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LATENT CLASS DEDICOM
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1. Abstract

A probabilistic DEDICOM model was proposed for mobility tables. The model attempts to explain observed
transition probabilities by a latent mobility table and a set of transition probabilities from latent classes to observed
classes. The model captures asymmetry in observed mobility tables by asymmetric latent mobility tables. It may
be viewed as a special case of both the latent class model and DEDICOM with special constraints. A maximum
penalized likelihood (MPL) method was developed for parameter estimation. The EM algorithm was adapted for the
MPL estimation. A detailed example was given to illustrate the proposed method.

2. The Data

' We develop a probabilistic model for mobility tables. Let us denote such a table by F = {f;}, ij=l,...,n, where
f;, element in the i® row and the j® column of F, represents the observed frequency of moves from origin i to
destination j. Although the model was originally designed for mobility tables, it applies equally well to any square
contingency tables where there is one-to-one correspondence between rows and columns. Examples of such tables
are: 1) Brand royalty data. 2) Journal citation data (Coombs, Dawes & Tversky, 1970, p.73). 3) Amount of trade
between nations. 4) Discrete panel data at two occasions. 5) Agreement data or association data (c.g., between two
pathologists diagnosing a group of patients using the same set of disease categories, between actual and ideal numbers
of children, between husbands’ and wives’ occupations in two-earner families, etc.). 6) Stimulus identification data.
7) Left and right eyesight.

3. The Model

We model P = {p;}, where p; is the transition probability from origin i to destination j. Let a, denote the
probability of observed class i (origin i or destination i) given latent class s, and let r,, the probability of transition
from latent class s to t (a latent mobility table). We postulate

1) py=ZEraua, + 84
s,t

where s,t=1,...,S, §;is a Kronecker delta, and g, the probability of stayer (the probability of observation unitsvstaying
in observed class i). We require

2) }E a,=1fors=1,.5,
3) Zr,+ Zq,=1,
5,t i

and that all a, r,, and q; are between 0 and 1 inclusive. It follows that Z; ;p; = 1. The model attempts to explain
observed transition probabilities (p;) by a latent mobility table (r,)), and a set of conditional transition probabilities
(a,,) from latent classes to observed classes. The model captures asymmetry in mobility tables by asymmetric latent
mobility tables. The mode} also captures excess probabilitics often observed in the diagonal entries of observed
mobility tables by postulating stayer probabilities (q). This is because diagonal elements of F often have some
special status not shared by off-diagonal elements, and some special treatment is necessary (Clogg, 1981). For
example, in the trade data between nations diagonal entries represent amounts of domestic trade, which may not be
directly comparable with international trade. This provision is similar to the notion of uniqueness in factor analysis,
“and is also useful in dealing with missing diagonal entries.

4. Related Models

The above model may be viewed as a special case of both the latent class model (LCM; e.g., Hagenaars, 1990)
and DEDICOM (e.g., Harshman, Green, Wind & Lundy, 1982) with special constraints. Clogg (1981) proposed a
latent class model for mobility tables that states

4 Py = Zrauby + g
u




This is similar to (1) except that two sets of conditional transition probabilities from latent classes to observed classes,
one on the origin side (a,,) and the other on the destination side (by,), are differentiated in (4). While they are almost
always very similar, equating them in (4), as in (1), will destroy model’s ability to account for asymmetry in F
(Grover & Srinivasan, 1987). Hagenaars (1990) proposed a latent class model where latent classes are factorially
structured. Suppose there are two factors, origin and destination, that distinguish latent classes. Then, subscript u
in (4) are replaced by two indices, s and t. Model (4) then becomes

- @) py= sz‘;:nalktbiw
. >

If we further assume s,t=1, ..., S (The two factors distinguishing the latent classes have the same number of levels),
and a, = 8, for all t, and ay, = by, for all s, we obtain model (1). (Note that in model (1) asymmetry in F is
accounted for by asymmetry in r, (i.e., r, #r,). Model (1) can thus be regarded as a special case of LCM with
special constraints.

