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Summary: In many disciplines of social sciences, data are often hierarchi-
cally structured. Academic performance may be measured of students who
are nested in classes which are in turn nested within schools. Multi-level
analysis based on the hierarchical linear model (HLM) has been effectively
used to capture the hierarchical nature of such data. Most of the existing
studies that employ HLM, however, use only a few predictor variables at all
levels, because interpretation of parameters in HLM will become increasingly
more difficult as the number of parameters increases. To alleviate the diffi-
culty, we propose a method of reducing the dimensionality of the parameter
space in HLM in a manner similar to reduced-rank regression models. We
describe the two-level HLM, present a parameter estimation procedure and
suggest where the rank-reduction may be applied. An example is given to
illustrate the proposed method.

1. Introduction
In many fields of social sciences, data collected often have hierarchical

structures. For example, academic performance may be measured of students
who are nested in classes which, in turn, are nested within schools. Measure-
ments may be repeatedly taken of an attribute from individuals grouped
by the region of their domicile, and so on. Multi-level analysis based on
hierarchical linear models (HLM) has been effectively used to capture the
hierarchical nature of such data (Bock, 1989; Bryk & Raudenbush, 1992;
Goldstein, 1987; Hox, 1995).

Most of the existing studies that employ HLM, however, use only a few
(typically, one or two) predictor variables at all levels. This is primarily
because interpretation of parameters in HLM becomes increasingly more dif-
ficult with the increasing number of parameters in the model. Numerical
difficulties often encountered in fitting HLM with a moderate number of
predictor variables may be another contributing factor to this practice. To
alleviate the difficulty, we propose a method of reducing the dimensionality
of the parameter space in HLM. This is done in a manner similar to reduced-
rank regression models (Anderson, 1951) or equivalently redundancy analysis
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(Van den Wollenberg, 1977). The dimension reduction improves the inter-
pretability of model parameters, particularly when there are a large number
of parameters in the model.

2. The method
2.1 The model

We consider a two-level hierarchical linear model (HLM). Extensions to
higher-level HLM are straightforward. Throughout this paper, we assume a
fixed-effect model. While this is a bit unconventional, it may be justified on
the ground that the dimension reduction is most pertinent in the exploratory
mode of data analysis.

Suppose there are Nj (j = 1, . . . , J) subjects (the first-level units) nested
within J groups (the second-level units). Let yj denote an Nj-component
vector of observations on the dependent variable for the j-th group, and let
Xj denote an Nj by P matrix of the P first-level predictor variables for
the j-th group. Although this is not an absolute requirement, we assume,
for simplicity, that the number of the first-level predictor variables, P , is
the same across all J groups. Let wj denote an M -component vector of
the second-level predictor variables for the j-th group. Then, the first-level
model of the two-level HLM can be written, for a specific group j, as

yj = 1Nj
b0j + Xjb1j + ej , (1)

where 1Nj
is an Nj-component vector of ones, b0j is the intercept parameter,

b1j is the vector of slope parameters, and ej is the vector of disturbance
terms. Subscripts 0 and 1 are used to distinguish between the intercept and
the slope parameters for which separate second-level models are postulated:

b0j = c00 + c′01wj + u0j (or b0j = c00 + w′
jc01 + u0j), (2)

and

b1j = c10 + C′
11wj + u1j (or b1j = c10 + (IP ⊗ w′

j)c11 + u1j), (3)

where c’s are the second-level regression parameters, u’s are the second-level
disturbance terms, IP is the identity matrix of order P , c11 = vec(C′

11), and
⊗ indicates a Kronecker product. Substituting (2) and (3) for b0j and b1j in
(1) leads to

yj = 1Nj
(c00 + w′

jc01 + u0j) + Xj(c10 + (Ip ⊗ w′
j)c11 + u1j) + ej . (4)

Let y, 1N , u0, u1, and e be super-vectors of yj , 1Nj
, u0j , u1j , and ej

(j = 1, . . . , J), respectively. Let G and DX denote block diagonal matrices
with 1Nj

and Xj as the j-th diagonal blocks, and let

W′
0 = (w1, . . . ,wJ ), (5)



and
W′

1 = (IP ⊗ w1, . . . , IP ⊗ wJ). (6)

