
of the alphabet as stimuli. After a short training session, each subject
is repeatedly presented each of the stimuli in an unpredictable order.
Presentation conditions are degraded to the extent that most subjects,
when presented stimulus i, say, correctly identify it as i in some 30-90
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percent of the replications and give a different answer in the remaining
cases. The responses are summarized in a row-conditional n x n
tconfusion matrix' P of which the i,J element p(i]i) denotes the frac-
tion of presentations of stimulus i for which the subject thought that
stimulus j was presented (the T & S notation piJ for p(J}i) hides its

asymmetry). The aim is a parsimonious description of this matrix leading
to more insight in the occurrence of confusions during the human pcfocp-
tual process.

As a statistician without much involvement in the stimulus recogaision
literature, I feel inclined to ask some preliminary questions, about. the
area as a whole rather than about the T & S paper.

Why would one and the same class of mathematical models for the P-matrix
be suitable for all such experiments ? Perception is sometimes auditery,
sometimes visual. The stimulus set is well known (digits, letters) or
specific to the experiment (tones, shades of red). In the latter;sease
the experimenter knows that stimuli differ on a few dimensions only (it
is not clear from the publications whether the subject knows this tee).
Why would experiments of this type be externally valid for those real
life situations in which confusions ocecur? In real life a subjeot:will
usually have some oiiernal information on the base rate at which the
stimuli occur and on the transition probabilities between subseguent
stimuli. Reading segmented numerals from s digital clock I knou;;t-hflt
some digits are impossible in some positions, and I may use ay wague
knowledge of the hour of the day. Most experinenrt.s present the stimuli
in equal frequency in random order, removing such external clues.: This
may hold for identifying a telephone number mentioned across & noisy

channel, but 1 could not find many similar situations. g
Does the experimenter want to describe what people do do, or what psople
should do ? Subjects may be instructed to give instantaneous and-spdon-
taneous answers, or to strive for a rational strategy. In the latter
case it is vital to report how much the subjects knew about the stimuli

themselves and on the frequency and order of presentation. It is diup-
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pointing that most publications say almost nothing about the instruc-
tions to the subject, and even omit the total number ‘of times that each

stimulus was presented.

Is there any cogent reason why all experimental subjects would produce
the same P-matrix apart from random fluctuations ? T & S have .added a
paragraph to their last section on this issue, arter my oral discussion
in Cambridge. Most researchers in this area aggregate across subjects,
at best stating verbally the absence of large differences bdetwveen
subjects. I am not inclined to believe a prima vista that 36 sudbjects
seeing each numeral eight times lead to the same aggregated result that
Keren & Baggen obtained for eight subjects 36 times each. The simple
likelihoods used do not distinguish generalization to future trials from
generalization to future subjects.

MODELING CONFUSION

T & S present various models that will be individually commented. It is
good that their presentation stresses the relations between the models,
and underlines both their statistical and their psychological aspects,
fully in the spirit of Takane's admirable paper in Psychometrika 1981,
The distinction between the similarity model and the probability trans-
form is very useful, although only the combination of both can be
tested. It is certainly illuminating to study the differences in fit for
the Keren & Baggen data, but I should like to stress that I see no
reason why one model would be uniformly superior to the others across
many data sets.

