A%proximations of Nonlinear Functions
by Feed-Forward Neural Networks!

Yoshio Takane (McGill University)
Yuriko Oshima-Takane (McGill University)
Thomas R. Shultz (McGill University)

1 Introduction & Summary

Neural network (NN) models are very popular in artificial intelligence, pattern recognition, cognitive
psychology, etc. Feed-forward networks may be viewed as approximating nonlinear functions that
connect inputs to outputs (e.g., Ripley, 1993). They are known to be robust and efficient approximators
of nonlinear functions (e.g., Hornik, Stinchcombe, & White, 1989). We analyze how the approximations
are done using a variety of multivariate and graphical techniques (Takane, Oshima-Takane, & Shultz,
1994; Oshima-Takane, Shultz, & Takane, forthcoming). The particular network architecture we are
interested in is the cascade correlation (CC) learning network (Fahlman & Lebiere, 1990) which is
capable of dynamically growing nets to adapt to more complicated problems. We look at how the
learning and representation of knowledge occur in the CC networks as it performs a variety of tasks.
We also examine the generalization capability and the effect of environmental bias in the training,.

2 Cascade Correlation (CC) Learning Network

Artificial NN networks consist of a set of units, each performing a simple operation. They receive
inputs from other units, compute activations based on the inputs, and send out the activations to
other units according to the connection strengths. A network of such units interconnected with each
other, however, turned out to be quite a powerful computational device. A multilayered network can
approximate any function with a finite number of discontinuities, arbitrarily well, given sufficient units
in the hidden layers (Hornik et al., 1989).

In the CC learning architecture no a priori net topology has to be specified. It starts as a net
without hidden units, and it adds hidden units to improve its performance until a satisfactory degree
of performance is reached. Hidden units are added one at a time so that all pre-existing units are
connected to new ones. Input units are directly connected to output units (cross connections) as well
as to all hidden units. The cross connections often simplify the constructed net solutions by capturing
linear effects of bias and input units in the simplest possible way. When a new hidden unit is recruited,
incoming weights to the new unit are determined by a heuristic method, and are fixed throughout the
rest of the learning process. This avoids the necessity of back-propagating error, and leads to faster
and more stable convergence.

CC nets were used to implement a wide variety of successful psychological models, particularly in
cognitive and semantic development (e.g., Shultz et al., 1994).

3 The Continuous XOR Problem

There are a number of bench mark tasks we could use. For illustration, we consider the continuous zor
problem. This problem is simple enough to deduce what the target function is, and yet complicated
enough to warrant network modelling. It requires an interaction between two input variables. Capturing
interaction effects between input variables without explicitly being instructed to do so is one of the
main advantages of NN models.

The continuous zor problem has two input variables, #; and z,, each ranging from 0.1 to 1.0, and
one binary output variable, y. The problem is to discriminate two groups of input patterns. When
both z; and z, are greater than or both smaller than 0.55, y = —0.5; When only one of the two
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variables is greater than but the other smaller than 0.55, y = 0.5. The optimal discriminating function
for this problem is
y = f{—c(zy — 0.55)(z2 — 0.55)} — 0.5, (1)

where f is a sigmoid function, f(t) = 1/{1+ ezp(—t)}, and ¢ goes to infinity. This function is depicted
in Figure 1. A CC net can learn to approximate this function, but how? Obviously, this function needs
an interaction effect between z; and z,. Figure 2 depicts a net approximation to this function obtained
by the CC learning algorithm. The approximation looks good, but how was it achieved? This is the
sort of question we address in the present paper.

4 Activations and Contributions

The CC algorithm constructs a net and estimates connection weights based on a sample of training
patterns. For the continuous zor problem, the sample of training patterns we used are 100 triplets of
the form, (21, 2, ¥), both z; and z; ranging from 0.1 to 1.0 in steps of 0.1, and y = —0.5 or 0.5. In
the example depicted in Figure 2, the CC algorithm constructed a net with four hidden units, starting
from a net with one bias, two input units and one output unit only.