Then, the model for all observations for all J groups can be written as

y = 1Nc00 + GW0c01 + Gu0 + Xc10 + DXW1c11 + DXu1 + e, (7)

where 1N = G1J , and X = DX(1J ⊗ IP ).
The above model is not identified. To remove redundancies in the model

we successively make the seven terms in the model mutually orthogonal. The
model then decomposes the data vector y into seven mutually orthogonal
components with each component having specific interpretation. The first
term in (7) is the intercept term. The next two terms represent between-
groups effects, of which the second term pertains to the portions of the
between-groups effects that can be accounted for by the second-level pre-
dictor variables (wj ’s), and the third term to the portions left unaccounted
for by the second-level predictor variables. The remaining four terms rep-
resent within-groups effects, the first one of which (the fourth term in (7))
pertains to the main effects of the first-level predictor variables (X), the next
(the fifth term) to the within-groups interactions between the first- and the
second-level predictor variables, and the sixth term represents the portions
of the interaction effects between groups and the second-level predictor vari-
ables left unaccounted for by the fourth and the fifth terms. The last term
represents the within-groups effects that cannot be explained by any system-
atic effects in the model.

2.2 Estimation
Since the model (7) is linear in parameters assumed to be of the fixed-

effects type, least squares (LS) estimates of parameters (c’s and u’s) can be
obtained in a straightforward manner. In what follows, SSi denotes the sum
of squares (SS) accounted for by the ith term in (7). We put a hat on a
symbol to indicate a least squares estimate. Below, where the regular inverse
cannot be taken, it may be replaced by the Moore-Penrose inverse.

We fit one term at a time sequentially. The remaining terms are orthog-
onalized to all previously fitted terms. Let ȳ = 1′

Ny/N , the grand mean.
Then,

ĉ00 = ȳ. (8)

SS1 = Nȳ2. We define SSt = y′y − SS1 (the total SS). To make the second
term orthogonal to the first, we redefine the second term as GW̃0c01, where
W̃0 denote the columnwise centered W0. For later use, we also define the
vector of deviation scores from the grand mean, y∗ = y − 1N ȳ. This vector
represents the portions of y left unaccounted for by the grand mean. Then,

ĉ01 = (W̃
′
0G

′GW̃0)−1W̃
′
0G

′y∗. (9)



SS2 is obtained by SS2 = y∗′GW̃0ĉ01. Define ȳ∗ = (G′G)−1G′y∗. This is
the vector of group means in the form of deviations from the grand mean.
Then,

û0 = ȳ∗ − W̃0ĉ01. (10)

SS3 is obtained by SS3 = y∗′G(G′G)−1G′y∗ − SS2. We define SSb = SS2 +
SS3 (the between-groups SS). Let y(w) = y∗ − Gȳ∗. which is the vector of
deviation scores from the group means and represents the portions of y∗ (or
equivalently, the portions of y) left unaccounted for by G. We columnwise
center Xj within each group and denote it by X∗

j . We then form a super-
matrix of X∗

j ’s by putting them columnwise and denote it by X∗. Then,

ĉ10 = (X∗′
X∗)−1X∗′

y(w). (11)

SS4 is given by SS4 = y(w)′X∗ĉ10. Let DX∗ denote a block diagonal matrix
with X∗

j ’s as diagonal blocks. To make the fifth term orthogonal to all the
previous terms, we redefine it as DX∗W̃1c11, where W̃1 = W1 − (1J ⊗
IP )(X∗′X∗)−1X∗′DX∗W1. Then,

ĉ11 = (W̃
′
1D

′
X∗DX∗W̃1)−1W̃

′
1D

′
X∗y(w). (12)

SS5 is then given by SS5 = y(w)′DX∗W̃1ĉ11. Let y(w)∗ = (D′
X∗DX∗)−1 ×

D′
X∗y(w). Then,

û1 = y(w)∗ − (1J ⊗ IP )ĉ10 − W̃1ĉ11. (13)

SS6 is obtained by y(w)′DX∗ û1. Finally,

ê = y(w) − DX∗ û1. (14)

This vector represents what’s left unaccounted for by all the systematic ef-
fects in the model. Let SSw = y(w)′y(w) (the within-groups SS). Then,
SS7 = SSw − (SS4 + SS5 + SS6), and SSt = SSb + SSw.

