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The values in each column are as follows:

e MASS — mass [see sections 3.2.5 and 3.2.6).

e SQCOR - squared correlation (of profiles with subspace, in this case the
solution subspace is two-dimensional), or qualities [see sections 3.2.24 and
3.2.301.

e INR - inertia of each profile point [see sections 3.2.22 and 3.2.28].

e LOCI1 — principal coordinate on axis 1 [see sections 3.2.16 and 3.2.17}.

e QCORI1 —squared correlation (of profile with axis 1) [see sections 3.2.23
and 3.2.29].

e INRI1 — proportion of inertia on axis 1 explained by each profile [see
sections 3.2.21 and 3.2.27].

e LOC2, QCOR2 and INR2 — corresponding quantities for principal axis 2.

The above output is in the same format as the SimCA and BMDP output,
except in SimCA all quantities are multiplied by 1000 and written as integers
to save space in the tables. Notice that the column SQCOR (quality) is the sum
of the columns QCOR1 and QCOR2. If the solution was three-dimensional,
then SQCOR would be the sum of QCOR1, QCOR2 and QCOR3, and so on.
In the full solution, with K axes, SQCOR = 1.
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Correspondence Analysis
and Contingency Table
Models

Peter G. M. van der Heijden, Ab Mooijaart and
Yoshio Takane

4.1 INTRODUCTION

Sometimes correspondence analysis (CA) is presented as a model-free tech-
nique (see Benzecri et al. 1973). The idea is that CA is helpful when we want
‘to let the data speak for itself’. The idea is that no assumptions are made
‘about the distribution which yielded the values in the matrix to be studied. No
prejudices of the researcher lead the analysis of the data. CA is simply a tool
to make a graphical representation of the data. The generalized singular value
decomposition performed in the computation of CA is helpful in projecting
most information to the first few dimensions of the full-dimensional solution.
© We have some difficulty with calling correspondence analysis ‘model-free’.
,We rather adopt another definition of a model, namely that a model is a non-
linear projection of the data on a (usually low-dimensional) parameter space
(see discussion of van der Heijden ef al. 1989; see also de Leeuw 1988). This
3r_xonlinear projection can be optimal in terms of some criterion, and often used
criteria are least squares, generalized least squares, or maximum likelihood
(ML). In earlier chapters CA is estimated using a singular value decomposition
that has optimality properties in a least squares sense.

‘We prefer this definition because we find that by choosing CA to represent
the data graphically an explicit choice is made to emphasize certain aspects of
the data. One aspect is to emphasize the association between the row and the
column variable instead of the margins. A second choice is to study the
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association by using certain metrics for the row space and the column space,
and certain weights for the row points and the column points. A term like
‘model-free’ suggests that no explicit choices are made in studying the data,
and we do not agree with this. For a related discussion we refer to the
discussion of the paper of van der Heijden et al. (1989).

This leads us to a presentation of CA as a model that can be fitted using
different criteria. In our view CA as presented in earlier chapters is optimized
in terms of a least-squares criterion for a transformation of the observed
proportions. A different approach is to optimize CA by ML. This will be
discussed in section 4.2. In section 4.3 we will show the close relation that
exists between CA and the latent class model, a model that assumes that the
manifest variables are independent given the level of a latent variable, It turns
out that latent class analysis and CA are models that are often equivalent. In
section 4.4 we describe some relations between CA and log-linear models,
models having log—bilinear terms, and ideal point discriminant analysis
(IPDA). In this section it is shown that CA can be interpreted as a tool for
residual analysis. It is also shown that if certain conditions are fulfilled, the
estimates obtained with CA will be very similar to the estimates obtained with
models having log—bilinear terms. We end with a discussion about the relative
merits of CA and other statistical models.

Throughout this paper the same data matrix will be analyzed with different
models. This matrix is displayed in Table 4.1. The matrix is concerned with

results of an election held in The Netherlands in 1986 for the so-called Second - "

Chamber (comparable with the House of Commons). The rows of the matrix
are six types of city, namely rural, industrialized rural, commuter, small,
middle large and large. The political parties are subdivided into six categories,
namely PvdA (labour party), CDA (christian democrats), VVD (right-winged
liberals), D’66 (left-winged liberals), small left-winged parties and small right-
winged parties (mostly religious). We will consider this table to be a one in a

TaBLE 4.1

Voters for the 1986 elections in The Netherlands. In the rows city types are found, ;.

and in the column political parties are given. For more details, see the text.

Political party 3§
City type PvdA CDA VvVD D'66 Left Right 3
Rural 285 482 186 49 21 60
Rural, industrialized 620 914 308 102 42 97
Commuter 355 460 347 104 36 47
Small city 336 337 168 62 27 46
Middle large city 548 455 233 91 47 43

Large city 903 516 343 163 110 37
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thousand random sample of voters (see Central Burcau for Statistics 1987, for
more details).

Since this book focuses on correspondence analysis approximated by least
squares, we present here the results of the correspondence analysis of our table
(see also van de Geer 1989). In Figure 4.1(a) and 4.1(b) the graphical repre-
sentation is given of the first two dimensions of the five-dimensional space.
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FIGURE 4.1 (a) Correspondence analysis solution in two dimensions, row points.

See text for explanation. (b) Correspondence analysis solution in two dimensions,

column points. See text for explanation.
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The singular values are 0.19 and 0.10, displaying 0.77 and 0.22 of the total
inertia. In both figures the points are represented using principal coordinates
(see Greenacre, Chapter 1). Roughly, we find rural towns in the bottom left
corner, larger cities in the bottom right corner, and commuters at the top. It
turns out that in the rural towns people vote more than average for religious
parties (small right and CDA), in large cities they vote more than average for
left-winged parties, and in commuter towns they vote more than average for
the VVD. Both in large cities and in commuter cities people vote more than
average for D’66.

4.2 CORRESPONDENCE ANALYSIS

CA approximated by least squares

Our starting point in a comparison of CA with other contingency table models
is to show how the observed proportions pij are decomposed in CA. The
reason for this starting point is that statistical models are usually defined in
terms of theoretical probabilities mi; that are assumed to hold in some popu-
lation. Thus by starting with the observed proportions, a later comparison
with other statistical models becomes easier.

The reconstitution formula can be written as

K
Pij=Di+P+j (1 + kZ IJ-kriijk)
=1

where px = Jﬁ is the square root of the kth principal inertia and the standard
coordinates rix and cjx are normalized in the usual way. The graphical
representations such as in Figure 4.1 are usually made with principal
coordinates, which are given by fix = rikpk and gjk = Cjkpk, in which case the
reconstitution formula can be written equivalently as:

K
Dij=Pi+D+j (1 + kZ ul?lfikgjk>
=1
In earlier chapters CA is estimated by means of the singular value decom-
position of the matrix of standardized residuals with elements

_(pij—=Di+P+))

Sii
Y JDi+D+j

This decomposition is optimal in terms of least squares: by using only K * of ff
the K dimensions, i.e. by using only the first K* terms in the reconstitution

formula we obtain a weighted least-squares approximation of the proportions
Dij.
It may be noted, in passing, that it is relatively straightforward to incor-

porate linear constraints in correspondence analysis (see Chapter 5). They
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come in different guises, redundancy of qualitative data (Israéls, 1984),
canonical correspondence analysis (ter Braak 1986), canonical analysis with
linear constraints (Béckenholt and Bockenholt 1990). These techniques use
external information to limit the space in which rows and columns of
contingency tables are represented. Analogous developments in modelling
approaches to contingency tables will be presented later in this chapter.