For each input pattern, a unit in a trained net sends contributions to units it is connected to. A
contribution is defined as the product of the activation of the sending unit and the connection weight.
The receiving unit forms an activation by summing contributions from its sending units and applying
the sigmoid transformation. An activation is computed at each unit and for each input pattern in the
training sample.

Let a; denote a vector of activations at bias and input units, and let wy represent the vector of
connection strengths (weights) associated with the connections leading to h; (hidden unit 1). Then,
the activation for the input pattern at hy is obtained by

by = f(ajw1). (2)

Now h; as well as the bias and input units send contributions to he. Let aj = [a}|by], and let w,
represent the weights associated with connections leading to h,. The activation at hg is then obtained
by by = f(ah,ws). A similar process is repeated until an activation at the output unit is obtained, which
is the network prediction for the output. In the training phase, connection weights are determined so
that the network prediction closely approximates the output corresponding to the input pattern.

We thus obtain, for each input pattern, a set of activations at different units. The activations
(excluding those at the output unit) for all input patterns may be collected in a matrix, A. Activation
patterns obtained at each hidden unit constitute a column in A. Let D,, represent a diagonal matrix
of weights leading to the output unit. A matrix of contributions to the output is expressed as

Z = AD,,. 3)
Let 1 denote a vector of ones of appropriate size. Let
z=12721=AD,1 = Aw, (4)

where w = D,,1. The sigmoid transformed z gives the network predictions for y’s. Figure 3 depicts
each column of Z, z and y’s as functions of z;’s and z3’s. This helps us understand visually what the
contributions are like, what the summed contributions are like, and how they are turned into network
activations by the sigmoid transformation. Note that figures analogous to Figure 3 can be drawn for
activations at other units than the output unit.

A similar graphing technique can be used to gain further insights into how a function approximation
is done. We may eliminate some of the connections in the net, and see how the function approximation
deteriorates. The difference between the original (fully approximated) function and the deteriorated
function represents the effect of the eliminated connections. Elimination of some connections may
have extremely deteriorating effects in the network performance, but others may not. We see which




connections play important roles, and which not so important. Figure 4 depicts the approximated
function when the connection associated with the largest weight (input 1 to h4) was eliminated. The
effect was still relatively minor in this case.

Elimination of a set of connections may entail elimination of all the effects of a unit, only the direct
effects of the unit or the indirect effects of the unit. In this fashion we can isolate the total, direct, and
indirect effects of a unit in function approximations. Figure 5 depicts how the function approximation
changes when all but the direct effect of bias are eliminated, when the direct effects of the two input
units are recovered, when the direct effect of hy is recovered, and so on.

5 Reduced-Rank Approximation

PCA may be applied to the above Z, and reduced-rank approximations may be obtained. By taking
the row sums of the reduced-rank approximations to Z we obtain the reduced-rank function approxi-
mations depicted in Figure 6. The best reduced-rank approximation in terms of network performance
is the rank-4 approximation. There is little change in the approximated function beyond rank-4, but
the network performance actually deteriorates somewhat. Components beyond 4 are thus considered
noise components. Although the network structure (net topology and number of hidden units) typi-
cally varies in CC nets depending on initial weights (hereditary differences) for the same task and with
the same training sample, the results of reduced-rank approximations seem to have some generality
across different nets. The target function for the continuous xor problem was always approximated
well with four components, and they correspond with the four terms in the target function: bias, two
input units and the interaction between the two input units (i.e., 1 X z2).

6 Developmental Data

The foregoing discussion assumes that a net has already been constructed and trained. What about
function approximations earlier in the net’s history? As noted, the CC algorithm starts as a net with-
out hidden units. It tries to improve its performance within a given net topology by adjusting the
connection weights, but as soon as it senses that it can no longer improve its performance by merely
adjusting the weights, it changes the net topology by adding a hidden unit. It then readjusts the
connection weights. This process is repeated until a prescribed criterion is reached. The topological
changes in the net define distinct developmental stages in the training. We can derive Z, z and y’s
(analogous to those defined above) in each developmental stage. Figure 7 depicts function approxi-
mations in different stages, and their changes from one stage to the next. Figure 8 depicts the role
history of the bias unit over the developmental stages. Similar figures can be drawn for other units.