Let A = {a), R = {r,} and D = diag{q;} where diag{q;} is a diagonal matrix with diagonal elements equal to
q;- Define

A*=[A,L], and R* = R,0
0,D,

where 0 is a S by n matrix of zeroes. Then
5) P = A*R*A*' = ARA’ + D,

which is a special case of DEDICOM (Harshman, et al., 1982) with special 0-1 constraints. Concise descriptions
of other models for mobility tables can be found in Hout (1983). Also, see Duncan (1979) and Sato & Sato (1994).

5. Identifiability of the Model

The ARA’ part of (5) is usually not unique (Clogg, 1981; de Lecuw, van der Heijden & Verboon, 1990), since
ARA’ = ATT'R(T")'T’A’ = BCB' for any square nonsingular matrix T, where B =AT and C=T'R(T")". However.
B and C have to satisfy the same constraints as A and R, which limits the range of admissible T. We have

6) 1g=1'B= 1AT=1/T,
and
(M 1=1Clg= IT'R(TY 1,

Let T = cU. Then, from (7), it must be that
8) ¢ = (1URU’ )2
From (6), 15'(cU)" = 1gor c1g'U = 1" = 1T. The U must be such that 15'U = el’ for an arbitrary e (£0). From
(8), ¢ = 1el, so that T = Ulel or T = lelU"". The B and C should also satisfy 0 S B <1 and 0 £ C £ 1 (which mean
all the elements of B and C must be between 0 and 1 inclusive), which further restricts the range of admissible T.
However, these restrictions are usually not sufficient to uniquely determine T. That is, T other than I is stll
possible.
6. Parameter Estimation

We use the maximum penalized likelihood (MPL) method for parameter estimation to obtain unique parameter

estimates. The MPL method also has the added benefit of avoiding boundary estimates (i.e., estimates of ay,, r, and
q; strictly equal to 0 or 1). Specifically, we maximize i

9) InL =X flnp,- X -1 -A(Zr, +2q-1)+p(Z lna, +ZInr,+Zlngqy),
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with respect to ay, 1, and g, where p; is given by (1), A, (s=1,..S) and A are Lagrangean muitipliers to impose




b4t restrictions (2) and (3), and pis a small number representing the penalty parameter. How the value of rho may be
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chosen will be discussed in section 8.

7. EM Algorithm for MPL Estimation _
The EM algorithm for maximum likelihood estimation in LCM (Goodman, 1979) can readily be extended to the

;: MPL method. The EM algorithm consists of the following two steps:

E-Step. Evaluate
(10) f,* = f,p,y where p; = (r,2,3, + 8,9)/p;, and
(11  £;* = £y where py; = q/p;;.

M-Step. Update

(12) ay =f.* ifi,", where f, * =j2:t (fi* + £,5) + p,
: E)

S (13) 1= f*N* where f,* = X f.* +p, and N* =s}: tf,l* = N + (S? + n) where N is the sample size

je,N=Xf.= Z I f *+Tf*),and
(e, N 12:'.1" 1,3,8,8™ '), an

(14) q, = (f; + PIN%.

The two steps are alternated until convergence is reached. The above algorithm is similar to the iterative
proportional fitting algorithm for log linear contingency table analyses, and has several advantages. Constraints (2)
and (3) as well as 0 < a,, 1, and q; S 1 are automatically satisfied. Parts of A* and R* that are fixed to 0 or 1
remain fixed. The algorithm is also monotonically convergent. On the other hand, the convergence may be very
slow. If necessary, we may use one of various acceleration techniques that have been developed for the EM
algorithm (e.g., Jamshidian & Jennrich, 1993). It may also be helpful to use the score method in the last few
iterations. Techniques to obtain the observed information matrix have been proposed by Lang (1992) and Louis
(1982). The score method has the added benefit of providing asymptotic variance and covariance estimates of
estimated parameters. ' ' :

Asymptotic properties of the MPL estimators have been discussed by Cox & O’Sullivan (1990) and Gu & Qiu

- (1993). Most of the asymptotic properties of ML estimators also hold for the MPL estimators.

