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Abstract

Feed-forward neural network models may be viewed
as approximating nonlinear functions connecting in-
puts to outputs. We analyzed the mechanism of func-
tion approximations underlying learning of first and
second person pronouns by the cascade-correlation
(CC) network. The CC network dynamically grows
nets to approximate increasingly more complicated
functions. It starts as a net without hidden units,
but as soon as it “perceives” that it can no longer
improve its performance within the limit of current
net topology, it automatically recruits a new hidden
unit. This process is repeated until a satisfactory de-
gree of function approximation is achieved. Learning
of first and second person pronouns presents an in-
teresting problem in psychology. When the mother
talks to her child, me refers to herself, and you to the
child. However, when the child talks to the mother,
me refers to the child, and you to the mother. Learn-
ing of the shifting reference of these pronouns can be
regarded as a special kind of nonlinear function learn-
ing, where the function to be learned stipulates me if
the speaker and the referent agree, and you if the ad-
dressee and the referent agree. We investigated how
this function is approximated by the CC network us-
ing graphic techniques. The function approximation
typically depends on the sample of input-output pat-
terns used in training, which is called the problem of
environmental bias. We examined the effects of envi-
ronmental bias in two conditions: the addressee con-
dition in which the addressee was always the child,
and the nonaddressee condition in which the child
was neither the speaker nor the addressee. It was
found that exposures to nonaddressee patterns were
crucial for networks’ learning of the target function
underlying the correct use of pronouns, and that a
more variety of nonaddressee patterns facilitate the
learning.

1 Introduction

Feed-forward neural network (NN) models can be
viewed as approximating nonlinear functions that
connect inputs to outputs. Networks’ approxima-
tion capabilities have been investigated by such au-
thors as Barron (1993), Cybenko (1989), Hornik,
Stinchcombe & White (1989), and White (1990).
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We have been analyzing the functions learned by
a generative network algorithm, cascade-correlation
(Takane, Oshima-Takane & Shultz, 1994; Oshima-
Takane, Takane, & Shultz, 1995). In this paper we
analyze the mechanism of function approximations
underlying cascade-correlation’s learning of first and
second person pronouns.

2 Cascade-Correlation
Learning Networks

(CC)

NN models consist of a set of units, each performing
a simple operation. Units receive contributions from
other units, compute activations by summing the in-
coming contributions and applying prescribed (non-
linear) transformations to the summed contributions,
and send out their contributions according to the ac-
tivations and strengths of output connections. A net-
work of such units interconnected with each other can
produce interesting effects. It can capture almost any
kind of nonlinear effects of input variables and inter-
actions among them without explicitly so instructed
(e.g., Hornik, et al., 1989). Recent results by Barron
(1993) also indicated that networks’ approximation
is particularly attractive for functions with high di-
mensional inputs.

The CC learning network is capable of dynamically
growing nets (Fahlman & Lebiere, 1990). It starts as
a net without hidden units, and it adds hidden units
to improve its performance until a satisfactory de-
gree of performance is reached. Thus, no a priori net
topology has to be specified. Hidden units are added
one at a time in such a way that all pre-existing units
are connected to the new one. Input units are directly
connected to output units (cross connections) as well
as to all hidden units. The cross connections cap-
ture linear effects of input variables. Hidden units,
on the other hand, produce nonlinear and interac-
tion effects among the input variables, necessary for
specific tasks. When a new hidden unit is recruited,
the weights (representing connection strengths) asso-
ciated with input connections are determined so as to
maximize the correlation between residuals from net-
work predictions at the stage and projected outputs
from the recruited hidden unit, and are fixed through-
out the rest of the learning process. This avoids the
necessity of back-propagating error across different
levels of the network, and leads to faster and more
stable convergence. The weights associated with out-
put connections are, however, re-estimated after a




new hidden unit is recruited.

The CC architecture provides an interesting per-
spective on human development and learning (Shultz,
Schmidt, Buckingham & Mareschal, 1995). Adjusting
output weights assimilates new information into ex-
isting knowledge structures. Unassimilable informa-
tion requires accommodation by changing existing
knowledge structures. Changes in network topology
can define distinct developmental stages. Fixed input
weights imply that knowledge once learned cannot be
erased, but can only be overridden by adding more
hidden units.

3 The Learning of First and
Second Person Pronouns

Learning first and second pronouns presents a psy-
chologically interesting problem. When the mother
talks to the child, me refers to the mother and you
to the child. However, when the child talks to the
mother, me refers to the child, and you to the mother.
How children learn the shifting reference of these
pronouns has extensively been studied by Oshima-
Takane (1988, 1992) and her collaborators (Oshima-
Takane, Goodz, & Derevensky, in press). The prob-
lem can be regarded as a special type of concept learn-
ing, where the concepts (or rules) to be learned are:
Use me when the speaker and the referent agree, and
use you when the addressee and the referent agree.