As we said before, the correspondence analysis solution discussed in section
4.1 for Table 4.1 is presented with principal coordinates fix and gjx. So in
Figure 4.1(a) for row point i on dimension Xk, fix is used as coordinate, and
in Figure 4.1(b) for column point j on dimension k, g« is used as coordinate.
In the tradition to see correspondence analysis as a tool to represent the matrix
graphically (see section 4.1) this is quite useful, because thus the Euclidean
distances in Figures 4.1(a) and 4.1(b) are approximations of the so-called chi-
squared distances between the rows (columns) of the matrix (see the earlier
chapters). In the modelling tradition it is more standard to show the estimates
for the parameters rix, cjx and ux. These estimates are given in panel A of
Table 4.2. We will now compare these estimates with estimates of models
approximated by ML.

CA approximated by ML

Correspondence analysis approximated using least squares has quite a long
history. A much shorter tradition exists since 1985, when Goodman (1985,
1986) started studying CA as a model to be estimated by ML (see also Gilula
and Haberman 1986, 1988). In this tradition there are population probabilities
7;; that follow a statistical model, in this case CA:

K
Tij= ouf; (1 + 25 uk’ikcjk)
k=1

Under the assumption that the frequencies follow a (product) multinomial or
a Poisson distribution, a likelihood function is set up that is maximized over
the unknown parameters «i, 8, jik, rik and cjx. If the parameter estimates rix
and cjx are unconstrained, then it turns out that o; =pi+ and B8; =p+; (see
Goodman 1985, Siciliano et al. 1990).

The CA model defined above is not restrictive because K = min (/- 1,/ - 1).
Therefore the CA estimated by least squares and the CA estimated by ML are
identical for K =min (/—1,J—1). The model becomes restrictive if either
restrictions are imposed on the parameters r;x and/or cjk, or on the dimension-
ality of the solution. For example, in the model

Kl

wij = oifj (l + kZ I‘«krikcjk>
=1

where 0 < K* < K, for K* dimensions g > 0. If this model fits adequately,
then it is not necessary to study more than K* dimensions. It is also possible
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to test whether some parameters are fixed, or equal to other parameters. For
¢ example, if the parameters rix =0 for k=1, ..., K * then the point i falls into
¢ the origin, and the result is that 7ijl7i+ = w4 for point i. As another example,
‘ if rix = ri'x for k=1, ..., K*, then the points i and i’ are located in the same
place. A third possible restriction that can be tested is whether the scores
are equidistant, for example, whether the scores rix are -3 -1,1,3)
if I= 4, or, whether rix = cix if we deal with the analysis of a square table. See
Gilula and Haberman (1988) for other kinds of restrictions that may be
imposed. )

The correspondence analysis model with constraints on the dimensionality
of the solution only, has (/ - K* - 1)(J- K * — 1) degrees of freedom. Thus we
can test whether one or two dimensions are sufficient to describe the associ-
ation in Table 4.1. For Table 4.1 we fit the model with K *=0, K*=1 and
K*=2 dimensions. For K*=0 the correspondence analysis model comes
down to the independence model: 7i; = 7;+7+;. This model has a likelihood
ratio chi-square statistic G*=420.6 for (J—1)(J—1)=25 degrees of
freedom. The model with one dimension only (K*=1) has a G*=95.1 for
16 degrees of freedom. The model with two dimensions (K *=2)hasa G*=6.7
for 9 degrees of freedom.

It turns out that the model with two dimensions is not significantly different
from the saturated model where K* = K = 5. The estimates for rik, cjx and px
are given in panel B of Table 4.2. It can be seen that the estimates found in
the ML solution are very similar to the estimates found in the least squares
solution found in panel A. In fact, for this example there is hardly any
difference.

% Comparison

It is much easier to estimate CA by least squares than by ML, so one should
have good reasons to do the latter instead of the former. Compared with CA
f° approximated by least squares, it is a great advantage of the version of CA
i estimated by ML that restrictions on the model parameters can be tested. Very
- natural questions can be answered about a CA solution, such as ‘how many
. dimensions should I interpret?’; ‘is the distance between two row points or two
“ column points in my graphical display significantly different from zero?’; ‘is
‘the distance of a point to the origin significantly different from zero?’; and ‘are
the scores for the rows and/or the columns equidistant?’.
v It should be emphasized, however, that it is only useful to perform such tests
_when the assumption is fulfilled that the data stem from a (product)-
multinomial or a Poisson distribution. This assumption can be violated if
the observations leading to the frequencies are dependent, for example, if the
answers of respondents in households are related. Another case in which the
usefulness of this approach is doubtful is if the data are not a random sample
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from the population one had in mind by setting up the study. This often
happens in surveys. If the non-response is selective in the sense that it is larger
in some cells than in other cells, then the test results only tell us how to
generalize from a sample to some unclear population.

Often the results from CA approximated by least squares and those from
CA approximated by ML will be very similar (see, for example, Goodman
1985, 1986). We also found this for the example discussed above (see panel A
and B in Table 4.2). We already indicated that if K * = K, then these approxi-
mations are identical because they do not impose restrictions on the data.
However, there are also situations in which they may be rather different. One
such situation is when in the CA approximated by least squares

*

K
(1 + 2] Ilkrikcjk>
k=1

is negative. This might occur when, for example, K* =1 and p, is large. Then
for a one-dimensional solution it is most likely that there will be reconstituted
proportions that are smaller than zero. In the one-dimensional CA solution
approximated by ML the probabilities x;; are always positive, and therefore
either the estimates for p; or for some parameters ri1 or ¢;i will be quite
different from those found in the CA approximated by least squares.

A question that remains is how the ML estimates of the scores should be
interpreted. One answer is that there is no difference in interpretation between
the ML estimates and the least squares estimates, but that these estimates have
other properties (see the statistical literature). One could also argue as follows:
when CA is performed by least squares (as explained and illustrated in
Chapters 1 to 3), we have a geometric interpretation of the results in the form
of profiles, masses, projections of profiles onto optimal subspaces, etc. When
CA is estimated by ML a similar but different interpretation is found. The key
to the solution of the interpretation problem is that now the matrix with
elements #;; is the starting point for the interpretation, and not the matrix with
observed proportions pi;. For the ML solution the points in a representation
like Figure 4.1(a) do not represent observed profiles with elements p;jf pi+, but
estimates of expected profiles with elements 7/ #i.. Masses of the points are
the same, and the metric of the row and column spaces are also the same.
However, whereas for the least squares solution in Table 4.2 the scores
represent an optimal least squares projection to a two-dimensional subspace,
for the ML solution the matrix with elements #; is perfectly represented in a
two-dimensional space. The fit of the model, G*=6.7 for 9 degrees of
freedom in this case, helps us to evaluate whether the matrix with elements pj;
may be represented by the matrix with elements #;. The principle of ML tells
us that, if there is a true two-dimensional graphical display for the population,
the parameter estimates in panel B of Table 4.2 make the observed data most
likely. So the scores in panel B of Table 4.2 are not only useful for plots by
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analogy with CA, they can be understood in terms of prolile points and the
like in their own right.

4.3 SOME RELATIONS BETWEEN CA, LATENT BUDGET ANALYSIS
AND LATENT CLASS ANALYSIS

4.3.1 Latent budget analysis

Consider the matrix in Table 4.3. The elements of this matrix are derived from
the matrix in Table 4.1 as pj;|; = n;j/n;.. The proportion p;|; is a conditional
proportion: it is the proportion of voters that have voted for political party
Jj given that they live in city type i. It is easy to study a matrix as in Table 4.3
by comparing the conditional proportions p;|; with the marginal proportions
D+j, that are given in the last line of Table 4.3. It shows that PvdA is voted
more than average (i.e. 0.340) in large cities (i.e. 0.387), CDA is voted more
than average in rural cities (0.445, 0.439 versus 0.353), VVD is voted more
than average in commuter towns (0.257 versus 0.177), and so on. All these
results were already clear from Figures 4.1(a) and 4.1(b), because CA is based
on an analysis of a matrix with elements p;|; and a matrix with elements
pi)j. The rows of conditional proportions p;; in Table 4.3 are the row
profiles. The average profile is given in the last line of the table. One might
ask whether there exists a small number of typical profiles, say three, that have
generated the observed profiles. Thus the observed profiles would be approxi-
mated by a weighted average of three unknown profiles. The question then is:
what are these unknown profiles, and how do they approximate the observed
profiles.

