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Summary. Eigenvalue decomposition (EVD) and/or singular value decomposition (SVD)
play important roles in many multivariate data analysis techniques as computational tools
for dimension reduction. A variety of EVD and SVD have been developed to deal with
specific kinds of dimension reduction problems. This paper explicates various relationships
among those decompositions with the prospect of exploiting them in practical applications
of multivariate analysis.
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1 Introduction

In many multivariate data analysis (MVA) techniques, we look for best
reduced-rank approximations of (some functions of) data matrices. In principal
component analysis (PCA), for example, we obtain a reduced-rank approxi-
mation of a (standardized) data matrix or that of a covariance (or correlation)
matrix. In canonical correlation analysis (CANO), we obtain a reduced-rank
approximation of PGPH , where PG = G(G′G)−G′ and PH = H(H ′H)−H ′

(with − indicating a generalized inverse (g-inverse) of a matrix) are orthog-
onal projectors formed from the two sets of data matrices, G and H. Eigen-
value (or spectral) decomposition (EVD) and/or singular value decomposition
(SVD) play important roles in this rank-reduction process.

Standard PCA has recently been extended to accommodate external in-
formation on both rows and columns of data matrices (CPCA; Takane and
Shibayama 1991, Takane and Hunter 2001). Similar extensions have also been
made to CANO (GCCANO; Takane and Hwang 2002, Takane et al. 2002,
Yanai and Takane 1992). These techniques first decompose data matrices or
projectors formed from the data matrices according to the external informa-
tion. Decomposed matrices are then subjected to a rank-reduction process.
Again, EVD or SVD plays important roles in the rank-reduction process.

Ordinary EVD and SVD have been extended in various ways: Generalized
EVD (GEVD), Product SVD (PSVD), Quotient SVD (QSVD), Restricted
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SVD (RSVD), Generalized SVD (GSVD), etc. GEVD obtains EVD of a square
(often symmetric and/or nonnegative definite (nnd)) matrix with respect to
another nnd matrix. PSVD obtains SVD of a product of matrices without
explicitly forming the product. QSVD obtains SVD of a rectangular matrix
with respect to another rectangular matrix. RSVD extends QSVD to a triplet
of matrices. GSVD obtains SVD of a matrix under non-identity nnd metric
matrices. There are interesting relationships among these decompositions. For
example, it is well known that SVD(PGPH) mentioned above is simply related
to GSVD((G′G)−G′H(H ′H)−, G′G,H ′H) (i.e., GSVD of (G′G)−G′H(H ′H)−

with row metric G′G and column metric H ′H) (Takane and Shibayama 1991,
Takane and Hunter 2001; see also the application section below). In this paper
we systematically investigate these relationships and suggest ways to exploit
them in practical applications of multivariate analysis.

In what follows, U and V denote (full) orthogonal matrices of order m
and n, respectively, and X, X1, and X2 denote square nonsingular matrices of
appropriate orders. Diag(· · · ) indicates a block diagonal matrix with matrices
in parentheses constituting its diagonal blocks. Sp(A) and Ker(A) indicate,
respectively, the range and the null spaces of A. Let C− denote a g-inverse
of C. The following conditions called Moore-Penrose Conditions characterize
various kinds of g-inverse matrices.

CC−C = C, (1)

C−CC− = C− (reflexivity), (2)

(CC−)′ = CC− (least squares), (3)

and
(C−C)′ = C−C (minimum norm). (4)

Conditions (3) and (4) may, respectively, be generalized into:

(SCC−)′ = SCC− (S-least squares), (5)

and
(TC−C)′ = TC−C, (T-minimum norm), (6)

where S and T are nnd matrices (called metric matrices). Matrices C−
l and

C−
m denote a least squares and a minimum norm g-inverse of C, respectively,

satisfying (1) and (3), and (1) and (4), respectively.