To analyze the task more closely, let us look at Ta-
ble 1. There are three input variables: Speaker (S5),
Addressee (A) and Referent (R), and one output vari-
able (Y) indicating the pronoun to be used. Let us
assume that there are only three persons involved:
Child, Mother and Father. The three input variables
can take either one of these three values. There are
two constraints, however: (1) S and A can never
agree, and (2) either S and R should agree or A and R
should agree; other patterns require pronouns other
than me or you. These constraints limit the number
of meaningful combinations to 12, which are shown in
the table. It can be verified that the rules mentioned
in the previous paragraph indeed hold for all the 12
patterns listed in the table. For example, when the
father is talking to the child and refers to himself, he
uses me (pattern 1), while when the mother is taking
to the child and refers to the child, she uses you (pat-
tern 4), etc. The child has to learn the three relevant
input variables, and be able to identify which two of
the three variables take identical values in particular
situations.

The problem is equivalent to finding a function
that connects the three input variables to the output
variable. We assigned the values of 0, 2 and —2, re-
spectively, to Child, Mother and Father on the three
input variables, and the value of .5 to me and of —.5
to you on Y. The target function in this case is given

by
Y=(A-R)/(A-S)-05 (1)

It can easily be verified that when S = R, Y = .5, and
when A = R, Y = —.5. Figs. 1a & 1b present graphi-
cal displays of the target function. Fig. 1a depicts the

me surface, where the z-axis represents the addressee
dimension, and the y-axis both the speaker and the
referent which should agree. Fig. 1b depicts the you
surface, where the z-axis now represents both the ad-
dressee and the referent which should agree, and the
y-axis only the speaker. The z-axis in both figures
represents the output variable, Y, that is .5 for me
and —.5 for you. The surfaces were drawn for the val-
ues of S, A and R between —3.5 and 3.5 inclusive in
steps of .5. Only the grid points defined by combina-
tions —2, 0 and 2 on the z- and y-axes (excluding the
diagonal points where the S and A agree) are used
as training points. The remaining points are not used
in the training. The four addressee patterns, two in
each of the two figures, are on the lines labelled 0 on
the z-axis, and the four child-speaking patterns are
on the lines labelled 0 on the y-axis, orthogonal to
the addressee patterns. The four nonaddressee pat-
terns are on the lines 45 degrees apart from both the
addressee and the child-speaking patterns.

4 Simulation Studies

What is the purpose of simulation, if the target func-
tion is known as in the present case? To explain why,
we will have to look at Table 1 again. There are three
distinct groups of input patterns in the table. The
first group, called addressee patterns, consists of pat-
terns in which the addressee is always Child. The sec-
ond group, called nonaddressee patterns, consists of
patterns in which Child is neither the speaker nor the
addressee. The third group, called child-speaking pat-
terns, consists of patterns in which the speaker is al-
ways Child. Oshima-Takane (1988) hypothesized that
relevant information necessary for learning the cor-
rect use of the pronouns is not provided in the speech
addressed to the child, and that the child has to
pay attention to overheard speech to learn their cor-
rect use. Her hypotheses have been empirically veri-
fied (Oshima-Takane, 1988, 1992; Oshima-Takane, et
al., in press) in both experimental and observational
studies. However, for obvious ethical reasons children
cannot be tested under the pure addressee or non-
addressee condition. This is where simulation stud-
ies will be particularly important, because nets can
be trained under these pure conditions. According to
Oshima-Takane’s hypotheses, nets will learn an incor-
rect function when trained with only addressee pat-
terns, but arrive at a correct function when trained
with nonaddressee patterns. The child-speaking pat-
terns provide a test of whether the correct function
is learned or not.

Two simulation studies were conducted. In the first
study, nets were trained under the pure addressee
condition in Phase 1, followed by the addressee pat-
terns plus the child-speaking patterns in Phase 2. If
indeed the nets learn an incorrect function under the
pure addressee condition as hypothesized by Oshima-
Takane (1988), Phase 2 requires further training to
deal with the child-speaking patterns. In the second
simulation study, nets were trained under the pure
nonaddressee condition in Phase 1, followed by the
nonaddressee patterns plus the child-speaking pat-




terns. If indeed the pure nonaddressee patterns are
the necessary and sufficient condition, Phase 2 train-
ing is not necessary; training could stop immediately
without changing the function learned in Phase 1. We
can depict the functions arrived at in each phase of
each simulation study graphically, and see what sort
of functions (correct or incorrect) were produced un-
der what conditions.

5 Network Analyses

The top figures in Figs. 2a & 2b show the me and the
you surfaces constructed under pure addressee train-
ing. Both surfaces correctly discriminate the two me
addressee patterns from the two you addressee pat-
terns. However, they do not correctly discriminate the
four child-speaking patterns. As expected, Phase 2
training was necessary to deal with the child-speaking
patterns. The bottom portions of Figs. 2a & 2b
show the me and the you surfaces obtained during
Phase 2 training. They now correctly discriminate
the four child-speaking patterns (as well as the four
addressee patterns). However, the derived surfaces
are still quite disparate from the corresponding tar-
get surfaces. Figs. 3a & 3b display the surfaces ob-
tained from the second simulation study. Here, Phase
1 training was done under the pure nonaddressee con-
dition, followed by the nonaddressee patterns plus
the child-speaking patterns in Phase 2. The two top
surfaces correctly discriminate the four nonaddressee
patterns, but do not correctly discriminate the four
child-speaking patterns or the four addressee pat-
terns. The me surface was already correct in Phase 1,
and few changes were made in Phase 2. However, the
you surface required Phase 2 training to accommo-
date the child speaking patterns. The addressee pat-
terns were still incorrect for you even after Phase 2.