. TABLE 4.3
Voters for the 1986 elections in The Netherlands. In the rows city types are found,
~and in the column political parties are given. Conditional proportions: given the type
of city, what is the distribution of voters for the political parties?

‘ Political party

City type PvdA CDA vvD D’66 Left Right
Rural 0.263 0.445 0.172 0.045 0.019 0.055
Rural, industrialized 0.298 0.439 0.148 0.049 0.020 0.047
Commuter 0.263 0.341 0.257 0.077 0.027 0.035
Small city 0.344 0.345 0.172 0.064 0.028 0.047
Middle large city 0.387 0.321 0.164 0.064 0.033 0.030
Large city 0.438 0.250 0.166 0.074 0.053 0.018

Total sample 0.340 0.353 0.177 0.063 0.032 0.037
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This solution is displayed in the lower part of panel D of Table 4.2. Here
we find as a first typical profile 0.295, 0.623, 0.000, 0.000, 0.002, 0.080, where
the CDA and small right-winged parties have much higher proportions than
their average (0.623 versus 0.340; 0.080 versus 0.037). We call this the religious
profile. The second typical profile is 0.697, 0.164, 0.000, 0.062, 0.077 and
0.000, showing that here the PvdA and small left-winged parties are much
higher than their average. We call this the left-winged profile. The third typical
profile is 0.000, 0.078, 0.711, 0.179, 0.032, 0.000, showing that here the liberal
parties VVD and D’66 are higher than their average. We call this the liberal
profile. Notice that this is very similar to the three clusters of parties that we
found in the correspondence analysis plots in Figure 4.1(b).

In the top part of panel D of Table 4.2 we find how the observed profiles
are approximated by the typical profiles. On average, the proportions of voters
making use of the three profiles are 0.458, 0.294 and 0.248, so 0.458 of the
voters are in the religious profile, 0.294 in the left-winged profile and 0.248 in
the liberal profile. The top part of panel D shows that, for example, the rural
city profile is built up for 0.659 of the religious profile, for 0.103 of the
left-winged profile, and for 0.238 of the liberal profile. We see that, on the
whole, the profiles of rural and industrialized rural are built up more than
average by the typical religious profile (0.659, 0.627 versus the average 0.458);
the profiles of middle large and large more than average by the typical
left-winged profile; and the profile of commuter cities by the typical liberal
profile.

After this informal introduction of the model, we now introduce some nota-
tion. Let us denote theoretical profile elements as ;| i = mij| wi+. Let us index
the typical profiles to be estimated by x(x=1, ..., X), so that we can denote
the element j of typical profile x as m;|x, since Z;m;|x = 1 (see bottom part of
panel D). Let the probabilities that relate the rows to the typical profile be
denoted by x|, since Zxmx|i = 1 (see top part of panel D). Then the model is

X
wjli= Z Tx}iTjlx
x=1
This model is called the latent budget model, and for many more details we
refer to de Leeuw et al. (1990) and van der Heijden ef al. (1992). Here the term
‘budget’ is synonymous with ‘profile’, and the term ‘latent’ corresponds to the
fact that unknown, typical profiles (‘budgets’) are sought.

The model is usually approximated by ML. In its unconstrained form it has
(I — X)(J — X) degrees of freedom (for constraints we refer to van der Heijden
et al. 1992). For one typical budget the model comes down to the independence
model, having only the ‘typical’ budget with elements p. ;. We saw earlier that
for this model our example gives a test statistic G? = 420.6 (df = 25). For two
latent budgets (typical profiles) the model has a chi-square of G?=95.1
(df = 16) and for three latent budgets the model has a chi-square of G*=6.7




Correspondence Analysis and Contingency Table Models 89

(df = 9). Thus the solution that we discussed above corresponds with a model
that fits the data.

The latent budget model is not identified, but it can be identified by
imposing fixed value constraints upon the parameters. The identification
problem is similar to that in factor analysis. For the example discussed above
we have imposed six constraints to the elements of the latent budgets, namely
that elements 3 and 4 of latent budget 1, element 3 and 6 of latent budget 2
and elements 1 and 6 of budget 3 are all constrained to zero. For more details
we refer to de Leeuw ef al. (1990). Van der Heijden ef al. (1992) indicate how
general classes of constraints can be imposed on the parameters x|; and 7 |x.
These constraints are particularly useful in the analysis of higher-way tables.

4.3.2 Equivalence of the latent class model and the latent budget mode!

The latent class model is a closely related model for the analysis of contingency
tables. For example, if there are three variables 4, B and C, then the basic
latent class model assumes the existence of a categorical latent variable X that
explains the relation between the observed variables. Given the level of X the
observed variables A, B and C are independent (for more details, see
Goodman 1974).

Less attention is given to the latent class model for a two-way table

X
Tij= D) WxTi|xTj|x
x=1
(but see Clogg 1981). One of the reasons might be that this model is not identi-
fied, whereas the latent class model for three or more variables is identified (see
Mooijaart 1982, Goodman 1987, de Leeuw and van der Heijden 1991).

This model is equivalent to the latent budget model 7;}; = Zymry| |t We

can derive my|; from the latent class parameters m, and ;| as

m|i = X7rx7ri x
Tz |z
2 v
For the practice of data analysis this implies that the latent class model with
X latent classes provides the same estimates of expected frequencies as the
latent budget model with X latent budgets. The parameter estimates from the
latent class model can be used to obtain the estimates for the latent budget
model, and vice versa. For a discussion of relative advantages of one model
over the other we refer to van der Heijden ef al. (1992).

It turns out that the latent budget model (and the latent class model) is also
closely related to CA, because all models are reduced rank models for con-
tingency tables. We follow here the presentation of de Leeuw and van der
Heijden (1991), who describe this relation in terms of theoretical probabilities.
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4.3.3 CA and LCA as reduced rank models

Let 7i; be the elements of a matrix II with theoretical probabilities, where
T;Z;xiyy= 1. ThenII has rank R (R < min (1, J)) if it is possible to decompose
11 by I1 = XY', where X is some matrix of order I x R and Y is some matrix
of order J X R. If R =min (I,J), then IT has full rank, and if R < min (1, J),
then IT has a reduced rank R. Notice that in practice it is unlikely to encounter
an observed matrix P having a reduced rank, that is a rank smaller than
min (I, J).

We will now show that CA defining a rank R model is equivalent to the
more general ‘model’ that some matrix has rank R. This is done by showing
that both models imply each other.

If the matrix IT has rank R, then the matrix can always be decomposed by
a CA with R — 1 dimensions (see Lancaster 1958; see also de Leeuw and van
der Heijden 1991). The reverse is evident: if the matrix I is decomposed by
a CA with R — 1 dimensions, then the matrix IT has rank R. This can be easily
seen by rewriting the reconstitution formula as

R-1 R-1
Pij=Di+D+j (1 + ukr-'ijk) =pi+D+j+ kZ (w8 2pisric) k2P jcic)
k=1 =]
R-1 . %
=pi+P+j+ kZ rikCjk
=1

where ri = pt2picric and e = pt/2p+jcjk. This shows that pi+ p+jis a rank
1 matrix, and the R — 1 terms defined by rixcjx constitute a rank R — 1 matrix.
If we denote the matrix IT of rank R as Iz, and CA decomposing a rank R
matrix as CAg, then we can say that IIr and CAg are equivalent.