2.3 Dimension reduction
There are several kinds of c parameters. They are c00 (1 × 1), c01 (M ×

1), c10 (P × 1), and c11 (PM × 1). None of them depend on j. The c11

represents regression coefficients for the interactions between the first- and
the second-level predictor variables. Its estimate may be arranged in the form
of C′

11 (P × M) and may be subjected to rank reduction, which is done by
generalized singular value decomposition (GSVD) of Ĉ

′
11 (see, for example,

Takane & Shibayama, 1991). That is,

Ĉ
′
11 = TDV′, (15)

where T and V satisfy T′MT = I and V′NV = I and D is diagonal and
positive-definite (pd). Matrices M and N are called metric matrices, assumed



pd. Appropriate metric matrices for GSVD of Ĉ
′
11 are M = X∗′X∗ on the

row side and N = W̃
′
0W̃0 on the column side. The GSVD of Ĉ

′
11 with

metrics M and N can be obtained by ordinary SVD of R′
M Ĉ

′
11RN , where

RM and RN are arbitrary square root factors of M and N, respectively.
Let R′

M Ĉ
′
11RN = T∗D∗V∗′ be the ordinary SVD of R′

M Ĉ
′
11RN . Then,

the desired GSVD is obtained by T = (R′
M )−1T∗, V = (R′

N )−1V∗, and
D = D∗. Matrix Ĉ

′
11 may be appended by ĉ00, ĉ01, and ĉ10 to form a

super-matrix

Ĉ =
[

ĉ00 ĉ′01
ĉ10 Ĉ

′
11

]
. (16)

This augmented matrix may be subjected to GSVD with metrics M =
[1N ,X∗]′[1N ,X∗] and N = [1J ,W̃0]′[1J ,W̃0]. According to our experience,
however, this procedure tends to facilitate the mean tendency to dominate
the solution.

The u parameters are group specific. Still, one my define a P by J matrix
(assuming that P remains the same across the J groups),

Û1 = [(X∗′
1 X∗

1/N1)1/2u1, . . . , (X∗′
J X∗

J/NJ )1/2uJ ],

which may be subjected to a rank reduction by ordinary SVD. Again, û′
0

may be appended to Û1 to form a super-matrix, which may be subject to a
joint rank reduction.

When Nj is constant across all J groups (say, Nj = n for all j), ê may
also be rearranged into a J by n matrix Ê, which may be subjected to a rank
reduction by SVD. This may be considered a kind of error analysis, which
often helps detect which crucial factors are missing in the fitted model.

3. An illustrative example
For illustration we use part of the data from the British Social Atti-

tudes Panel Survey, 1983-1986 (Wiggins, Ashworth, O’Muircheartaigh, &
Galbraith, 1990) on attitudes toward abortion. In a panel survey, subjects
are asked to respond to the same set of questions on several occasions. This
allows the stability of responses over time to be assessed, while allowing any
changes in the responses to be linked to the individual characteristics of sub-
jects.

Two hundred sixty four subjects were each interviewed four times approx-
imately one year apart on their attitudes toward abortion. The exact format
of the questions was as follows:

Here are a number of circumstances in which a woman might consider an
abortion. Please say whether or not you think the law should allow an abor-
tion in each case. Should abortion be allowed by law?

(1) The woman decides on her own she does not wish to have the child.



(2) The couple agree they do not wish to have the child.
(3) The woman is not married and does not wish to marry the man.
(4) The couple cannot afford any more children.
(5) There is a strong chance of a defect in the baby.
(6) The woman’s health is seriously endangered by the pregnancy.
(7) The woman became pregnant as a result of rape.

The number of items endorsed by each subject was counted and used as a
measure of his/her favorableness toward abortion. The repeated measure-
ments within subjects (Nj = 4) were taken as the first-level units, and the
subjects (J = 264) were taken as the second-level units.