" 8. Choosing the Value of

Various techniques have been developed for choosing an optimal value of the penalty parameter. They include
generalized cross validation (Craven & Wahba, 1979), methods based on marginalization (BAIC; Ishiguro &
Sakamoto, 1983; Sakamoto, 1991; Shigemasu & Takase, 1995), and those on RIC (Regularlized Information
Criterion; Shibata, 1989), counting the effective number of parameters by tr((H + Z)'H), where H is the hessian of
the log likelihood part, and Z that of the penalty part, of the penalized log likelihood function. We use a method

. based on a bootstrap estimate of RIC. Shibata (1995) discusses five asymptotically equivalent ways of obtaining

bootstrap estimates of RIC. We use the computationally least involving one originally proposed by Cavanaugh &

Shumway (1994).

. Let F* be the kth bootstrap sample (k=1,...,K). Let the value of the penalized log likelihood be denoted by In
Ly (Fe*). Then, the bootstrap estimate of RIC by the Cavanaugh-Shumway formula is given by

(15) RIC =2In Ly(F) - 4(‘% In L, (F,*)/K).

We cannot use the closed-form formula for RIC (Shibata, 1989), because it requires the penalty terms to be indexed
the same way as the likelihood terms, which severely limits the applicability of the closed-form calculation of RIC.

9. An Example of Application

We use intergenerational social mobility data for demonstration purposes. The data are a 8x8 joint frequency
table of father’s social status and son’s status in Britain in 1959. The eight status categories are: 1. professional &




high administrative; 2. managerial & executive; 3. inspectional, supervisory & other nonmanual (high grade); 4. the
same as in 3, but of low grade; 5. routine grades of nonmanual; 6. skilled manual; 7. semiskilled manual; 8. unskilled
manual. The data were taken from Clogg (1981) who presented the data with corrective remarks on the data. Many
previous authors analyzed the same data set (e.g., Duncan, 1979; Miller, 1960).

Table 1 gives bootstrap estimates of RIC as a function of and dimensionality. The sample size of the bootstrap
was 100. The value of was varied from .001 to 1 with the increment factor of 10. The actual number of latent
classes is the dimensionality squared due to the factorial nature of latent classes in the present model. The minimum
RIC solution is obtained when p = .01 and S = 4. The RIC value of 519.2 compares favorably with the AIC value
of the independence model (1395.0 with 14 parameters), that of the quasi-independence model (independence except
diagonals; 903.7 with 22 parameters, and that of the saturated model (538.9 with 63 parameters). The minimum RIC
solution is given in Table 2. This solution involves 16 latent classes which are organized into a 4x4 factorial
structure, We call four levels of the first factor origin latent classes, and those of the second factor destination latent
classes. Origin latent classes are arranged in descending order of their marginal probabilities (i.e., r,. = ).‘.r,.)
Numbers in parentheses are standard errors of the corresponding estimates obtained by the bootstrap method. ©

Latent class I (both origin and destination) represents the low end of social status, while III the high end. Classes
I & IV represent middle strata in the spectrum with class II slightly higher than class IV. Transition probabilities
between different latent classes are relatively small with relatively large probabilities concentrated on diagonals.
Nonetheless we see some asymmetry in the table of r,. Latent classes III and II (two representing relatively high
social status) tend to diminish, while I and IV tend to grow, as indicated by the comparison between row and column
marginals of r,, (i.e., r, and r,). The probability of II -> I is much larger than the other way round. Also, the
probabilities of I, I & III -> IV are larger than the other way round. It looks like IV (and to a lesser extent, I) are
attractors. (The stayer probability tends to be large for observed classes 1, 6, 7 and 8 (all representing high or low
social status, none in the middle). However, one should note that g; as well as a,, are confounded with the size of
observed class i.

To characterize the latent classes it may be better to use the conditional probabilities of latent classes given
observed classes (a; = ayf,/p;., and ay = a,r /p;, where p;. and p; are marginal probabilities of origin observed class
i and destination observed class j, respectively.) and the conditional probabilities of stayer given observed classes
(a/p;- and q/py). These quantities as well as the conditional probabilities of destination latent classes given origin
latent classes (r,,) and the conditional probabilities of origin latent classes given destination latent classes (r,,) are
given in Tables 3 & 4.