2 Various Decompositions

2.1 SVD

Let A be an m by n matrix of rank a, and let D be an m by n semi-diagonal

matrix of the form D =

[
a∆a a0
0a 0

]
, where a∆a is a positive definite (pd)
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diagonal matrix of order a. (We sometimes write a∆a as ∆.) Then, matrix
decomposition

A = UDV ′ (7)

is called (complete) SVD of A and is denoted by SVD(A). Let U and V be
partitioned according to the partition of D above. That is, U = [U1, U2], and
V = [V1, V2], where U1 is m by a, and V1 is n by a. Then,

A = U1∆V ′
1 . (8)

This is called incomplete SVD of A. In most data analysis applications only
the incomplete version of SVD is of direct interest. In this paper, however, the
word SVD refers to the complete SVD unless otherwise specified. Note that
Sp(A) = Sp(U1), Ker(A′) = Sp(U2), Sp(A

′) = Sp(V1), and Ker(A) = Sp(V2).
(It should be understood that some blocks in partitioned matrices may be null.
For example, in the above D = [∆, 0] and U = U1 if m = a, and D′ = [∆, 0]
and V = V1, if n = a.)

The diagonal elements in ∆ are assumed to be all distinct and in decreas-
ing order of magnitude, and columns of U and V are arranged accordingly.
Let U(r) and V(r) denote the matrices with the first r(≤ a) columns of U1

and V1, and let ∆(r) denote the matrix with the leading diagonal block of
order r in ∆. Then, A(r) = U(r)∆(r)V

′
(r) gives the best rank r approximation

to A in the least squares sense. That is, the above A(r) gives the minimum
of SS(A− A(r)) = tr(A− A(r))

′(A− A(r)) over all matrices of rank r (Eckart
and Young 1936; see ten Berge (1993) for an elegant proof of this property). It
is this best reduced-rank approximation property that makes SVD extremely
useful in multivariate analysis. Mirsky (1960) later showed that this optimality
was not restricted to the SS norm. It holds generally for all unitarily (orthog-
onally) invariant norms.

The following property of SVD is important from a computational point of
view (Takane and Hunter 2001, Theorem 1):

Property 1. Let B and C be columnwise orthogonal matrices, i.e., B′B = I
and C ′C = I. Let A = UDV ′ denote SVD(A), and let BAC ′ = U∗D∗V ∗′

denote SVD(BAC ′). Then, U∗ = BU (or U = B′U∗), V ∗ = CV (or V =
C ′V ∗), and D∗ = D.

2.2 EVD

Let S be an nnd matrix of order n and of rank a. Let D̃2 denote an nnd
diagonal matrix of order n with ∆2 as the leading diagonal block. Then,

S = V D̃2V ′ (9)

is called (complete) EVD of S and is denoted as EVD(S). Matrix S can also
be expressed as
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S = V1∆
2V ′

1 , (10)

which is called incomplete EVD of S. When S is obtained by A′A, EVD(S) can
be derived from SVD(A) by S = A′A = V D̃2V ′ = V1∆

2V ′
1 , where D̃2 = D′D.

Alternatively, if S is obtained by AA′, then S = AA′ = UDD′U ′ = U1∆
2U ′

1.
As in the SVD of A, S(r) = V(r)∆̃

2
(r)V

′
(r) gives the best rank r approximation

of S in the least squares sense.

2.3 PSVD

Let A be as defined earlier, and let C be a p by n matrix. The pair of decom-
positions,

A = UDX ′ and C ′ = (X ′)−1JV ′, (11)

is called PSVD of the matrix pair, A and C, and is denoted by PSVD(A,C)
(Fernando and Hammarling 1988). Here,

D =

 h∆h h0s h0t h0

t0h t0s tIt t0
0h 0s 0t 0

 , and J =


hIh h0s h0

s0h sIs s0

t0h t0s t0
0h 0s 0

 ,

where, h = rank(AC ′), s = rank(C)−h, t = rank(A)−h, and h∆h is diagonal
and pd. It follows that

AC ′ = U(DJ)V ′ (12)

gives SVD of AC ′. Note that portions of X corresponding to the last column
block of D (and the last row block of J) are not unique (although this usually
does not cause much difficulties).