THE SATURATED MODEL. 1 agree that this is a useful baseline or nall
model. T & S remark in their goodness of fit section that 'it is not
necessarily the case that this inflated model performs better for future
observations' : I would go a step further and predict that this will be
rarely the cas'e as soon as there is any system in the data. Keren &
Baggen (1981, p.234) explicitly mention the desirability of a more
parsimonious and psychologically more meaningful deseription.
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UNRESTRICTED SIMILARITIES. There are many reasons to multiply'ithe
similarities s(i,j) by response bias parameters w(j) when modeliri§-the
choice probability p(j]i). In some contexts this has a natural Blydd!l'n
interpretation. If w(j) is the estimated base rate or prior probability
that j is displayed, and s(1,J) is the probability that the degrifed i
presented is in fact j, one could say that the subject uses the pos-
terior probabilities in the choice task. This remark is a digreswien,
because in this interpretation s{i,j) would probadbly not be symmbtric,
for the data sets discussed the subjects had no reason to assume u"uiqu‘l
prior probatilities, and choosing according to the posterior probabil~
ities §{s suboptimal for most of the plausible loss functions.
Nevertheless, this interpretation may be psychologically meaningf¥l-in
some real life tasks, If I see a degraded symbol in a text, whieh I
consider to be a 'Q' with probability .7, say, and an ‘0O' with probabil-
ity .3, it is wise to take into account that '0' has a much higher base
rate than 'Q'. This leads to different strategies for lLatin, English and
Dutch texts, on rational grounds. =

EUCLIDEAN DISTANCES. I agree that the distance model has been sucdess-
fully used in multidimensional scaling as a parsimonious representiﬁ'ion
of a distance matrix. This was often achieved by the nonmetric verfent,
however. T & S use the metric variant plus the exponential decay. ‘This
is rather restrictive, which may account for the poor performanos in
Table 1. The extension to 'distance densities' is interesting.

UNIQUE FEATURES. It is surprising to see how the numdber of commofi Tea~
tures turns out to be irrelevant. Below (12) T & S state that the unique
feature model 'is equivalent' to the city block distance model whenips1,
This is mathematically correct, but the interpretation is qQuite
different. In the distance case all coordinates are free parameters; the
unique feature case assumes that the coordinates y1 2 are known, ledving

@

only two free parameters per dimension : one could say b. + c. l;the

relevance of the a-th dimension for the similarities and b. - c.~»”-1ts

relevance for the asymmetry. For me the major weakness of models ofsthis

kind is that the investigator must specify in advance which set’of n
independently acting dichotomous features adequately describes the
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perceived similarities. It must also be known for each gtinulus and
feature whether the former possesses the latter. For the Keren & Baggen
data, the seven line segments are plausible candidates for the first
seven features. They add 'open to the right' (like 6) and 'open to the
lert' (like 9) as 'psychologically meaningful' other features. 1 would
be surprised if this set of nine features were superjor to many other
sets one could pick. It would be interesting to investigate the model
fit for other sets of features, perhaps not even including the seven

segments.

WHAT IS A GOOD MODEL ?

There is a vast literature on this topic. T & S opt for the AIC index,
which is defensible but leaves undiscussed others like the Schwarz
information criterion and the James & Mulaik & Brett parsimonious fit
index, as well as model modification indices proposed by JUreskog,
Bentler and Bonett and others. If we leave the domain of the likelihood
we have still more choices, among which the criteria used by Keren &
Baggen, who emphasize interpretadbility and psychologically meaningful
processes rather than pure fit.

In this respect it is interesting that the Nakatani model, to be dis~-
cussed in a separate paper by T & S, supposes that some subset of .
responses is dismissed as 'too dissimilar'. This harmonizes with
'bounded rationality' discussed in the analysis of human decision
makers., For the complementary subset of admissible responses, however,
Nakatani's probabilities are proportional to the response attrace
tiveness parameters b(Jj) without further influence of the similarities
s(i,3). I should like to propose to use the product b(J)e(i,J) rather
than b(j) in this selection from the subset of admissible responses. It
might also be instructive to interrogate sudbjects whether certain
responses are indeed ruled out by them before deciding between the
remaining ones.