Interpretations of the latent classes remain intact. However, now we can clearly see that the conditional
probability of stayer in observed class i is extremely high compared to that in other observed classes. The r,, is called
outflow probability describing the distribution of destination latent classes for given origin latent classes, while r,,
inflow probability describing the distribution of origin latent classes for given destination latent classes. They both
indicate the general patterns of asymmetry we observed inthe table of r,. Quantities derived in Tables 3 & 4 as well
as those in Table 2 can be used to derive outflow and inflow probabilities between observed origin and destination
classes, py = a,r,a,, and p, = a,r,a,, respectively.
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Table 1. MPL Bootstrap Estimates of RIC and the Bias
P = .001 01 1 1
Dimensionality

3 536.1 539.2 572.7 823.0
(59.6) (59.1) (62.2) (59.9)

4 520.2 519.2* 558.8 900.8
8L1) (75.8) (76.7) (65.0)

5 526.7 525.1 580.5 1033.5
(97.3) (89.6) (92.5) (73.5)

*Minimum RIC solution
The correction factor (bias) to the MPL is given in' parentheses.




Table 2. MPL Estimates (a,, & r,.) in the 4x4 Latent Classes Solution.

Conditional Probabilities of Occupational Categories Given Latent Classes

Occupational Latent Classes Probability
Catagory I il i v " of Stayer (q)
1 .000 .005 182 .000 T o1t
(.000) (.010) (-067) (.000) ‘ (.003)
2 .000 003 290 080 - .003
. (.003) (.003) (063) (.045) (.002)
3 .014 .153 293 .194 ’ .002
(.012) (.034)- (.044) (.086) . (.002)
4 .065 294 104 195 .007
(.024) (.049) (.048) (.087) (.005)
5 024 064 026 .266 -.003
(.014) (.028) (.021) (.072) (.002)
6 436 477 .150 047 020
(.038) (.072) (.056) (.086) C(014)
7 253 .001 .000 .186 011
(.037) (.008) (.004) (.093) (.005)
8 207 ) .003 .000 033 - 012
(.023) (.019) (.003) (.039) - (.004)

Joint Probabilities of Origin and Destination Latent Classes

Origin
Latent Destination Latent Class ]
Class I )18 m v Total (r,)
I 411 001 .000 051 463
(.055) (.015) (.000) (.025)
14 .083 .169 on 313 . .313
(.033) 041 (.009) (.025)
I .006 005 .088 027 126
(.005) (.004) .oz1) (.012)
v .003 .002 .000 .023 028
(.011) (.016) (.001) (.037)
Total (r) 502 177 .099 153




Table 3. Conditional Probabilities (a,; & 1,) Derived from the Estimates in Table (2)

Conditional Probabilities of Origin Latent Classes Given Father’s Occupational Categories

Father’s Conditional
Occupational Origin Latent Classes
Probability
Catagory I i I v of Stayer
1 .000 .047 .637 .000 315 -
2 .006 .025 .843 .051 .075
3 .066 484 375 054 021
4 .205 622 .089 036 047
5 .253 444 073 .164 .066
6 524 .387 034 003 .051
7 875 002 .000 .038 .085
8 871 009 .000 .008 12

Conditional Probabilities of Destination Latent Classes Given Origina Latent Classes

Origin

Latent Destination Latent Class

Class I )1} m v
I 886 .003 .000 111
14 264 539 .034 .163

jug .050 .037 .696 217
v .094 .060 .003 843

J




Table 4. Conditional Probabilities (az &) Derived from the Estimates in Table (2)

Conditional Probabilities of Origin Latent Classes Given Son’s Occupational Categories

Son’s
Occupational Destination Latent Classes " Probability
Catagory I 1§ 11 v of Stayer
1 .000 032 592 .001 375
2 007 014 635 273 072
3 074 285 305 "314 022
4 247 394 078 226 .053
5 176 .161 .036 .584 042
6 .644 248 .030 .021 .058
7 760 .001 .000 .170 068
8 853 005 .000 041 .101
Conditional Probabilities of Destination Latent Classes Given Origina Latent Classes
Origin
Latent Destination Latent Class
Class I II 111 v
I 818 .008 .000 336
I .165 956 .108 333
i1l 012 027 - .891 179
v .005 009 .001 152
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