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� Introduction

Feed�forward neural network �NN� models and statistical models have much in common �e�g�� Cheng � Titterington�
���	
 Ripley� ������ The former can be viewed as approximating nonlinear functions that connect inputs to outputs�
Many statistical techniques can also be viewed as approximating functions �often linear� connecting predictor vari�
ables to criterion variables� It is quite natural then that nonlinear extensions of linear statistical techniques exploit
various developments in NN models� In this paper we discuss one particular technique� nonlinear principal component
analysis �PCA� by NN models� and examine its properties focussing on its ability to recover underlying structures�
Previous work by the present author focussed on the mechanism of nonlinear function approximations by the Cascade
Correlation Learning Network �Fahlman � Lebiere� ����� for two speci
c tasks� the continuous xor problem �Takane�
et al�� ���	� and the learning of 
rst and second pronouns �Oshima�Takane� et al�� ������

� Nonlinear PCA by the ��Layer Neural Network Model

It is well known �e�g�� Baldi � Hornik� ����
 Diamantras � Kung� ���	� that a ��layer �including the input and
the output layers� neural network model with linear transfer functions at the hidden layer has the rank reducing
capability� where the speci
c rank is e�ected by the number of units at the hidden layer� This is a network version of
reduced�rank �RR� regression �Anderson� ������ which is also known as PCA of instrumental variables �Rao� ���	�
and redundancy analysis �van den Wollenberg� ������ The usual PCA follows when inputs and outputs coincide in RR
regression analysis �e�g�� ten Berge� ������ The network version of PCA is not interesting in itself� because there are
other more e�cient and precise algorithms available� It becomes interesting when the model is extended to nonlinear
PCA by including two additional hidden layers with nonlinear transfer functions� one between the input layer and
the middle layer and the other between the middle layer and the output layer� Fig� � shows the basic design of this
extended ��layer network model� The ��layer network model was proposed �apparently independently� by several
authors at about the same time �Irie � Kawato� ����
 Katayama � Ohyama� ����
 Kramer� ����
 Morishima� et
al�� ����
 Oja� ����
 Usui� et al�� ������ and has been applied to PCA of faces �DeMers � Cottrell� ����� and facial
expressions of emotions �Ueki� et al�� ���	��

The model is interesting because it allows joint multivariate nonlinear transformations of input variables� thereby
capturing interaction e�ects among them� Previous methods �e�g�� Kruskal � Shepard� ���	
 Young et al�� ����
 Gi
�
����� allow only variablewise monotonic transformations�

� Example �

In the 
rst example� we constructed a two�cycle helix by 
rst generating a vector of x ranging from � to 	� in steps
of ����� then de
ning a matrix of X � �sin�x�cos�x�x�� The helix is depicted in Fig� �� Matrix X was fed into the
network algorithm with � units each in the second and the fourth layers and � unit in the middle layer� The network
recovered the original helix �i�e�� X� almost perfectly at the output layer� Fig� � displays the plot of component
scores recovered at the middle layer against the original x used to generate the helix data� The recovered x is strictly
monotonic with the original x� That is� x is recoverable only up to a monotonic transformation� This makes sense�
because only a one�to�one function preserves nonlinear information� and the only continuous one�to�one function is
strictly monotonic�

� Example �

When a set of binary items form a perfect unidimensional scale in Guttman�s ���	�� sense� a group of subjects
responding to the items show such a characteristic pattern as shown in Table � �Iwatsubo� ������ For such data the
third kind of quanti
cation method �Q�� yields the constant 
rst eigenvector �order ��� the second eigenvector whose
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elements are linear �order �� with the item order� and the remaining eigenvectors which are successive polynomial
functions of the second eigenvector� More than one eigenvalue �excluding the unit eigenvalue associated with the
constant eigenvector� are nonzero despite the fact that the underlying mechanism that generates the data set is
known to be unidimensional� �This phenomenon is known as the Guttman e�ect��

Since all subsequent eigenvectors are one�to�many nonlinear transformations of the second eigenvector �and since
the constant vector is taken care of by bias parameters in network models�� a single component strictly monotonic
with the second eigenvector should be su�cient to acccount for all variations in the data set in Table �� The input
matrix for Q� was submitted to the network algorithm� with �� units in each of the second and the fourth layers
and a single unit in the middle layer� which almost perfectly recovered the original input matrix� Fig� 	 shows the
component obtained in the middle layer� which is strictly monotonic with the second eigenvector� One may argue
that all eigenvectors are also some nonlinear transformations of all other eigenvectors �except the constant vector��
so why should we always obtain a monotonic function of the second eigenvector as the component� Aren�t monotonic
functions of all other eigenvectors also legitimate for the component� No� because no other eigenvectors are one�to�one
with the second eigenvector� so that they fail to produce the second eigenvector component needed to reproduce the
input matrix�

It would be of interest to examine how the NN model responds to the kind of structures discussed by Okamoto
����	��

� Example �

Kruskal � Shepard ����	� used a set of �� cylinders in their demonstration of nonmetric PCA� They generated the
cylinders by systematically varying their altitude �a� and base area �b�� which were in turn generated by pairs of b�

and a� supplied by Coombs � Kao ������ according to a � exp�c�b� � ���� and b � exp�c�a� � ���� where c � �������
They then de
ned �� variables which are functions of a � b� and measured the cylinders on the �� variables� These
variables are listed in Table �� The derived data matrix was subjected to nonmetric PCA which almost perfectly
recovered pairs of a� and b� used to generate the data� The recovered a� and b� in turn reproduced monotonically
transformed data found by the method�

We generated our third example in a similar way to the above except that ��� pairs of a� and b� were obtained
by factorial combinations of each varying from ��� to �� in steps of ��� and that after the cylinders were measured
on the same �� variables� they were subjected to an arbitrary linear transformation to obtain a completely di�erent
set of �� variables� Two examples of the latter variables are shown in Fig� � �Small ��s indicates cylinders used in
Shepard � Kruskal��� which are no longer monotonic with a� or b�� Nonmetric PCA will certainly have a great deal
of di�culty for this kind of data� However� the ��layer NN model with �� units in each of the second and the fourth
layers and two units in the middle layer could almost perfectly recover the input data� �Little changes were observed
when the number of units in the second and the fourth layers was reduced to �� each�� Fig� � depicts the component
scores recovered at the middle layer �shown by �� plotted against the original a� and b� �shown by ��� Again� the
recovered components are monotonic functions of the original a� and b�� �and are in fact more like a and b derived
from a� and b���
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VARIABLE FORMULA
� ALTITUDE a
� BASE AREA b
� CIRCUMFERENCE ��

p
�� b���

	 SIDE AREA ��
p
�� ab���

� VOLUME ab
� MOMENT OF INERTIA ������ ab�

� SLENDERNESS RATIO ���
p
��� ab����

� DIAGONAL�BASE ANGLE TAN����
p
���� ab�����

� DIAGONAL�SIDE ANGLE COT����
p
���� ab�����

�� ELECTRICAL RESISTANCE ab��

�� CONDUCTANCE a��b
�� TORSIONAL DEFORMABILITY ���� ab��

Table �
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