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I started writing this note by saying “I do not remember exactly when and
where I first met Professor Caussinus, but it could very well be in Cambridge in
1985.” As I investigate my chronological history more systematically, I find my
conjecture was indeed correct. The first European Meeting of the Psychometric
Society was held in Queen’s College at Cambridge University in 1985, and there
was a satellite meeting on Multidimensional Data Analysis in Pembroke College
just prior to the Psychometric Society Meeting. There Professor Caussinus and
I each gave an invited talk on probabilistic and statistical aspects of multidi-
mensional data analysis. The topic of his talk at the satellite meeting was, as
I recall, principal component analysis which had little to do with either quasi-
symmetry or quasi-independence, while my talk was on comparison of models
for stimulus identification data [9], and one of the models compared was closely
related to the model of quasi-symmetry for square contingency tables (more on
this shortly). T met Professor Caussinus at least one more time. A few years
later he visited McGill to give a colloquium talk. I do not remember what he
talked about then, but I remember clearly the fine moment we shared over lunch
at the Faculty Club.

In a stimulus identification (or as sometimes called, stimulus recognition)
experiment, one stimulus is presented at a time from a set of n stimuli. The
subject i1s asked to identify which one of the n possible stimuli is actually pre-
sented. Stimuli are usually presented under degraded conditions to deliberately
create confusions among the stimuli. The number of times stimulus ¢ is identi-
fied (or misidentified) as stimulus j is counted out of N; repeated presentations
of stimulus 7. It is a very popular experimental paradigm used in psychology for
investigating the structure of similarities between stimuli (see references in [9,
10]). A variety of models have been proposed for this kind of data, and one of
them due to Luce [5], called the biased choice model, posits that the conditional
probability of response j when stimulus ¢ is presented (p;};) is proportional to
the similarity between stimuli ¢ and j (s;;) and the response bias for stimulus
J (wj). That is, pj|; oc w;s;;, or pj|; = c;wjsij, Where ¢; = Dby wrsie]) L.
It is assumed that s;; = s;; < s = 5535, = 1 for 4,5 = 1,...,n, and that
Z?Il w; = 1. It can be easily verified that this model satisfies the cycle condi-
tion (p;jpjePri = PjiPr;Pik), characteristic of the quasi-symmetry model. The
biased choice model is thus a special case of the quasi-symmetry model. 1



learned this from Smith [7] and Townsend and Landon [11], when T was work-
ing on [9]. Both articles refer to Professor Caussinus’ original article [2] and
Bishop, Fienberg, and Holland’s [1] book on log-linear models for contingency
tables. I suppose that the latter has had enormous impact on disseminating the
idea of quasi-symmetry.

A number of models have been proposed in psychometrics which specialize
Luce’s biased choice model. Typically, they further impose restrictions on s;;.
For example, s;; = exp(—d;;) (Shepard [6]; Euclidean distance choice model)
or si; = exp(—d?j) (Squared Euclidean distance choice model), where d;; is the
distance between stimuli ¢ and j represented as points in a multidimensional
Euclidean space. This is one point of contact between multidimensional scaling
(MDS) and the analysis of square contingeny tables. MDS is a popular tech-
nique developed in psychometrics for analysis of proximity data in general by a
distance model. Keren and Baggen’s [3] model for stimulus identification data
follows from assuming a special kind of distance function for d;; in the exponent
of s;;. Shepard’s [7] model (see above) can also be derived from Krumhansl’s
[4] distance-density model which postulates ciij = d;j +a; + b;, where a; and b;
indicate the stimulus density near stimuli ¢ and j, respectively, and by assuming
Pjli o exp(—ciij) with no explicit bias parameter. It can be readily seen that
exp(—a;) falls out (being cancelled out in the numerator and the denominator),
and that exp(—b;) comes out as a kind of bias parameter (having a similar role
to w;).

All these are special cases of the quasi-symmetry model as far as the sym-
metry of s;; is maintained. A few years later I used a similar idea to develop
a model [8] for general contingency tables (usually rectangular). In this model,
row and column categories of contingency tables are represented as (separate)
points in a joint MD FEuclidean space in such a way that the probability of
column j in a given row (say, ¢) is obtained by a decreasing function of the
squared FEuclidean distance between row ¢ and column j. One obvious can-
didate for this monotonically decreasing function is the negative exponential
function, exp(—d?j). The form of the model is essentially the same as the one
for square contingency tables (Squared Euclidean distance choice model), only
what ¢ and j refer to are different.
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