PSVD of two matrices can be easily extended to the product of three matri-
ces, A, B(q×m), and C. Let A = X1DX ′

2, B = UEX−1
1 , and C ′ = (X ′

2)
−1JV ′.

Then, BAC ′ = U(EDJ)V ′ gives the SVD of BAC ′. PSVD of the matrix
triplet, A, B and C, is denoted by PSVD(A,B,C). Here, D, E, and J are of
the following form

E =


hIh h0s h0k h0j h0i h0

j0h j0s j0k jIj j0i j0

i0h i0s i0k i0j iIi i0
0h 0s 0k 0j 0i 0

 ,
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D =


h∆h h0s h0t h0k h0j h0

s0h sIs s0t s0k s0j s0

k0h k0s k0t kIk k0j k0

j0h j0s j0t j0k jIj j0

i0h i0s i0t i0k i0j i0
0h 0s 0t 0k 0j 0

 , and J =


hIh h0s h0t h0

s0h sIs h0t s0

t0h t0s tIt t0

k0h k0s k0t k0

j0h j0s j0t j0
0h 0s 0t 0

 ,

where h = rank(BAC ′), s = rank(AC ′) − h, t = rank(C) − rank(AC ′), k =
rank(A)− rank(BA)− rank(AC ′) + h, j = rank(BA)− h, and i = rank(B)−
rank(BA).

In multivariate analysis, there are many situations in which SVD of a prod-
uct of two or more matrices is obtained. One classical example is inter-battery
factor analysis, where a best reduced-rank approximation of the product of
two sets of variables, G and H, is obtained. As another example, Koene and
Takane (1999) recently proposed a regularization technique for multi-layered
feed-forward neural networks. This method obtains a best reduced-rank ap-
proximation of YW , where Y is the matrix of input variables, and W is
the matrix of estimated weights associated with the connections from input
variables to hidden units. Takane and Yanai (2007) used PSVD of a matrix
triplet (Zha 1991b) to show what kind of g-inverse of BAC ′ is necessary for
rank(A−AC ′(BAC ′)−BA) = rank(A)− rank(AC ′(BAC ′)−BA), to hold. The
result generalizes the Wedderburn-Guttman theorem (Guttman 1944, 1957;
Wedderburn 1934).

2.4 QSVD

Let A and C be as defined in PSVD. The pair of decompositions,

A = UDX ′ and C = V JX ′, (13)

is called QSVD of A with respect to C and is denoted by QSVD(A,C) (Van
Loan, 1976). Matrices D and J are of the form

D =

 h∆h h0s h0t h0

t0h t0s tIt s0
0h 0s 0t 0

, and J =

 hIh h0s h0t h0

s0h sIs s0t s0
0h 0s 0t 0

 ,

where ∆ is pd and diagonal, and h = dim(Sp(A′)∩Sp(C ′)), s = dim(Ker(A)∩
Sp(C ′)), and t = dim(Sp(A′) ∩ Ker(C)). As in PSVD, the portions of X
pertaining to the last column block of D and the last row block of J are not
unique.

Let N be such that Sp(N) = Ker(C). (This matrix N could be V2 if
C ′C = V D̃2V ′ = V1D

2
1V

′
1 represents the EVD of C ′C).) Define further
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C−
N/A′A = QN/A′AC

−
l , where QN/A′A = I − N(N ′A′AN)−N ′A′A (and C−

l

is a least squares g-inverse of C). Then, PSVD(A,C−
N/A′A) = SVD(AC−

N/A′A)

is obtained from QSVD(A,C) by

AC−
N/A′A = AQ−

N/A′AC
−
l

= UDX ′QN/A′A(X
′)−1J−

l V ′

= UDQN∗/D′DJ
−
l V ′

= U(DJ−
N∗/D′D)V

′, (14)

where N∗ = X ′N , and J−
N∗/D′D = QN∗/D′DJ

−
l . Note that in going from the

first equation to the second we used (X ′)−1J−
l V ′ ∈ {C−

l } if C = V JX ′ (Rao
and Mitra 1971, Complement 3.2 (iv)). Leading diagonals in DJ−