From the equation for latent class analysis of two-way tables we imme-
diately see that the latent class model is a reduced rank model. If the latent
variable has R levels, then the latent class model defines a matrix of rank R.
We denote this model as LCAR.

It is evident that if LCAR is true for some matrix II, that for this matrix
Ig is true, and therefore CAR is true. The reverse does not hold. The reason
is that the parameters in LCA are all non-negative, whereas in CA the
parameters may be both positive or negative. Therefore LCA is more restric-
tive than CA, and therefore if CARr is true for some matrix II, then it might
be that LCAR is not true. In other words, there are matrices II of rank R for
which LCAg will not be true. However, it is obvious that for rank 1 (indepen-
dence), both models are equivalent. Second, for full rank, i.e. R =min (I, J),
both models are also equivalent. Third, in contrast with statements of Gilula
(see, for example, Gilula and Haberman 1986), de Leeuw and van der Heijden

k
#
#
4
2

¥
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(1991) prove that for a matrix I'l of rank 2 the latent class model is equivalent
to CA.

4.3.4 Conclusions

Several conclusions follow from these results. First, although the parametriza-
tion from CA and LCA are very different, they extract similar information
from the data.

Second, if both models are fit by ML (which is the usual criterion for latent
class analysis but not for CA, but see section 4.3), then they will have the same
fit for R =2. For R > 2, the models CAr and LCAr may have the same fit
(this is almost always the case in situations where we tried this out), but it may
also be that CARg has a better fit than LCAR, because the latter is more restric-
tive than the former. For the example discussed in this section and in section
4.2 the both models yield equivalent results. This can be seen from the fact
that, if we compare the latent budget model with the correspondence analysis
approximated by ML (so that both models are optimized using the same
criterion), both for rank 2 and for rank 3 both models have the same likeli-
hood ratio chi-square. For rank 2 this is true for every possible matrix (since
CA with one dimension and the latent budget model with two latent budgets
are equivalent) but this need not be true for rank 3.

Third, since for rank 2 CAg and LCAg are equivalent, they yield the same
estimates of expected frequencies. This result may be used in the ML estima-
tion of CA.: it is possible to estimate the latent class model as a first step, and
then to decompose the estimates of expected frequencies with ordinary CA in
order to obtain the ML estimates of the CA model with one dimension.

In situations where both models are fit by ML, and they yield the same fit,

it is not possible to prefer one model over the other based on statistical
considerations. However, the parameters of both models have different
interpretations: the parameters of CA can be interpreted as optimal scores,
whereas the parameters of LCA are conditional probabilities, and therefore a
choice for either CA or the latent class model will depend on the substantive
research question about the data. LCA has the problem that its solution is not
identified. However, this identification problem seems to be well understood
(see de Leeuw et al. 1990).
.+ Goodman (1987) compares both models, and shows an empirical example.
In van der Heijden et al. (1990) it is shown that CA and the latent class model
can provide graphical representations that are closely related. We refer to van
der Heijden (1992) for a comparison of CA and the latent class model in
the context of square tables where interest goes out to the off-diagonal
frequencies. It is shown in van der Heijden et al. (1990) that multiple corre-
spondence analysis (discussed in part two of this book) and the latent class
model are also closely related.
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4.4 CORRESPONDENCE ANALYSIS AND LOG-LINEAR MODELS

In earlier sections we have discussed a ML version of CA, and the relation of
(the ML version of) CA with the latent class model. In this paragraph we will
discuss a specific way to view the relation of CA with log-linear models. We
refer to van der Heijden ef al. (1989) and the papers cited there for many more
details concerning this approach. An approach that is slightly different, but
basically the same, is discussed by Novak and Hoffman (1990).

4.4.1 CA as a tool for residual analysis

The starting point of the relationship of CA with log-linear models is the
relation of CA with the independence model. This relation can easily be
derived from both the reconstitution formula as well as from the relation
between the Pearson chi-square with the sum of the squared singular values.
The reconstitution formula given in section 2 can be rewritten as

K K
Pij=Di+DP+j (1 + k}] ukrikcjk) =pi+P+j T Di+P+j kzl RiTikCik
=1 =

which shows that in CA the (scaled) residuals (pij— pi+P+j)| Pi+P+j ar€
decomposed into K dimensions, where pi+ p+j are estimates of expected prob-
abilities under the statistical model defining independence of the categories
of the row from the column variable. In pi+p+;TiplikCik the marginal
proportions pi+ and p+; correct for the fact that some rows and columns have
higher marginal frequencies. Another property showing the relation of CA
with the independence model is

x*_ (pij = Pi+P+)" _ f} x
== Kk
n Di+D+j k=1

where x? is the Pearson chi-square statistic used for testing independence
between the row and the column variable, and n is the sample size. This
equation shows that the departure from independence, as measured by the
Pearson chi-square, is decomposed over the K dimensions of the CA solution.

So there is a close connection between independence and CA: CA can be
considered as a tool for residual analysis. By decomposing the residuals from
the independence model a graphical representation is obtained of the inter-
action between the row and column variables. However, this tool is not very
flexible, because the model for which the residuals are decomposed is always
the independence model. In many applications this model is very often naive:
often we are interested in a model less naive and less restrictive than
independence.

The reader should notice that we are discussing a rather limited use of CA
here: the above interpretation is only useful if the data stem from a (product)-
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multinomial or a Poisson distribution. If this is not the case, then the inter-
pretation of CA in terms of residual analysis will not be very fruitful (but see,
for an application of the tools discussed here in the context of multiple
correspondence analysis, van der Heijden and Meijerink 1989).

4.4.2 A generalization of correspondence analysis

When we want to study the residuals from less restricted models we can use
a generalization of CA proposed by Escofier (1983, 1984). This generalization
is

K
Pij=qij+sit; 2, il ik Cjk
k=1
Here the row scores rix and column scores ¢k are standardized such that

I I J J
Z Sirik =0 Z sirhe=1 Z ticik=0 Z tjC}k=1
i=1 i=1 J=1 J=1

The terms s; are used as weights for the row points, and as the metric defined
by s; ! for the space of the column points, and the terms ¢; are used as weights
for the column points, and provide the metric defined by ¢ j'l for the space
of the row points (compare Chapter 1). These terms can be chosen by the
user. For the elements g;; we can choose estimates of expected probabilities
under some contingency table model. If we choose Si=Ppi+, ti=psj, and
qij = Pi+D+j, then we find ‘ordinary’ CA. Many different types of applications
can be worked out using this generalization. We will discuss the two
applications that have received most attention thus far.

4.4.3 Correspondence analysis of incomplete contingency tables

In the standard approach of CA an analysis is performed of a complete two-
way contingency table. However, sometimes we would like to analyze only
part of the cells in a contingency table. As a first example, consider a two-way
table of regions by years, with the number of property crimes in the cells. It
might be that in some of the regions no data are available for all years. So
some of the frequencies are simply missing. A standard CA is not useful here,
because it starts from the assumptions that there are no missing frequencies.
Yet we would like to study the interaction in the available frequencies with a
0ol like CA.

*As a second example, some of the cells can be structurally zero, i.e. they
‘efer to combinations that cannot logically occur, such as diagonal cells in
mport—export tables. In such tables countries are the categories of the row
ariable as well as of the column variable. In the cells amounts of goods or
noney are provided that countries import from other countries (and that the
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latter countries export to the former countries). The values in the diagonal cells
are undefined: it is not clear what should be filled in here, because countries
do not export and/or import to themselves. This may cause a problem in a
standard analysis of the data. A solution is to focus attention to the off-
diagonal cells only.