The second-level predictor variables used were:
1. Gender: 1) male, or 2) female.
2. Age classified into five groups: 1) up to 29 years of age, 2) up to 39, 3) up
to 49, 4) up to 59, or 5) 60 and over.
3. Religion: 1) catholic, 2) protestant, 3) other, or 4) no religion.
These variables describe subject characteristics which were assumed stable
throughout the four-year period of study. For our analysis, they were coded
into 11 dummy variables.
The first-level predictor variables used were:
1. Year of measurements: 1) 1983, 2) 1984, 3) 1985, or 4) 1986.
2. Political party: 1) conservative, 2) labour, 3) liberal, 4) other, or 5) none.
3. Self-assessed social class: 1) middle class, 2) upper working class, or 3)
lower working class.
These variables pertain to the repeated measurements within subjects and
were considered time-variant. They were dummy-coded into 12 variables as
in the case of the second-level predictor variables. (Both sets of predictor
variables are linearly dependent, and consequently, the Moore-Penrose in-
verses were used to obtain LS estimates, where necessary.)

Table 1 gives the breakdown of the total SS (SSt) explained by different
terms in model (7).

Table 1. The breakdown of the total SS.

Source % SS SS df MS F
SS2 8.5% 304 8 38.0 4.51

SS3 60.0% 2134 255 8.4
SS4 2.8% 98 9 10.9 8.42

SS5 2.9% 103 72 1.4 1.12

SS6 25.8% 920 711 1.3
SS7 0.0% 0 0

1 Against SS3.
2 Against SS6.



SS2 represents the portions of SSt accounted for by the main effects of the
second-level predictor variables. SS4 represents the portions accounted for
by the main effect of the first-level predictor variables, and SS5 represents
the portions that can be accounted for by the interaction between the first-
and the second-level predictor variables. The proportions of SSt that can
be accounted for by these effects only add up to 14.2%. However, tested
against SS3, SS2 is statistically significant (p < .01), and tested against SS6,
SS4 is significant (p < .01), although SS5 is not significant (p > .05). SS3

represents the between-subjects SS left unaccounted for by the second-level
predictor variables, while SS6 represents the SS due to the subjects by first-
level predictor variables interaction effects left unaccounted for by SS4 and
SS5. These two SS’s account for 85.8% of SSt. SS7 is equal to zero in the
present case, because the number of the first-level predictor variables is larger
than the number of repeated measurements per subject, and the interaction
between the subjects and the first-level predictor variables captures all the
within-subjects effects.

The following tables give estimates of regression coefficients for the main
effect of the second-level (Table 2) and that of the first-level (Table 3) pre-
dictor variables:

Table 2. Estimate of c01.

Plotting Variable Estimates
Labels Categories ĉ01

1. Gender
w11 male .066
w12 female -.066

2. Age
w21 ~29 yrs. -.106
w22 ~39 yrs. .294
w23 ~49 yrs. -.206
w24 ~59 yrs. .109
w25 60~ yrs. -.091

3. Religion
w31 catholic -.778
w32 protestant .323
w33 other -.333
w34 no religion .788

Table 3. Estimate of c10.

Plotting Variable Estimates
Labels Categories ĉ10

1. Year
x11 1983 ,158
x12 1984 -.488
x13 1985 .017
x14 1986 .313

2. Political Party
x21 conserv. .006
x22 labour .167
x23 liberal -.101
x24 other .064
x25 none -.135

3. Social Class
x31 middle -.069
x32 upper w. -.099
x33 lower w. .168

By eliminating one predictor variable at a time from the model and refitting
the reduced model, we can assess the unique contribution of that variable.
We found that the religion was the only variable which was statistically sig-
nificant among the second-level predictor variables (SSReligion = 227.4 with 3
df; F(3, 255) = 9.0). Estimated coefficients in Table 2 indicate that catholics



are least favorable, and those without any religious affiliation tend to be
most favorable to abortion. Somewhat unexpectedly, there was little gender
difference (SSGender = 4.3 with 1 df; F(4, 255) = 1.1), and there was little
variation over age (SSAge = 36.1 with 4 df; F(4, 255) = .5). Among the first-
level predictor variables, we found the year of measurements was the only
variable significantly affecting the attitude toward abortion (SSY ear = 93.2
with 3 df; F(3, 711) = 23.9). Table 3 indicates that people were on average
less favorable toward abortion in 1984, and more favorable in 1986, although
the reason for this is not readily apparent. However, there was little sys-
tematic trend over time. Neither political alignment (SSParty = 2.6 with 4
df; F(4, 711) = .5) nor self-assessed social class (SSClass = 4.5 with 2 df;
F(2, 711) = 1.7) had substantial effects on attitude toward abortion.