N∗/D′D =

diag(∆, 0, 0, 0) have nonzero and finite singular values of A with respect to
C. (All improper (infinite and indeterminate) singular values become zero in
SVD(AC−

N/A′A).) Note that A′A = XD′DX ′, and that X ′QN/A′A(X
′)−1 =

I −N∗(N∗′D′DN∗)−N∗′D′D = QN∗/D′D. Note also that

J−
l =


I 0 0
0 I 0
Z1 Z2 Z3

E1 E2 E3

 , but J−
N∗/D′D =


I 0 0
0 I 0
0 0 0
E∗

1 E∗
2 E∗

3

 ,

where Zi’s and Ei’s, and E∗
i ’s (i = 1, · · · , 3) are arbitrary.

G-inverse, C−
N/A′A = QN/A′AC

−
l , satisfies (1), (3), and (6) of the extended

Moore-Penrose Conditions, namely

CC−
N/A′AC = C, (15)

(CC−
N/A′A)

′ = CC−
N/A′A (least squares), (16)

and
(A′AC−

N/A′AC)′ = A′AC−
N/A′AC (A′A-minimum norm). (17)

The first two of these conditions follow immediately from CQN/A′A = C. The
last condition follows from

A′AQN/A′A = C ′ΛC (18)

for some Λ, from which it further follows that A′AC−
N/A′AC = A′AQN/A′AC

−
l C

= C ′ΛCC−
l C = C ′ΛC = A′AQN/A′A. The g-inverse, J−

N∗/D′D = QN∗/D′DJ
−
l ,

has a similar property. The fact that C−
N/A′A can be expressed as QN/A′AC

−
l

(and that J−
N∗/D′D can be expressed as QN∗/D′DJ

−
l ) is sufficient, but not

necessary, for the above three conditions ((1), (3), and (6)) to hold. In terms
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of the expression of J−
N∗/D′D given above, the zero matrix in the third row

and the third column block could be arbitrary in order to satisfy the three
conditions.

The name “Quotient” SVD derives from the fact that it obtains SVD of
AC−

N/A′A, which is analogous to taking the quotient (a/c) of two numbers

(De Moor 1991, De Moor and Golub 1991). QSVD used to be called GSVD
by computational matrix algebraists (Golub and Van Loan 1989, Paige 1986,
Paige and Saunders 1981, Van Loan 1976). This was quite confusing because
the same terminology has been used by French data analysts for a different
decomposition. See below. GSVD in the sense of computational matric alge-
braists has recently been renamed into QSVD (De Moor and Golub 1991).

2.5 RSVD

Let A, B, and C be as introduced earlier. The triplet of decompositions,

A = X1DX ′
2, B = UEX ′

1, and C = V JX ′
2, (19)

is called RSVD of A with respect to B and C and is denoted by RSVD(A,B,C)
(De Moor and Golub 1991, Zha 1991a). Here,

D =


h∆h h0s h0t h0k h0j h0

s0h sIs s0t s0k s0j s0

k0h k0s k0t kIk k0j k0

j0h j0s j0t j0k jIj j0

i0h i0s i0t i0k i0j i0
0h 0s 0t 0k 0j 0

 , E =


hIh h0j h0i h0

s0h s0j s0i s0

k0h k0j k0i k0

j0h jIj j0i j0

i0h i0j iIi i0
0h 0j 0i 0

 ,

and

J =


hIh h0s h0t h0k h0j h0

s0h sIs s0t s0k s0j s0

t0h t0s tIt t0k t0j t0
0h 0s 0t 0k 0j 0

 ,

where h = ρabc−ρab−ρac+rank(A), s = ρab−ρabc+rank(C), t = ρac−rank(A),
k = ρabc− rank(A)− rank(B), j = ρab−ρabc+rank(B), and i = ρab− rank(A)

with ρabc = rank

[
A B′

C 0

]
, ρab = rank[A,B′], ρac = rank

[
A
C

]
.

