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Various methods have been developed for discriminant analysis
(Lachenbruch, 1975). For continuous multivariate normal predictors a
method based on canonical variates has been widely used (Fisher, 1936).
The analytically same method is also used, though in a descriptive manner,
for discrete data (Fisher, 1948; Hayashi, 1952), for which no definitive
methods exist (Goldstein & Dillon, 1978). One promising method for
discrete data is to use the log-linear model for discriminant analysis
(e.g., Anderson, 1980). This method is appealing, since it is equipped
with a built-in mechanism for choosing the best combination of predictor
variables (including interactions among them.) A disadvantage is that it
cannot be directly applied to continuous data. In this paper we discuss a
method of multiple discriminant analysis which allows a mixture of
continuous and discrete predictor variables, and which allows various
statistical inferences.

In the proposed method the subjects (or anv other sample units) are
mapped into a multidimensional euclidern space. Coordinates of subject
points are simple linear functions of the predictor variables. It is
further assumed that there are ideal points corresponding to criterion
groups, and that they are defined to be centroids of the subject points in
the respective groups. The probability of a subject helonging to a
particular criterion group is specified as a decreasing function of the
(squared) distance between the subject point and the ideal point of the
criterion group.

1. METHOD

Let fi o (k=1 wee y Nj 0 =1, oony ng) denote the observed frequency
of observation (or response pattern) k on predictor variables in criterion
group o. . Observations on the predictor variables are denoted by G, where
discrete predictors are coded into dummy variables and continuous variables
are normalized appropriately. Let Y be the matrix of coordinates of
sub ject points. We assume that

) Yy = GXp
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where XA is the matrix of weights (analogous to the regression coefficients
in the usual regression analysis), and A is the prescribed dimensionalitv
of the space (the maximum value of A is n, - 1). Let M denote the matrix
of coordinates of group centroids. Then

(2) My, = (a'H)'HY, = (e~ 'wrex,

where H is the matrix of dummy variahles indicating the criterion groups,
The squared euclidean distance between a subject point (k) and the centroid
of a criterion group (o ) is then given by
2 2
(3) di, (Xp) = L (ea =t )
(which is the function of XA), where Yia and H, g are appropriate elements
of ¥ and M, respectively.

Let Dy o denote the conditional probability of group & given
observation k on predictor variahles. We postulate that

—q2
P, exp(=d. )

where P, is the prior probability of group o . Model f4) simply states
that Dku is proportional to P €Xp (- d?a ); that is, Py, = DOL exp (- dkoc )
for some constant o( #0), But since Zpy, =1, ¢ = (?p exp ( d ))"
that is, the denominator of (4) is justBa normalizatioxg factor. ’T‘he model
posits that Pra increases or‘oportionallv to Py and that p,(adecr'eases
proportionally to exp (- dk ) as dk increases. The likelihood of the
total set of observations is now stated as

(5) L = E g(pku yea .

Once model parameters are estimated so as to maximize (5), classifications
may be made according to max (Dka ).

An important feature of the above model is that the exp (- dka ) part
of the model remains intact, even if marginal frequencies of criterion
groups are fixed apriori (separate sampling). The model can be fitted as
if only the total sample size were fixed (joint sampling). The only
difference is that an estimate of Py other than fu/f should be used in
caleulating py for classification (Anderson, 1972), since in the separate
sampling situation f, /f does not reflect a population group size, where
fOL =kao¢andf=zfa .

k a
2. CONSTRAINTS ON Xy

Different types of predictor variahles are distinguished by different
types of constraints on X.
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(a) Unordered categorical variable: Multidimensional quantifications
of categories will be obtained subject to

(6) = fi(j)xi(i)a = 0 for all a,

where fi(j) is the marginal frequency of category j in item i. The
summat ion is over all categories in item i. This type of restriction is
necessarv in order to eliminate nonuniqueness of coefficients due to the
linear dependency among categorical variables.

(b) Ordered categorical variable: Unidimensional quantifications

that conform to apriori specified orders are obtained under a restriction
similar to (6). Those unidimensionally quantified categories are weighted
mult idimensionally to yield multidimensional quantifications.

(¢) Continuous variable: It is assumed that quantifications are
apriori given, and only dimensional weights are estimated.

With the above constraints Fisher's scoring algorithm used to
maximize (5) has been found remarkably efficient, even when the sample
size is moderate to small.

3. EXAMPLE

We give just one example of applications of the above method. Data
are from Maxwell (1961) and consist of three criterion groups
(Schizophrenics, Manic-Depressive and Anxietv States) and four binary
predictor variables, each indicating presence (1) or absence (0) of a
certain symptom. The four symptoms are: 1 anxiety, 2 suspicion, 3
schizophrenic tvpe of thought disorders, 4 delusions of guilt. The data
are given in Tahle 1. There are sixteen possible response patterns taken
on the four binary variables, and observed frequencies of the sixteen
patterns in the three criterion groups are given.