Thirdly, for substantive reasons we may decide that we want to apply a
model to some cells but not to others. For example, in a social mobility table
it might be that we are only interested in the off-diagonal cells, that reflect
changes. In the diagonal cells we find the number of father—son couples that
have the same profession. Processes that lead to having the same profession
are usually considered to be different from processes that lead to profession-
differences for fathers and sons. Therefore it might be useful to model only
the off-diagonal cells, so that only one process is studied. A similar example
will be discussed in the next section.

In standard CA the independence model is the baseline model. In log-linear
analysis the independence model is adjusted to a so-called quasi-independence
model to deal with the three examples given above, where estimates under the
independence model are pi+P+js under the quasi-independence model they are
&:B; for the cells for which we would like to fit (quasi-)independence. For the
other cells the estimated probabilities are simply equal to the observed
proportions.

We can analyze the residuals from quasi-independence by the generalization
of CA in the following way: we choose qi; = &if;. 1If we now choose si = ai
and ¢; = 3, then the generalization of CA has again the property that the
Pearson chi-square (now for testing quasi-independence) is closely related to
the sum of the squared singular values. This property was lost for the general-
ization in its most general form. So, like in ordinary CA, the information as
measured by Pearson’s chi-square (which is the criterion used to decide
whether the residuals contain interesting information) is decomposed into a
number of dimensions.

As de Leeuw and van der Heijden (1988) show, it turns out that this appli-
cation is equivalent to a procedure to deal with missing data in CA for a long
time (see, for example, Greenacre, 1984, Ch. 8). This procedure adjusts the
table to be analyzed, before an actual analysis is performed. Specifically, for
the cell values in which one is not interested, ‘independent’ values are filled in.
These independent values are calculated iteratively as p{m+ D =plpy for
iteration m, anditerating ends after convergence. As it turns out, for the
converged values pij, pij=&ib;.

This shows, first, that a well-known procedure in the CA tradition can be %

understood in terms of a residuals approach of log-linear models. It also shows

that this application is easily carried out by ordinary CA programs. 3
De Leeuw and van der Heijden (1988) give more details about this pro-
cedure, and in van der Heijden ef al. (1989) it is shown how this procedure can
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be used fruitfully in the context of square contingency tables. They also show
how it can be generalized to deal with the departure from other models in this
context, such as the symmetry model and the quasi-symmetry model.

4.4.4 Correspondence analysis as a tool for the analysis of residuals
from conditional independence in a higher-way table

In order not to make the discussion too abstract, we present this application
by means of an example, omitting technical details (for these the references at
the end of this section can be consulted).

Consider Table 4.4. It is a table with faculties in the rows, and types of
student in specific years in the columns. In the cells we find the number of first-
year or graduate students in different faculties in The Netherlands at successive
time points. The faculties are the arts (including philosophy), theology,
medicine (including veterinary and dentistry), mathematics and physics
(together), technical science, agriculture, laws, economic sciences, socio-
cultural sciences, psychology, pedagogy, geography, and others. The years
chosen are 1935, 1946, 1957, 1968, 1979 and 1983, which are evenly spaced,
except for the last year (1983). Some of the cells in the matrix have zero
frequencies, due to the fact that some faculties did not exist at that time. So
in fact, we could interpret Table 4.4 as an incomplete contingency table, and
handle these zero cells appropriately (see above).

However, we do a standard CA first. The Pearson chi-square is 12 883 (df
is 25). This chi-square reflects the fit of a (log-linear) model where the row
variable is independent of the column variables, i.e. the faculties have no
relation with the types of student and the years. The estimates of expected
frequencies under this log-linear model have the following property: the
relative proportions of first-year students and graduates are equal for each
faculty, and both the number of first-year students and the number of
graduate students develop for each faculty proportionally in the same way. In
the terminology of CA we would say that under this log-linear model the row
profiles are equal. But since this model is rejected (this is revealed by the
Pearson chi-square, which is significant), it makes sense to study the departure
from the log-linear model.

The standard CA shows how Table 4.4 departs from this situation. The first
four singular values (with percentages of chi-square) are 0.245 (54.4%), 0.141
(18.0%), 0.104 (9.9%) and 0.083 (6.3%) so we can restrict attention to the first
two dimensions (the singular values for dimension 3 and 4 do not differ enough
to warrant attention to any of these two). These two dimensions display
72% of the total dependence between the row and the column variables (see
Figure 4.2). Care should be taken that the points geography, economics and
agriculture are not very well represented in the first two dimensions: 2.6%,
22.4% and 42.9%, respectively, are displayed in the first two dimensions;
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FIGURE 4.2 Correspondence analysis of Table 4.4. Joint plot, distances between

rows and distances between column approximate chi-square distances. Solid line:
first year students; dotted line: graduate students. See text for explanation.

similarly, only 8.6% and 50.5% are displayed from the graduate years 1979
and 1983.

The time points are roughly ordered in the first dimension from 1935 to
1983. We can conclude that, compared to the average faculty profile given by
P+, the values pij/pi, of many of the faculty profiles are either regularly
growing or diminishing from 1935 until 1983, or have a peak in the middle
seriod. Compared to the average faculty profile having elements D+j, the
faculties on the left of the origin have more students in the earlier years,
vhereas the faculties on the right of the origin have more students (than the
wverage) in the later years. In the early years relatively many students were in
heology and medicine. In recent years this has changed towards pedagogy,
»sychology, arts and ‘other’. The peak for mathematics and physics
mathphys) and economy is found in the middle. All faculties are ordered
dong dimension 1 according to their peak compared with the average row
rofile. '

Interpretation of the second dimension is more difficult. It seems that this
limension is a quadratic transformation of the first dimension. This effect is
ften found in CA when the first dimension is dominant. It is usually called
he horseshoe effect, or Guttman effect. Different interpretations exist for this
henomenon (compare van Rijckevorsel 1986). For example, in Gifi (1990) an
terpretation in terms of Hermite—Chebychev polynomials is given.
ireenacre (1984, Ch. 8) presents an interpretation in terms of chi-square
istances. Schriever (1983, 1986) presents an interpretation in terms of order
spendence in categorical variables. It is clear from these interpretations that
te second and higher dimensions need no substantive interpretations.
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Let us now consider the solution in Figure 4.2 in terms of log-linear models
again. In log-linear models the interaction in the three-way contingency table
is attributed to different sources. There are three two-factor interactions,
namely the two-factor interactions between faculties and years (do some
faculties have more students in some years, relative to the average number of
students over years?), between faculties and types of student (do some
faculties have more graduate students, relative to the average proportion of
graduate students over all the faculties?), and between years and types of
student (are there more graduate students in some years, relative to the average
proportion of graduate students?). Then there is also three-factor interaction:
the way in which the relation between faculties and years differs for different
types of student.

When we consider the standard CA of Table 4.4, it should first be noticed
that the two-factor interaction between years and types of student is not
displayed, because it is contained in the column margins of Table 4.4. This
information could be used explicitly in choosing an appropriate way to code
and analyze the three-way table: now the two-factor interaction between years
and type of students is not displayed, but (two) different choices could have
been made, namely either coding years and faculties interactively (then the
two-factor interaction between years and faculties would not have been
displayed) or coding faculties and students interactively (then the two-factor
interaction between faculties and students would not have been displayed).

What is displayed in Figure 4.2 is the two-factor interaction between
faculties and years, the two-factor interaction between faculties and types of
student, and the three-factor interaction. So standard CA displays the
departure from the log-linear model where faculty is independent from year
and type of student jointly. The two-factor interaction between faculties and
years is clearly overwhelming, and in fact it overshadows the other inter-
actions. One reason is that this two-factor interaction consists for a large part
of zeros in Table 4.4, namely that some faculties were founded in a later year.
Therefore one might wonder whether it is possible to eliminate this two-factor
interaction, in order to have a better view of the two-factor interaction
between faculty and type of student, and the way in which this interaction
differs in different years.