SVD((B−
M/AA)

′AC−
N/A′A) follows from RSVD(A,B,C), where M is such

that Sp(M) = Ker(B) (which is analogous to N for C). Note that (B−
M/AA′)

′A

C−
N/A′A = U(K−

M∗/DD′)
′DJ−

N∗/D′DV
′, where U and V are, respectively, ma-

trices of left and right singular vectors, and (K−
M∗/DD′)

′DJ−
N∗/D′D a diagonal

matrix of nonzero finite singular values of (B−
M/AA′)

′AC−
N/A′A. (All other sin-

gular values of A with respect to B and C become zero.) Matrix B−
M/AA has

similar properties to those possessed by C−
N/A′A.
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2.6 GEVD (QEVD)

Let T be an nnd matrix of the same order as S. The pair of decompositions,

S = XD̃2X ′ and T = XJ̃2X ′, (20)

is called GEVD of S with respect to T and is denoted by GEVD(S, T ). Here,
D̃2 = diag(∆2, 0, I, 0) (where ∆2 is diagonal and pd), and J̃2 = diag(I, I, 0, 0).
The four diagonal blocks in these matrices pertain to Sp(S)∩Sp(T ), Ker(S)∩
Sp(T ), Sp(S) ∩ Ker(T ), and Ker(S) ∩ Sp(T ), and their sizes reflect the di-
mensionality of these subspaces. As in QSVD (and PSVD), portions of X
pertaining to the last block are usually non-unique.

Let W = (X ′)−1. In the more traditional approach to GSVD, this W
may be of more direct interest. This W has the property of simultaneously
diagonalizing both S and T . That is, W ′SW = D̃2, and W ′TW = J̃2. De
Leeuw (1982) has given a complete solution to this problem. Let T = FF ′

be a full rank square root decomposition of T , and let N be a columnwise
orthogonal matrix such that Ker(T ) = Sp(N). Let W = [W1,W2], where W1

and W2 correspond with Sp(T ) = Sp(F ) and Ker(T ) = Sp(N), respectively.
Define QN/S = (I−N(N ′SN)−N ′S). (This is analogous to QN/A′A in QSVD.)
Then, W can be obtained by

W1 = QN/S(F
′)+W ∗

1 +QN/SNZ1,

= QN/S((F
′)+W ∗

1 +NZ1) (21)

and
W2 = NW ∗

2D
∗, (22)

where W ∗
1 and W ∗

2 are complete sets of eigenvectors of F+Q′
N/SSQN/S(F

′)+

and N ′SN , respectively, + indicates the Moore-Penrose inverse (F+ =
(F ′F )−1F ′ and (F ′)+ is its transpose), and Z1 is arbitrary. The matrix D∗ is

a normalization factor such that D∗ =

[
∆−1

2 0
0 Z2

]
, where ∆2

2 is the diagonal

matrix of nonzero eigenvalues of N ′SN , and Z2 is an arbitrary square matrix.
Note that Sp(QN/SN) pertains to the joint null space of S and T , that is,
Ker(S)∩Ker(T ). The fact that W is usually non-unique corresponds with the
fact that X is usually non-unique.

If S = A′A and T = C ′C, where A and C are those used in QSVD,
GEVD(S, T ) is obtained from QSVD(A,C) by setting S = XD̃2X ′ and T =
X ′J̃2X, where D̃2 = D′D, and J̃2 = J ′J . In fact, QSVD was invented initially
(Van Loan, 1976) to obtain GEVD(A′A,C ′C) without explicitly calculating
A′A and C ′C.

2.7 GSVD

Let A be as defined earlier, and let K and L be nnd matrices of order m and
n, respectively. Then, the triplet of matrix decompositions
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A = X1DX ′
2, K = (X ′

1)
−1Ẽ2X−1

1 , and L = (X ′
2)

−1J̃2X−1
2 , (23)

is called GSVD of A with metric matrices K and L. Matrix D is similar to
that in PSVD, and Ẽ2 = diag(I, 0, 0, I, I, 0) and J̃2 = diag(I, I, I, 0, 0, 0) are
themselves nnd, and are obtained by Ẽ2 = E′E and J̃2 = J ′J . Let R′