The simplest way to perform a discriminant analysis on the data is to
use fy o /fy (where £ = g fi o) as an estimate of pyy - This is often
called the full multinomial model. It involves a minimal set of
assumptions but uses a large number of parameters. Thus we might ask if
our model performs better than this benchmark model, and if it does, what
the best dimensionality is. For assessment of goodness of fit (GOF) we
use the AIC statistic defined by AIC = -2 1n L + 2 x (number of model
parameters). A model with a smaller AIC value is considered a better
model. The AIC values are 854.7(32), 947.8(6) and 841.3(9) for full
multinomial, one-dimensional and two-dimensional solutions, respectively,
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with numbers of model parameters in parentheses. This implies that the
two-dimensional solution is the best fitting model. This solution also
achieves the minimum attainable apparent error rate (.313) under the
present circumstance,

Figure 1 displays the derived configuration of the sixteen response
patterns and centroids of the three criterion groups (in parentheses) in
the best fitting model. Dotted lines indicate boundary hyperplanes
according to the maximum probability rule. Solid lines indicate boundary
hyperplanes assuming equal group size. They are merely a translation of
the original hyperplanes. This is in line with the point made above that
prior probabilities do not affect exp(—dz) part of the model.

Figure 2 shows plots of estimated weights for categories in the
predictor variahbles. Paired numbers indicate item numbers followed by
category numbers. We see close relationships between group 1 and 3-1, 2-
1, group 2 and 3-0, 2-0, and group 3 and 1-1. (We should be cautious in
this interpretation because of possible multicolinearity.)

We can determine if a particular predictor variable significantly
contributes to discrimination. Table 2 shows estimated weights for
categories along with their standard error estimates in parentheses.
Under the asymptotic normality assumption, we may compute confidence
intervals, and if they cover zero, we mayv conclude that the weights are
not significantly different from zero. This can be done for each
dimension, but we should remember that the configuration is rotatable.
Those weights not significantly different from zero are underlined in the
table. All four variables are useful in at least one of the dimensions.
We may also assess the total contribution of each variable by fitting the
model with the variable of concern deleted from the predictor set and
comparing its GOF with that of the full model. The AIC values for
variables 1, 2, 3 and Y4, each deleted in turn are, respectively, 9Q45.5,
870.9, 1012,5 and 915.2, none of which are as small as the AIC value for

the full model. We thus conclude the four-predictor case is the best
fitting model.

4. DISCUSSION

The proposed method can handle any mixture of different types of
predictor variables. It can also handle both Joint and separate sampling
situations. It has a model evaluation feature, which enables the
researcher to choose the best dimensionality and/or the optimal set of
predictor variables thorugh the use of the AIC statistic (Akaike, 1974).
It is also possible to determine whether a continuous predictor variable
1s better treated as it is, or better categorized and treated as such.
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The proposed method is flexible enough to accommodate various changes
(e.g., a different distance function) in the model to widen its
applicability.

The proposed method is similar to the logistic discrimination
(regression) model proposed by several authors at about the same time
(Cox, 1966; Day & Kerridge, 1967; Walker & Duncan, 1967) for two-group
situations, and later extended by Anderson (1972) to multiple-group
situations. It can be shown that the present method gives similar results
to the logistic discrimination model, if a maximum possible dimensionality
(i.e., the number of criterion groups minus one) is taken. However, full
dimensionality is often unnecessarv or even harmful when the sample size
is small. The logistic disecrimination model has no provision for possible
dimension reduction., With the proposed method, on the other hand, the
best dimensionality can be chosen entirely on an empirical basis.

Table 1. Data from Maxwell (1961)

Ohserved
Frequency
in Groups
Pattern
Number Predictors I 11 I11
1 o] 0 0 0 38 69 6
2 0 0 0 1 i 36 0
3 0 0 1 0 29 0 0
4 0 0 1 1 9 0 0
5 0 1 0 0 22 8 1
6 0 1 0 1 5 9 0
7 0 1 1 0 35 0 0
8 0 1 1 1 8 2 0
9 1 0 0 0 14 80 92
10 1 0 0 1 3 is 3
11 1 0 1 0 11 1 0
12 1 0 1 1 2 2 0
13 1 1 0 0 9 10 14
1 1 1 0 1 6 16 1
15 1 1 1 0 19 0 0
16 1 1 1 1 10 1 0
Totals 224 279 117
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Tahle 2. Fstimated weights
and their standard errors

Predictor
variable Cat. dim 1 dim 2
1 1 A7 (.08) -.48 (.06)
2 - .39 (.03) 40 (.05)
2 1 .16 (.03) -,10 (.05)
2 40 (.07) .25 (.12)
3 1 - .29 (.02) -.10 (.08)
2 1.11 (.08) .37 (.17)
4 1 .00 (.03) o (.od)
- .01 (,08) =-1.13 (.11)

Coefficients (Standard Error)

Figure 1. Derived stimulus configuration
of the sixteen response patterns and
centroids of the three criterion groups

15
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Figure 2, Plots of estimated weights for categories
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