As has been noted earlier, SS5 representing the overall size of the in-
teraction effects between the first- and the second-level predictor variables
was not statistically significant. Still, some portions of the interaction effects
may be significant. A strategy used above for testing the significance of the
main effects is a bit cumbersome because there are so many of them (132),
which are also partially redundant. This is where dimensionality reduction
may help. We can simplify the pattern of the interaction effects by applying
SVD to Ĉ11. Figure 1 displays the two-dimensional configuration resulting
from a reduced-rank approximation to Ĉ11. The two dimensions account
for approximately 75% of the sum of squares pertaining to the interaction
effects. Plotting symbols are given in the first columns of Tables 2 and 3.
(The first-level predictor variables are indicated by “x”, and the second-level
variables by “w”, followed by the variable number and the category number.)
Since what is analyzed here is the weights applied to the interaction effects
between the first- and the second-level predictor variables, we look for 1)
which variables come in similar directions relative to the origin (indicated by
“+”), and 2) which variables come in the opposite directions. For example,
w23 (protestant) and x14 (year 1986) come close to each other, indicating
that protestants in the year 1986 favored abortion more than that can be
expected from separately being protestants (who tend to be more favorable
to abortion than average) and that the year the data were taken was 1986
(the year that people tend to be more favorable to abortion than the average
year). On the other hand, w31 (catholic) and x25 (no party support) come
on the opposite side. This means that catholics with no party support were
even less favorable to abortion than that was expected from separately being
catholics (who tend to be less favorable to abortion than average) and that
the subjects had no political parties to support (who were also less favorable
to abortion than average). We can make many other similar observations.

We also analyzed Û1 as suggested above. However, this relates to the
subject differences left unaccounted for by those already taken into account
in the model, and interpretation was extremely difficult without additional
information about the subjects.
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Figure 1: The two-dimensional configuration of the interaction effects.

4. Discussion
Reduced-rank approximations of some of the regression parameters in

HLM seem useful, particularly when the dimensionality of the parameter
space is very high. There are a number of things that may be done to further
facilitate the use of HLM:

1. Although only the two-level HLM has been discussed in this paper, sim-
ilar things can be done for higher-level HLM, although the list of terms in
the model gets longer very quickly. For example, there are 15 terms in the
three-level HLM. We have already derived LS estimates of parameters asso-
ciated with these terms, although, due to the space limitation, they cannot
be presented here.
2. Bootstrap (e.g., Efron, 1982) or other resampling techniques could be
used to assess the stability of individual parameters, which may in turn be
used to test their significance. Since the normality assumption is almost al-
ways in suspect in survey data, the resampling methods may also be useful
to benchmark the distribution of the conventional statistics used in HLM.
The number of components to be retained in the reduced-rank approxima-
tion may be determined by permutation tests in a manner similar to Takane



& Hwang (in press) who developed a permutation procedure for testing the
number of significant canonical correlations.
3. Additional (linear) constraints can be readily incorporated in the LS
estimation procedure. This allows the statistical tests of the hypotheses rep-
resented by the constraints.
4. We exclusively discussed the univariate HLM in this paper. However, the
proposed method can easily be extended to the multivariate cases. We may
incorporate structures representing the hypothesized relationships among the
multiple dependent variables or use the dimension reduction technique to
structure the multiple dependent variables.
5. When the u parameters are assumed to be random rather than fixed, errors
are no longer statistically independent. The dependence structure among the
errors may be estimated from the initial estimates of parameters (obtained
under the independence assumption), which may then be used to re-estimate
the parameters, and so on. This leads to an iterative estimation procedure
similar to that used in Hwang & Takane (2001) in the context of structural
equation modeling. The derived estimates are more efficient than those ob-
tained under the independence assumption.
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