This can be accomplished by using the generalization of CA to study the 3
departure from a different log-linear model. In this different log-linear model '
there is interaction between years and types of student (as before), but there

is also interaction between faculties and years. This log-linear model is a 3
conditional independence model: under this model faculties and types of 3

student are independent for each year. So, if we study the departure from this g
model, we get a display of the two-factor interaction between faculties and 3
types of student, and of the three factor interaction (i.e. how this interaction f“
differs for different years). The Pearson chi-square for this new log-linear §
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model is 2973, with 62 df. This model is still rejected, so in principle (general-
ized) CA can be useful to study the structure in the residuals. The generalized
CA solution has first four singular values 0.118 (55.7%), 0.069 (19.3%), 0.056
(12.4%) and 0.050 (10.0%). Following the elbow criterion, we study only two
dimensions. This solution in Figure 4.3 is closely related to the solution in
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IGURE 4.3 Generalized correspondence analysis of Table 4.4, where the
wo-factor interaction between faculties and years is eliminated. See text for
explanation.
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Figure 4.2: in the full-dimensional spaces corresponding to Figures 4.2 and 4.3
the distances between corresponding year points are identical. This holds, for
example, for the distance between 1946 first-year students and 1946 graduates.
However, whereas the (weighted) average of the two points in Figure 4.2 is
clearly far from the origin (displaying the two-factor interaction between
faculty and year), in Figure 4.3 it is located near the origin, because the inter-
action between faculties and years is eliminated from the (generalized) CA
solution. Therefore we find in Figure 4.3 that each pair of year points has a
weighted average of zero (when the marginal frequencies are used as weights).
The first-order interaction between faculties and types of student is displayed
on the first two dimensions: the faculties with relatively more first-year
students (i.e. socio-cultural sciences (soc-cult), technical sciences (technics),
arts and theology) are located in the direction of the first quadrant (solid line),
whereas the faculties with relatively more graduates (medicine, law,
mathematics and physics) are plotted in the direction of the third quadrant.
Three-factor interaction can be derived from the plot as follows: medicine for
example (but also pedagogics, psychology and geography) seems to have
relatively more graduates in later years, and in these same years relatively less
first-year students (as compared to the average). On the other hand, the law
faculty (and also economy, agriculture) has relatively many first-year students
in later years, and many graduates in early years. Inspection of the contri-
butions shows that we have to be careful with the interpretation of the position
of the points for mathematics/physics, technical sciences, psychology and
pedagogy, because, respectively, only 29.9%, 47.2%, 51.0% and 44.7% of
the total squared distance to the origin are projected on the first two
dimensions.

We conclude that the approach to use log-linear models to eliminate infor-
mation from standard CA solutions can be usefully applied when specific
interactions in a higher-way table are so strong that they overwhelm the other
interactions. For more applications, see van der Heijden et al. (1989). For
more (technical) details concerning this application we refer to Escofier (1983,
1984), van der Heijden et al. (1989), and Takane et al. (1991b). Escofier (1983)
calls the solution in Figure 4.3 a solution of an ‘intra analysis’, and she
proposes to do this ‘intra analysis’ jointly with an ‘inter analysis’, which is the
analysis of the marginal table of faculty by year. Van der Heijden and de
Leeuw (1985) and van der Heijden et al. (1989) show the connection of ‘intra
analysis’ with log-linear models, they show how this application can be
extended to tables of more than three variables, and to more complicated
log-linear models than ‘simple’ conditional independence models. They also
propose to use CA and log-linear analysis complementary to each other:
log-linear analysis-could be used to answer the question of which variables are
related by detecting the important interactions; in the second step CA can be
used, for example, to explore the residuals when a model in which we are
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interested does not fit. Takane ef al. (1991) show that this approach is closely
related to other approaches with similar aims.

4.4.5 Conclusion

We think that by relating CA to log-linear models many insights are obtained.
To mention a few:

® A new way to use CA is indicated, namely to see it as a tool for residual
analysis. This might be particularly fruitful for large tables.

e It can also be emphasized that, given that the CA procedures study the
residuals from log-linear models, these residuals should be meaningful,
i.e. the models under study should not fit. This holds for the applications
making use of the generalization of CA, but also for ordinary CA. In the
applications that we see in the literature this is seldomly checked.

e For the analysis of higher-way tables by means of stacking categories of
variables more insight is obtained into how to make an appropriate
choice between different ways to stack variables.

e For incomplete contingency tables it is shown that a CA procedure
already known can be understood in terms of the quasi-independence
model.

o It is emphasized that for many applications and research questions the
independence model is simply not the appropriate baseline model. Very
often less restrictive models are needed to study these aspects of the data
one is interested in. In the CA approach, the aspects we are not interested
in are incorporated in the model, so that the interesting aspects are in the
residuals.

For an extensive discussion and appreciation of this approach we refer to the
discussion following the paper of van der Heijden et al. (1989).

4.5 CORRESPONDENCE ANALYSIS AND THE RC-ASSOCIATION
MODELS

In this section we will discuss relations between CA and the RC-association
model. This relation is mainly that, if certain conditions are fulfilled,
parameter estimates found in CA are very similar to parameter estimates
found in the RC-association model. Consider our example in Table 4.1. The
results of the analysis with the so-called RC(2)-association model are displayed
in panel C of Table 4.2. The similarity between the estimates in panel C and
panel B is considerable. This is not a peculiarity of our example, but a
systematic result, that will be worked out below.
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In order to appreciate the form of the RC-association model, we first have
to define the log-linear model for two-way tables. The saturated (i.e.
unrestricted) log-linear model is

log 7r,~j=u+a;+bj+c,-j

where the parameters add up to zero over each subscript. If ¢;j =0 we find the
independence model.

The interaction parameters #iz¢ij) are often related to quantities called the
‘log-odds ratio’ i ;' which is defined for four cells (i,/), G,Jj", (',Jj) and
(i',j'). For the saturated model the log-odds ratio is defined as

0 jj = log [(wymirj )| (wij wirj)] = urzaipy + Uizqi ) — Wi2ey') — U12G'5)

For the whole table (I—1)(J—1) log-odds ratios describe the full pattern of
associations. The definition of 8iry shows that the log-odds ratio is
independent of the margins, which is an attractive property for measures of
interaction, because it allows one to compare the interaction strength in
different subtables or tables. The definition also shows that under the
independence model 6 = 0.

There obviously is a need for models that are more restrictive than the
saturated model, yet less restrictive than the independence model. Many
models are proposed for this purpose, but recently models with bilinear terms
(multiplicative terms) in the logarithm have received much attention.

4.5.1 The RC-association model

The basic model is the RC-association model (Goodman 1979, 1985, 1986,
Andersen 1980), defined as

log mij=u+ai+ bj+ viw;

where the v; and w; have to be constrained in order to identify the model. One
way to identify them is by

I I J

Zl pi+vi=0 121 pisvi=1 Zl pawi=0 2 pawi=1

= = Jj=

These identifying constraints are chosen in such a way that they are very
similar to those used for CA. The term ¢v; W; is a bilinear term, and therefore
the model is not log-linear any more. This term can be seen as a rank one
constraint to the matrix of interaction parameters #12(¢ij)- 1f I and J are large,
" the number of interaction parameters can be reduced considerably.

In terms of log-odds ratios, the model defines

0 =log [(mijmirj?)|(mijrmirj)] = (Vi — vir)(wj — wj')
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This shows that 6;;;- is a function of the association strength ¢, of the
difference between the scores for i and i’, and of the difference between the
scores for j and j’. The smaller any of these three quantities is, the more
the quantity 6;;;;» approaches zero, which implies that in the subtable of cells
.0, G',j", (',j) and (i,j') the association approaches independence.