For the segmented numerals example, and also for the alphadbet as a
stimulus set, I wonder whether discrepancies between the symdols as
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presented and other more usual fonts have influence on the subjeqt's
decisions. The largest off-diagonal probability (not displayed by T,4 S,
by lack of space) is that 27 percent of the presentations of 'T' lesd to
the response '1'. Here a font influence becomes plausible: the segmpnted
seven has a weird appearance. "y

Again by lack of space, there is no discussion of the fitted values,with
their residuals, or of the parameter estimates. This might have .rein-
forced the useful remarks made by T & S on the misfits. It. is interest-
ing to note that the percentage correct varies from 55% for 9 to 88% for
1, and that there are marked asymmetries both before and after correct-
ing for different p(i|i). ) -

Analyzing confusion data for the capitals of the aifabet, Heiser (1885)
obtains some empirical support for the exponential transformation from
distance to probability. To my knowledge there are no studies ltg sfyich
externally established similarity data are compared to the fitted a€4,J)
valdes. Calling the latter ‘'similarities' means that similarfity-is
defined as 'what explains confusion within. a specific model'; it mould
be interesting to see if this claim can be substantiated.

NONFARAMETRIC MODELS ’ A3
Keren and Baggen (1981, p.241) give a graph showing that the probability
of confusion decreases with the number of distinguishing segments :(i.e.
segments present in exactly one of the two numerals). Smith (1882,
p.185) discusses the same point, and adds that under tachis:aﬂbpic
conditions a vertical line will be taken for a '1' whether at m left
or at the right of the field (this leads to less distinguishing segments
‘for the pair 1,6). ‘

A very simple nonparametric model just predicts that confusion probabil-
ities within each line of the matrix are partially ordered according to
the number of distinguishing features. For responses equally far from
the stimulus in this counting measure no order prediction is made; Such
predictions are confirmed to a large extent in both the Keren & Baggen




- PROBABILISTIC AND STATISTICAL ASPECTS 145 -

and the Hodge & Pollack data. Let C denote the number of correct predic-
tions and D the number of cases where the reverse order was observed,
disregarding ties in the data or in the predictions like in Kendall's
tau-b. The almost trivial prediction that p(1|i) exceeds any other
p(J|1) was omitted. Then in the Keren & Baggen 7 features case one tries
to make 36 predictions about the order of two probabilities for each of
the ten numerals. For all 360 one obtains C«229, D=48 and 83 ties. Per
numeral the C/D ratios for 1«0,1,...,9 are 16/12, 24/3, 2276, 21/1,
20/8, 22/8, 26/5, 25/1, 28/0, 25/4. When 0 is presented no less than 8
percent of the answers is '1', although 0 has four additional features;
this contributes to the disappointing 16/12 ratio. Comparable results
are found for the Hodge Pollack data, with less ties.

This primitive model can be viewed as 2 nonmetric variant of the T & S
unique feature (10) and (12) with r and all b- and c-parameters equal to
one. It is obvious that it has far less predictive power than a
parametric one. It does not predict why some p(i[i) are larger than
others, but the same holds for the quasi-symmetry model where the saxi-
mum likelihood estimates exactly reproduce the diagonal elements. The
rough nonparametric model could be useful, however, in a preliminary
screening which of the many poasible feature sets is promising for a
parametric analysis. The nonparametric unidimensional unfolding models
presented by Van Schuur and Van Blokland at the Fourth European Meeting
of the Psychometric Society in Cambridge can be viewed as born from the
same desire to check some relevant order relations by ainp;c means
before passing to a specific parametric model. Frequent violations from
the predicted order are a general alarm signal. An occasional gross
violation may {ndicate a specific event, like the 7,1 confusion men-
tioned above.

More generally it may be wise to strive for insight via the study of
some large residuals in a simple model with substantive plausibility
rather than to add more and more parameters until a model tully' fits the
data. Although they do not analyse residuals in detail, T & S will
probably agree with this plea. The tradeoff between parsimony and fit
should not be too much shifted by our ability to fit complex models with
our powerful computers : small is beautiful.