K =
ẼX−1

1 , and RL = (X ′
2)

−1J̃ , and define (R′
K)−∗ = X1Ẽ

+, and (RL)
−
∗ = J̃+X ′

2

(where + indicates the Moore-Penrose inverse). Then, (R′
K)−∗ R

′
KARL(RL)

−
∗ =

X1(Ẽ
+ẼDJ̃J̃+X ′

2 = X1D
∗X ′

2. (Matrix (R′
K)−∗ satisfies (1), (2), (3), and (6)

of the extended Moore-Penrose Conditions with T = (X1X
′
1)

−1, while (RL)
−
∗

satisfies (1), (2), (3), and (5) with S = X2X
′
2. Leading diagonals of D∗ have

nonzero generalized singular values of A under metric matrices K and L.
GSVD of A under metric matrices K and L is denoted by GSVD(A,K,L).

GSVD(A,K,L) is typically calculated as follows: Let K = FKF ′
K and L =

FLF
′
L denote full rank square root decompositions of K and L. Let F ′

KAFL =
U∗D∗V ∗′ be SVD(F ′

KAFL). Then, PFK
APFL

= X1D̃X ′
2, where PFK

and
PFL

are orthogonal projectors defined by FK and FL, U = FK(F ′
KFK)−1U∗,

D̃ = D∗, and V = FL(F
′
LFL)

−1V ∗. Note thatX ′
1KX1 = Ẽ2, andX ′

2LX2 = J̃2.

There is an important property associated with GSVD of a matrix, which
is analogous to Property 1 mentioned in the section entitled SVD (Takane and
Hunter 2001, Theorem 2).

Property 2. Let B and C be such that BAC ′ can be formed. Let BAC ′ =
UDV ′ denote GSVD(BAC ′,K, L), and let A = U∗D∗V ∗′ denote GSVD(A,
B′KB,C ′LC). Then, U = K−KBU∗, V = L−LCV ∗ and D = D∗, or U∗ =
(B′KB)−B′KU , V ∗ = (C ′LC)−C ′LV and D∗ = D.

3 Applications

How can we effectively use these decompositions in representative methods
of multivariate analysis? Let us take canonical correlation analysis (CANO)
and constrained principal component analysis (CPCA; Takane and Shibayama
1991, Takane and Hunter 2001) as examples.

As is well known, CANO between G and H amounts to SVD(PGPH) or
equivalently to GSVD((G′G)−G′H(H ′H)−, G′G,H ′H). The former obtains
canonical scores directly, while the latter obtains weights applied to G and
H to obtain the canonical scores. Property 2 mentioned above indicates
there is a simple relationship between the two decompositions. Let PGPH =
UDV ′ represent SVD(PGPH), and let (G′G)−G′H(H ′H)− = X1D

∗X ′
2 rep-

resent GSVD((G′G)−G′H(H ′H)−, G′G,H ′H). Then, U = GX1 (or X1 =
(G′G)−G′U), V = HX2 (or X2 = (H ′H)−H ′V ), and D = D∗. It may look
as if the dimensionality of the former problem is usually much larger than
the latter. Thus, it is wise to obtain the latter first and then derive the former
from it. However, the dimensionality of the former can also be directly reduced
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using Property 1 in SVD. Let YG and YH denote orthonormal bases for Sp(G)
and Sp(H), respectively. Then, PG and PH can be written as PG = YGY

′
G

and PH = YHY ′
H , respectively. Let Y ′

GYH = UDV ′ denote SVD(Y ′
GYH). Then,

SVD(PGPH) = SVD(YG(Y
′
GYH)Y ′

H) is obtained by YGUDV ′Y ′
H .

In GCCANO (Takane and Hwang 2002, Takane et al. 2002), the situation is
only slightly more complicated. In GCCANO, matrices from which projectors
are formed (that is, matrices analogous to G and H in standard CANO) are
obtained by products of two or more matrices. However, the structure of the
computational problem remains essentially the same.