In order to further examine the hypothesis about
the importance of nonaddressee speech, we included
two additional persons in the simulation studies. The
two additional persons were coded as 1 and —1. With
five persons, the learning environment is substantially
richer than before; there are eight addressee patterns
and the same number of child-speaking patterns, but
there are 24 nonaddressee patterns. The richer en-
vironment may facilitate learning. Figs. 4a & 4b
show the two surfaces obtained under the 5-person
pure nonaddressee condition. They correctly discrim-
inate not only the nonaddressee patterns, but also
the child-speaking patterns and the addressee pat-
terns. Generalizations (function values at untrained
points) also seem quite good. The whole surfaces look
quite similar to the corresponding target surfaces.
Few changes occur in the approximated surfaces in
Phase 2, because they are already quite good in
Phase 1. The corresponding surfaces obtained under
the 5-person addressee condition (not shown here) ex-
hibited similar characteristics to those obtained un-
der the 3-person addressee condition.

The nonaddressee patterns are crucial for pronoun
learning, indicating importance of overheard speech.
However, three persons are not sufficient for immedi-
ate correct generalization. A richer environment in-

volving more people helps to ensure that the child
can produce pronoun correctly as soon as he starts
to use them. Developmental changes in function ap-
proximations underlying the pronoun learning have
been more closely investigated by Oshima-Takane, et
al. (1995).

6 References

Barron, A. (1993). Universal approximation bounds
for superpositions of a sigmoidal function. IEEE
Transactions on Information Theory, 39, 930-
945.

Cybenko, G. (1989). Approximation by superposi-
tions of a sigmoidal function. Mathematical Con-
trol Signals Systems, 2, 303-314.

Fahlman, S.E., & Lebiere, C. (1990). The cas-
cade correlation learning architecture. In D.S.
Touretzky (Ed.), Advances in neural informa-
tion processing systems 2 (pp. 524-532). San Ma-
teo: Morgan Kaufmann.

Hornik, M., Stinchcombe, M., & White, H. (1989).
Multilayer feed-forward networks are universal
approximators. Neural Networks, 2, 359-366.

Oshima-Takane, Y. (1988). Children learn from
speech not addressed to them: The case of per-
sonal pronouns. Journal of Child Language, 15,
94-108.

Oshima-Takane, Y. (1992). Analysis of pronomial
errors: A case study. Journal of Child Language,
19, 111-131.

Oshima-Takane, Y., Goodz, E., & Derevensky, J.L.
(in press). Birth order effects on early language
development: Do second born children learn
from overheard speech? Child Development.

Oshima-Takane, Y., Takane, Y., & Shultz, T.R.
(1995). The learning of personal pronouns: Net-
work models and analysis. Submitted to NIPS
96.

Shultz, T.R., Schmidt, W.C., Buckingham, D., &
Mareshal, D. (1995). Modelling cognitive devel-
opment with a generative connectionist algo-
rithm. In T. Simon & G. Halford (Eds.), Devel-
oping cognitive competence: New approaches to
process modelling (pp. 205-261). Hillsdale, NJ:
Lawrence Erlbaum.

Takane, Y., Oshima-Takane, Y., & Shultz, T.R.
(1994). Approximations of nonlinear functions
by feed-forward neural networks. In N. Ohsumi
(Ed.), Proceedings of the Annual Meeting of the
Japan Classification Society (pp. 26-33). Tokyo:
Japan Classification Society.

White, H. (1990). Connectionist nonparametric re-
gression: Multilayer feedforward networks can
learn arbitrary mappings. Neural Networks, 3,
535-549.




(a) Me

Phase |, Me
1 .
0
10
10
0
-10 -10 0

Phase I, Me

(b) You

Phase |, You .

O= O =

e |

10
0
~10 —10 °

Phase I, You

O= O =

- |

10
0
-10 -10 0
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Table 1: Training Patterns in the 3-Person Situation

Condition

Phase 1:

Pure
addressee
(AD)

Pure
nonaddressee

(NA)
Phase 2:
Child-speaking

patterns

(CS)

9)
10)
11)
12)

Speaker

Father
Father
Mother
Mother

Father
Father
Mother
Mother

Child
Child
Child
Child

Input Variables

Addressee

Child
Child
Child
Child

Mother
Mother
Father
Father

Father
Father
Mother
Mother

Referent

Father
Child
Mother
Child

Father
Mother
Mother
Father

Child
Father
Child
Mother

Output Variables

Pronoun

me
you
me

you

you
me
you

you
me
you