A REPLY TO IVO MOLENAAR
Yoshio Takane and Tadashi Shibayama

We thank very much Ivo Molenaar for his penetrating comments
on our paper. Although there are numerous points raised, we will
have to concentrate on only a few of them here. L

One of the major problems relates to possible individual a:..
differences in the confusion process. That is, pyq {confusion, .,
probability), may differ from one subject to another. The problem ,
seems that in most cases these individual differences are not
substantively interesting, and yet their magnitude is often too "’
large to be safely ignored in modeling stochastic components of 2+
the data. Over the past ten years or o0, however, more .
researchers have come to realize the potential danger of:.
aggregating data (e.g., Morgan, 1974; Samith, 1980; Townsend &
Ashby, 1982; Townsend & Landon, 1982). )

We may use the same model comparison idea (ss illustrated tn "~
the paper) to test whether there are indeed substantial individual’ °
differences, provided that unaggregated data are available. Let
p&) represent the probability that stimulus i is Jjudged as ::
stimulus J by subject k, and let rf“)bo the observed frequency b
correaponding to 91(3‘) Then under the individual differences
hypothesis we have

Dr

[N

(k) (k) .
Lyps 1 1 (pij ) oo ’1.1 S
k 1,J P
The maximum of Lyp is achieved at 31(,‘3) s rﬁ)/ .fi‘.‘). where r(:) s ‘ ,
I 1"1(}). Under the no i{ndividunl differences hypothesis, on t.ho_w ‘
ther hand, we have pyi = Py for all k, and consequently

me 2 I (pij) «e rij ’ ;
i, C e
where fy, =1 t'i(;‘) . The maximum of Lysp is attained at 3“ .
fyg/ f4, wlere*; = Tf,,. The AIC statistic can be readily -
evaluated for the two hﬁnthoau, and may be used for the goodness
of fit comparison. We have applied the above procedure to'--
Townsend & Landon's (1982) data, and have found significants . -
individual differences. Thus, Townsend & Landon's decision to
analyze individual data was indeed a sensible decision.
Unfortunately, nothing could be done for Keren & Baggen's dltl; )
since they are provided in an aggregated form. :
The second point relates to empirical status of 8,4 Luce
(1961) called it a similiarity parameter as a quantity which .-
satisfies the following properties: .
N V=283 844 for all i and )

B

TS
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2) 8,4 8y (by definition)

3) 8y43 8y Sy 4
Note that these properties are analogous to the three metric
axioms. Just as the distance is defined as 2 quantity which
satisfies the metric axioms, the similarity (as a formal concept)
is defined as a quantity that satisfies the above properties.
Once this is accepted, it only remains to be seen that s“
estimated from data indeed satisfies these properties.

A question remains, however, as to whether the above
propertie§ constitute a necessary and sufficient set of
properties characteristic of the similarity. For example, 8y is
by definition symmetric, but is the similarity necessarily
symmetric? Recent evidence indicates the contrary (Tversky,
1977; Krumhansl, 1978), although it may still be useful to retain
the symmetry in the formal use of the word similarity. To quote
Smith (1980; p 132): ,

"Although the linguistic habits of subjects clearly
lead them to use the term asymmetrically, I expect the
analyst in most cases will be aided by separating such
usage into symmetric and antisymmetric parts and
retaining the scientific term similarity for the
symmetric part.”

This is exactly what is done in Luce's similarity choice model.

As has been shown in the paper, the similarity choice model (and
all its special cases) decomposes response strength into symmetric
and antisymmetric parts, and associate the former with stimulus
similarity and the latter with response bias.

The similarity should also exhibit certain invariance
properties. For example, it should not be affected by such
factors as stimulus presentation frequencies and pay-offs.
However, it is known that not only the bias parameters but also
s 3 change rather drastically as a function of such manipulations
(Townsend & Ashby, 1982). It is also affected by the response set
{the set of possible responses) and by other stimulus presentation
conditions (Townsend & Landon, 1982). As the bias parameter has
many faces, being affected by various factors, 8y is no detter
than the bias parameter in this regard, and further investigations
are necessary to isolate these factors. In fact, both the
euclidean distance choice model and the unigue feature choice
model represent attempts to remedy this situation. Unfortunately,
these attempts are not yet quite successful.
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