CPCA, on the other hand, involves five matrices. CPCA of a data ma-
trix Z with two external information matrices, G and H, and two metric
matrices, K and L, is denoted by CPCA(Z,G,H,K,L), and it subsumes a
number of existing MVA techniques as special cases. For example, CANO be-
tween G and H follows when Z = I, K = I and L = I. CPCA amounts to
GSVD(PG/KZP ′

H/L,K, L) or equivalently to GSVD((G′KG)−G′KZLH(H ′LH)−,

G′KG,H ′LH). Again by Property 2, there is a simple relationship between
the two decompositions. Let G∗ = R′

KG, H∗ = R′
LH, and A∗ = R′

KARL.
Then, R′

KPG/KZP ′
H/LRL = PG∗A∗PH∗ , where PG∗ and PH∗ are orthogonal

projectors defined by G∗ and H∗, respectively. Let YG∗ and YH∗ be matri-
ces of orthonormal bases spanning Sp(G∗) and Sp(H∗), respectively. Then,
PG∗A∗PH∗ = YG∗Y ′

G∗A∗YH∗Y ′
H∗ . Let Y ′

G∗A∗YH∗ = UDV ′ be SVD(Y ′
G∗A∗YH∗).

Then, SVD(YG∗(Y ′
G∗A∗YH∗)Y ′

H∗) is obtained by YG∗UDV ′Y ′
H∗ . From this,

GSVD(PG/KZP ′
H/L,K, L) is obtained by (R′

K)−YG∗UDV ′Y ′
H∗R

−
L and GSVD

((G′KG)−G′KZLH(H ′LH)−, G′KG,H ′LH) is obtained by
(G∗′G∗)−G∗′UDV ′H∗(H∗′H∗)−.

The above procedures represent more conventional procedures for comput-
ing CANO (and GCCANO), and CPCA. In the light of the new breed of SVD’s
discussed in this paper, we have other options, which may yield numerically
more stable solutions. Virtually any one of the EVD’s and SVD’s discussed
in this paper can be used to obtain solutions for CANO and CPCA by pre-
processing matrices appropriately. This is summarized in the following table.
Which one to use in which situation depends on the size of matrices involved
(e.g., EVD of A′A is much faster than SVD of A when A is very tall), how
crucial the numerical accuracy is, etc. In both CANO and CPCA, QN/S = I
(i.e., Sp(S) ∩Ker(T ) = {0}) which simplifies the formula considerably.

A little more elegant way of computing CANO(G,H) is to combine more
than one kind of decomposition. CANO(G,H) may be solved by obtaining
QSVD(PSVD(I,G′,H ′), G′,H ′), which De Moor (1991) calls QPPQ-SVD, or
by PSVD(QSVD(I,G,H), G,H), which De Moor calls PQQP-SVD. Similarly,
CPCA(A,G,H,K,L) may be solved by QSVD(PSVD(A∗, G∗′,H∗′), G∗′,
H∗′) or PSVD(QSVD(A∗, G∗,H∗), G∗,H∗). Since A∗, G∗, and H∗ are them-
selves products of two matrices, an even more sophisticated approach is to
eliminate the multiplications to form these products altogether.
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Table 1. CANO and CPCA Solutions by Various EVD’s and SVD’s.

CANO(G,H) CPCA(Z,G,H,K,L)

SVD A = PGPH A = R′
KPG/KZP ′

H/LRL

EVD S = PHPGPH S = R′
LPH/LZ

′KP ′
H/LRL

PSVD A = G′H, B = G(G′G)−, A = G′ZH, B = G(G′G)−,
C = H(H ′H)− C = H(H ′H)−

QSVD A = PGH, C = H A = R′
KPG/KZLH, C = R′

LH

RSVD A = G′H, B = G, C = H A = G′KZLH, B = R′
KG, C = R′

LH

GEVD S = H ′PGH, T = H ′H S = H ′LZ′KPG/KZLH, T = H ′LH

GSVD A = (G′G)−G′H(H ′H)−, A = (G′KG)−G′KZLH(H ′LH)−,
K = G′G, L = H ′H K = GKG, L = H ′LH
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