4.5.2 The RC(K)-association model

More recently Goodman (1985, 1986) proposed a natural extension of this
model, namely the RC(K)-association model. This model is defined as

K
log mij=u+ai+bj+ 2, dxvikWjk
k=1

_with constraints

I I J

kk'
Z Pi+Vik =0 Z Pi+VikVik' =06 Z P+jwWik=0
i=1 Jj=1

i=1

J

El PWixWjkr = 8%

j=
where 6% =1 if k=k’', and 8**' =0 if k # k’, that is, similar to CA, the
scores are uncorrelated for different factors. If K=min (/- 1,J- 1), then
Tk@rvikWjk = Ui2¢ijy, but if K < min (/- 1,J — 1), then the RC(K) association
model is more restrictive than the saturated model.

In terms of log-odds ratios, the model is

Qiirjjr = log[(wijmirj )| (wijmwirj)] = b (Vik — virk)(Wjk — Wj'k)

The insight into the log-odds ratio 8;;j; is getting more difficult now, because
it is a function of parameters ¢, differences of score i and i’ on K dimensions,
and differences of scores j and j’ on K dimensions.
Consider again Table 4.2, panel C. In the first line the estimates for ¢, are
found, then a 6 X 2 matrix with estimates for v;x follows, and then a 6 X2
. matrix with estimates for wjx follows. This model has (/- K- 1)(J—-K-1)
‘degrees of freedom, so for this example, where K = 2, the number of degrees
_.of freedom is 9. The chi-square statistic is 5.828. The RC-association model,
~for which K = 1, the number of degrees of freedom is 16, and the chi-square
is G2 =90.2.
4+ Although the parameter estimates in Table 4.2, panel C are very close to
“these in panel A and B (reasons for this closeness are explained below), the
Jinterpretation of these parameters is different. Interpretation is simplified by
‘means of a graphical display. A useful graphical display is obtained by using
ithe coordinates dix = ¢ 4”20« for row point i on dimension &, and coordinates

‘Wi = ¢&*Wjx for column point j on dimension k (see Figure 4.4); thus



104 P. G. M. van der Heijden, Ab Mooijaart and Y. Takane

0.8
i commuter
0.6 o VVD
0.4 @ D66
0.2+
left
. ) -
Tur small cit
0071 right o) i -
. a 1 CDA middle large targe city
ity
-0.2-] -
4 O] PVDA
rural, industrialized
—-0.4 . T . T . T .
-1.0 -0.5 0.0 0.5 1.0

FIGURE 4.4 Graphical display of RC(2)-association model parameter estimates.
See text for explanation.

TedncWii = T rbrdixWjk. Notice that, compared to Figure 4. 1(a) and 4.1(b), the

configuration of both the row points and the column is very similar, except for
a stretching of the second dimension: on this dimension the distances are larger
now. The reason is that in the CA representation distances between the row
points, and distances between the column points, approximate chi-square
distances, because fix = frfik and gjx = fikljk are used as coordinates. Here we
do not use ¢« but ¢}/ to scale the row and column scores. Thus we may make
a simultaneous display of row and column scores.

In Figure 4.4 estimates for LDk could be derived to find the association
for cell (i,/). This shows that the association for cell (i,/) is zero when row
point i and column point j make a right angle with the origin. The association
is positive when the angle is larger than 90°, and negative when the angle is
smaller than 90°. The more the row point and the column point are away from
the origin, and the smaller the angle between the row and column point, the
more extreme becomes the association. Similarly, Biir i = Ex(@c — 0'%)  §
W)k — Wwi%) should be used to get the estimated log-odds ratio for the four cells 4
G,0), G',J"), G,j') and (', ). So, if row points i and i’ are close, and column £
points j and j' are close, then the log-odds ratio for the corresponding
subtable approaches zero, and under the model the subtable of expected
frequencies approaches independence. For many details concerning the
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interpretation of these graphical displays, and a discussion of some
alternatives, we refer to Goodman (1991).

4.5.3 Estimation and restrictions

This model is usually fitted by ML. Apart from restrictions on the number of
factors M, various additional restrictions can be imposed on the parameter
estimates, such as fixed value constraints and equality constraints. If the row
parameters are fixed, for example, to equidistant scores v; = {—1,0, 1}if I=3,
the model becomes log-linear, and only w; (and the scaling factor ¢)
has to be estimated. This model is called the C-association model. Similarly,
if the column scores are fixed, and the row scores v; have to be estimated, we
find the R-association model. If both the row scores and the column scores are
fixed to equidistant scores, then only ¢ has to be estimated, and this model is
called the U-association model (see Goodman 1985 for details). Also, see
Gilula and Haberman (1988). For square tables, it is possible to restrict
vi = wi, and to eliminate the influence of the diagonal cells by including one
parameter for each diagonal cell. The RC-association model is quite flexible
in the sense that it can be adjusted to deal with many situations.

4.5.4 Relation to CA

For the example discussed above we found that the estimates for the RC(2)-
association model were very similar to CA. This is not a coincidence. It is well
known that CA, the RC-association model and the RC(M)-association model
are closely related. We will now discuss the reasons for this.

First, it is shown by Goodman (1981) that if k¥ = 1 and the proportions come
from a discretized bivariate normal distribution (or a distribution that is
bivariate normal after a suitable transformation of the rows and columns), CA
in one dimension is closely related to the RC-association model with one
dimension: it turns out that p1 = ¢, ri1 = v; and cj; = w;. Second, the CA
representation in k dimensions can be written in an adapted version of the

" reconstitution formula as

i
*

k
. mij=pisP+j (1 + ’ZJI ukrikcjk>
where m;; is the reconstituted value for cell (i, j). Escoufier (1982) noted that if
k¥

i

k‘

X = Z BklikCjk
k=1
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is small compared to one (so that log (1 + x) = x) we can rewrite the
reconstitution formula as
K*
log mij=u+ai+bj+ Z il ik Cik
k=1

where u =0, a; =log pi+ and b;j =log p.+j. Since rix and cjx are normalized
in a similar way to v; and wj, Escoufier’s condition roughly reduces to the
situation that the departure from independence is not too large.

The conclusion is that in CA the interaction is decomposed approximately
in a log—multiplicative way: the graphical displays show approximations of
log—bilinear parameters. For empirical examples of this relation we refer, for
example, to Goodman (1985). This close relation between CA and models with
log—bilinear terms also holds for more complicated models. Examples are
given in van der Heijden and Worsley (1988) and Green (1989) for a three-way
table, and in van der Heijden (1992) for square tables where the CA approach
to incomplete tables (see section 4.4.1) is compared with adjusted versions of
the RC(M)-association model. Van der Heijden and Mooijaart (1991) show
that the scores found in examples using the CA approach of section 4.4.1
where the departure from quasi-symmetry is studied, are very similar to the
parameter estimates obtained in comparable models with log—bilinear terms.

Our experience is that the condition that log (1 +x) = X should be small, is
not very restrictive. Even if for some of the cells x is rather large compared 3
to one, then generally the interpretation will not change drastically. A reason
might be that, if for some cells (i,j), x is large compared to one, this will
not necessarily mean that the factorization of the matrix of cells (i,j) in the
association model context will be very different from the factorization in the
CA context. More research is needed in this area.