7 PCA, CPCA and PARAFAC

Plotting component scores obtained in PCA (Principal Component Analysis) of Z are often informative
for characterizing the nature of components (Shultz, Oshima-Takane & Takane, 1994). See Figure 9.
Also, Z may contain known components. For example, it contains linear effects of bias and two input
units. These known effects may be eliminated before PCA is applied to the residuals. This highlights
more interesting aspects of Z, such as interactions among input variables (Constrained PCA or CPCA;
Takane & Shibayama, 1991; see Figure 10). PARAFAC may also be interesting when there are more
than one output unit. The matrix of contributions, Z;, to output unit & is expressed as

Z; = AD, (5)

where the matrix of activations, A, is common to all k. PARAFAC (Harshman, 1972) decomposes
each Z; by
Z, = UDV/, (6)




where Dy, is diagonal and specific to k, but U and V are common to all k. The U (matrix of compo-
nent scores) in PARAFAC is not rotatable, so that more substantive meanings may be attached to the
components obtained by PARAFAC. The same technique can also be used for reduced-rank approx-
imations for developmental data. In this case, the subscript k refers to a developmental stage. The
diagonal elements of Dy indicate how much of various components enter into functions approximated
in different stages.

8 Environmental Bias

The approximated function obtained by a net typically varies with training sample. If a random
sample of possible training patterns are used, we obtain a less biased function approximation than
when the training sample represents a biased subset of possible patterns. For example, what happens
if all the training patterns used are far away from, or all close to the boundaries of the two classes of
input patterns to be discriminated in the continuous xor problem. It is likely that we obtain sharper
boundaries in the latter. Investigating the effects of environmental bias is important at least in two
respects. It is the long standing problem in statistics to find an optimal set of training patterns for
a particular task, and changes in environment are considered a major source of changes in behavior.
Dramatic effects of environmental bias were found in acquisition of personal pronouns (Oshima-Takane,
1988, 1990; Shultz et al., 1994) as well as in a number of other learning situations.

9 Generalizations

So far we have discussed function approximations only for the training patterns, whereas the functions
to be approximated often go beyond the domain of the training patterns used in the training. This is
called the generalization problem. Generalization includes both interpolation and extrapolation. In the
continuous xor problem, for example, what happens to the function approximation at z; = 0.38 and
z2 = 0.73 (interpolation) and what about at z; = —0.1 and z; = 1.2 (extrapolation) which was never
used in the training? We investigate the generalization capability of the CC nets using techniques
similar to the above.

10 Other Tasks

There are other interesting tasks than the continuous xor problem. Similar analyses can be performed
on simulation data obtained from these tasks. Some of the possible tasks are:

(a) The addition-multiplication problem. This problem has four input variables. Both z, and z; range
from 1 to 9, and z3 from 1 to 82. The z4 designates whether the operation applied to z; and z,
is addition (z4 = 0) or multiplication (x4 = 1). Let u denote the result of an operation applied
to 1 and z3 (u = 21 + 23 if z4 = 0, and v = z; X 23 if £4 = 1). The problem is to judge if u is
greater than, smaller than, or equal to zs.

(b) The two interlocking spirals problem.
(c) Discrimination of odd and even numbers.

(d) Pronoun learning. When a mother talks to her child, me refers to herself, and you to the child.
However, when the child talks to the mother, me refers to the child, and you to the mother. How
children learn this reversal has extensively been studied by Oshima-Takane and her collaborators
(Oshima-Takane, 1988, 1990; Shultz et al., 1994). The problem can be regarded as a type of
concept learning, where the concepts (or rules) to be learned are: use me when the speaker and
the referent agree, and use you when the listener and the referent agree.

These tasks differ in difficulty, but all have well-defined structures.
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Figure 1: The target function for the continuous xor problem.
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Figure 2: A net approximation to the target function.
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Figure 3: Contributions of units and network predictions for the output unit.

Figure 4: The deteriorated function.
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Figure 5: Function approximations with partial connections.
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Figure 6: Reduced-rank approximation.




stage 2

5 10

Figure 8: Role history of the bias unit.
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Figure 9: Plot of component scores from PCA.
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Figure 10: Plot of the first component from CPCA.