4.6 CORRESPONDENCE ANALYSIS AND IDEAL POINT
DISCRIMINANT ANALYSIS

4.6.1 Ideal point discriminant analysis

Ideal point discriminant analysis (IPDA; Takane 1987, 1989, Takane ef al. ’_
1987) is a model that is inspired by the unfolding interpretation of CA. In 3
unfolding (Coombs 1964) it is aimed to represent the rows and columns of a 7

two-way table in one common spatial representation. Various specification can 3§

be given, but the general idea of unfolding is that, if row i has certain 7
dissimilarities with the J columns, these dissimilarities are reflected by the 9
distances of row i to the J columns. In correspondence analysis (approximated
by least squares) a distance interpretation can be found if asymmetric scaling
of rows and columns is used. Such an asymmetric scaling is obtained if for the 3
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row points of correspondence analysis coordinates r;,, are used as coordinates,
and for the column points g;x (see section 2), Then the column points are in
the centroids of the row points:

Thus column point j is in the weighted average of the row points, where the
conditional proportions p;;f p.; are used as weights. It is allowed to calculate
distances between row points / and column point j, and the order of these
distances reflects the order of the dissimilarities. (Notice that this property
does not hold for CA approximated by ML, unless instead of the observed
conditional proportions p;;/ p.+; the conditional probabilities ;7 .; are used
as weight.) For more details concerning an unfolding interpretation of CA, see
Takane (1980), Heiser (1981), Ihm and van Groenewoud (1984), ter Braak
(1986) and Greenacre (1989).
Using this as a starting point, IPDA is defined as

w; exp(—d}))
J

Z wjr exp(—di;
J

mjli=

" where d7; is defined as the Euclidean distance between row point i and column

point j, column point j being derived as the weighted average of the row
-points. So, let xix be the IDPA parameter for the coordinate of row point i
>.on dimension m, y;x the IPDA column coordinate, then the column point j
" is derived from the row points i as

and the squared Euclidean distance d7; is

di= 2, (xik—yjx)?

. Notice that the coordinates y;x are not parameters: the parameters that have
.-to be estimated are the row parameters x;x and the weights w; (which will often
:'approximate the marginal column proportions p.. i)

v The denominator of the model for =;|; is only included in the model to
-ensure that Ijx;|;=1. It follows that =;|; is linearly related to w; when
exp(—d%) is fixed, or to exp(—d%) when w; is fixed. This latter statement
-implies that, for fixed w;, the conditional probability ;|; becomes larger if
-the distance di; becomes smaller, i.e. if row i is closer to column j.

4. Consider now the example in Table 4.1. The fit of the ideal point dis-
~criminant model with K* = 2 dimensions is G2 = 7.02 (df is 16). For K* =1 the
it is G?=90.48 (df is 20), and for K* =3 the fit is G = 2.64 (df = 13). The
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coordinates for K*=2 are presented in panel E of Table 4.2. A graphical
display is found in Figure 4.5. In this display the distances between a row point
and the column points are well defined. But now the distances between the
rows, and the distances between the columns are not well defined. When we
compare this with CA, we find that in a similar asymmetric display (where the
column points are in the weighted average from the row points) the distances
from each row to the columns are also well defined, but the distances between
the column points are equal to chi-squared distances.

4.6.2 Relation to correspondence analysis and to RC-association models

It was indicated that IPDA was inspired by the unfolding interpretation of
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FIGURE 4.5 Graphical display of ideal point discriminant analysis parameter
estimates. See text for explanation.
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CA, because the IDPA column coordinates y;x are derived as the weighted
averages of the IPDA row parameters x;x. This property holds for CA
approximated by LS, but not by CA approximated by ML. Compared with
CA approximated by ML and to the RC(M)-association model, in IPDA less
parameters are estimated, because the column coordinates y;x are derived
from the row parameters x;x. This usually does not lead to a great loss of fit,
but, on the contrary, it does lead to a gain in number of degrees of freedom.
It often leads to an increased stability of the parameters that are estimated in
IPDA, in the sense that, if in some models one or more parameters are fixed,
then the standard errors of the remaining parameters often become smaller.

Takane (1987) has shown that IPDA can be written as a constrained
conditional version of the RC-association model:

K*
bj exD( 2 brvik ij)
k=1

J K*
2. b eXD( ¢k'vik'ij'>
i=1 k=1
in the sense that w; corresponds to w;, ¢xvix corresponds to xix, and Wik
corresponds to the constrained y;x. Takane (1987) calls this latter constraint
critical in the comparison of IPDA and the RC-association model. The corre-
spondence of IPDA with the RC-association model can be seen by working out
i—dijas —Te(xik — Yjx)* = — Eaxe + 2Zaxie yjk — Ly, it follows that

Tili=

Kt
» exp(-d?) = cic} exp (2 2 (xucyjk)>
y -
The parameter c¢; cancels out in the numerator and denominator of the
conditional model, and c}" is absorbed in w;. This shows that, in IPDA, it is
allowed to set Zipixik =0=X;p.;y; without influencing the fit of the
model. In order to simplify the comparison of IPDA with the RC-association
model we now rescale xix to xi% with the property that Lipi+xix=1and Yik
to y/x with the property that Eip.jyk=1. So we are rescaling
XikYjk = wkXikYix. The corresponding parameter estimates are shown in panel
F of Table 4.2. The similarity of the rescaled IPDA parameter estimates with
the RC-association parameter estimates is striking, especially for xJ%. Notice
that twice the parameter estimates for wx correspond to the parameter
estimates for ¢, since — Zx(xik — yjx)? corresponds to 2Xxxix Yik
- For more details concerning the relation of IPDA with CA and the RC(M)-
association model, see Takane (1987) and Goodman (1991).

47 DISCUSSION

1 this chapter we have compared the usual CA approach (which we called CA
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by least squares) with different sorts of models fitted by ML. As we see it, the
most important advantage of CA by least squares is that the computations are
straightforward, using the singular value decomposition, eigenvalue decom-
position or reciprocal averaging algorithm. On the other hand, if we know that
the assumptions of a (product)multinomial or Poisson distribution are
fulfilled, then we should use this information in our model fitting, and thus
ML estimation is a more natural candidate for the CA model.

When we compare CA estimated by ML with association models with
log—bilinear terms (see section 4.4), a draw back of the correspondence
analysis models is that the parameters for the interaction depend on the 3
marginal distributions. This makes association models preferable. Another
reason to prefer association models is that they are very easily extended to deal
with higher-way tables, to deal with structural zeros, and to deal with specific
patterns in the association. These are probably the more important reasons
that there is a tendency in the Anglo-Saxon literature to prefer the RC
association model over the CA model. In fact, we found only one exception
to this, namely Wasserman and Faust (1989), who favour the use of the CA
model over the RC association model for social network analysis. For other
comparisons between the models we refer to Goodman (1985, 1986, with
discussion; 1987, 1991, with discussion). e

IPDA is closely related to both CA and to the RC-association model. CA
estimated by least squares and IPDA have the unfolding interpretation in :
common (see section 4.4.2). The RC-association model and IPDA have the 4
model formulation in common, where the IPDA can be seen as a version of

the RC-association model parametrized differently and having additional 3

constraints. These additional constraints lead to an increased stability of the
model parameters, while they usually do not lead to a substantial reduction &
in fit. E

APPENDIX: SOFTWARE

Most of the analyses were performed with special purpose software that we i
wrote ourselves. This special purpose software can be obtained from the
authors upon request. However, there is much software available from other 3
sources. In general, we refer to Andersen (1990), who wrote a program library §
called CATANA to support the analyses in his book, and Agresti (1990), who
also discusses software.

CA estimated by least squares can be performed in software packages such
as SPSS, BMDP and SAS. CA estimated by ML was fitted with a computer
program written in APL by the second author (see also Siciliano et al. 1990).
We have limited experience with a computer program sent to us by Haberman
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(see Gilula and Haberman 1986). Recently a program has been written in
GLIM3.77 by de Falguerolles and Francis (in press). '
The CA procedures to decompose residuals from log-linear models can

usually be fitted with ordinary CA programs, if the input matrix is adjusted
- (see van der Heijden ef al. 1989). These adjustments are done by us in special
APL-programs.

There is more software available to fit association models with log-bilinear
- terms. See for references Agresti (1990). There are also programs written in
.  GLIM3.77 by Dessens et al. (1985) and Becker (1989).
There is a computer program to perform IPDA that can be obtained from
Takane.
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