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Abstract:

A data matrix typically represents some kind of relationship between row and col-

umn entities. The relationship represented by the data may be described by a model

presumed to have generated the data. Observed data, on the other hand, may be

measured on one of a variety of scale levels: nominal, ordinal, interval, or ratio. In

such cases we may attempt to do two things simultaneously: 1) we transform the

data by a transformation appropriate for the scale level, and 2) we fit a model to the

transformed data to account for the data. This process of simultaneous data transfor-

mations and data representations is called optimal scaling. In this article we briefly

discuss some of the key features of optimal scaling.

Optimal scaling

Suppose that dissimilarity judgments are obtained between a set of stimuli. The dis-

similarity between stimuli may be represented by a Euclidean distance model. How-
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ever, it is rare to find the observed dissimilarity data measured on a ratio scale. It

is more likely that the observed dissimilarity data satisfy only the ordinal scale level.

That is, they are only monotonically related to the underlying distances. In such cases

we may consider transforming the observed data monotonically, while simultaneously

representing the transformed dissimilarity data by a distance model. This process of

simultaneously transforming the data and representing the transformed data is called

optimal scaling [2, 8].

Let δij denote the observed dissimilarity between stimuli i and j measured on an

ordinal scale. Let dij represent the underlying Euclidean distance between the two

stimuli represented as points in an A-dimensional Euclidean space. Let xia denote

the coordinate of stimulus i on dimension a. Then, dij can be written as dij =

{∑A
a=1(xia − xja)

2}1/2. (We use X to denote the matrix of xia and sometimes write

dij as dij(X) to explicitly indicate that dij is a function of X.) Optimal scaling

obtains the best monotonic transformation (m) of the observed dissimilarities (δij)

and the best representation (dij(X)) of the transformed dissimilarity (m(δij)) in such

a way that the squared discrepancy between them is as small as possible. Define the

least squares criterion, φ =
∑

i,j<i(m(δij)− dij(X))2. We minimize this criterion with

respect to m and X under suitable normalization restrictions on m or on X. This is

called nonmetric multidimensional scaling [3], which played an important role in the

development of ideas of optimal scaling.

We give an example of optimal scaling from nonmetric multidimensional scaling

(MDS). Rothkopf [4] reported stimulus confusion data among 36 Morse code signals.
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Shepard [5] analyzed his data by nonmetric MDS that allowed a monotonic transfor-

mation of the confusion probabilities and a representation of the transformed data

in a multidimensional Euclidean space. Figure 1 displays the derived stimulus con-

figuration. From this we may deduce that the process mediating confusions among

the signals is two-dimensional; one is the total number of components in the signals,

and the other is the mixture rate of two kinds (dots and dashes) of components. Sig-

nals having more components tend to be located toward the top, and those having

more dots tend to be located toward the left of the configuration. Figure 2 displays

the optimal inverse monotonic transformation of the confusion probabilities. The de-

rived optimal transformation looks very much like a negative exponential function,

pij = a exp(−dij), or possibly a Gaussian, pij = a exp(−d2
ij), typically found in stim-

ulus generalization data.

***** Insert Figures 1 and 2 about here *****

In the above example, the data involved are dissimilarity data, for which the

distance model may be an appropriate choice. Other kinds of data may also be

considered for optimal scaling. For example, the data may reflect the joint effects of

two or more underlying factors. In this case, an ANOVA-like additive model may be

appropriate. As another example, preference judgments are obtained from a single

subject on a set of objects (e.g., cars) characterized by a set of features (size, color, gas

efficiency, roominess, etc.) In this case, a regression-like linear model that combines

these features to predict the overall preference judgments may be appropriate. As a
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third example, preference judgments are obtained from a group of subjects on a set

of stimuli. In this case, a vector model of preference may be appropriate, in which

subjects are represented as vectors and stimuli as points in a multidimensional space,

and subjects’ preferences are obtained by projecting the stimulus points onto the

subject vectors. This leads to a PCA-like (Principal Component Analysis) bilinear

model [7]. Alternatively, subjects’ ideal stimuli may be represented as (ideal) points,

and it may be assumed that subjects’ preferences are inversely related to the distances

between subjects’ideal points and actual stimulus points. This is called unfolding (or

ideal point) model [1].

Any one of the models described above may be combined with various types of

data transformations depending on the scale level on which observed data are assumed

to be measured. Different levels of measurement scale allow different types of trans-

formations while preserving the essential properties of the information represented by

numbers. In psychology, four major scale levels have traditionally been distinguished:

nominal, ordinal, interval, and ratio [6]. In the nominal scale level, only the identity

of numbers is considered meaningful (i.e., x = y or x 6= y). Telephone numbers and

gender (male and females coded as 1’s and 0’s) are examples of this level of mea-

surement. In the nominal scale, any one-to-one transformation is permissible, since it

preserves the identity (and non-identity) between numbers. (This is called admissible

transformation.) In the ordinal scale level, an ordering property of numbers is also

meaningful (i.e., for x and y such that x 6= y, either x > y or x < y, but how much

larger or smaller is not meaningful). An example of this level of measurement is the
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rank numbers given to participants in a race. In the ordinal scale, any monotonic (or

order-preserving) transformation is admissible. In the interval scale level, the differ-

ence between two numbers is also meaningful. A difference in temperature measured

on an interval scale can be meaningfully interpreted (e.g., the difference between yes-

terday’s temperature and today’s is such and such), but because the origin (0 point)

in the scale is arbitrary as the temperature measured in Celsius or Fahrenheit, their

ratio is not meaningful. In the interval scale, any affine transformation (x′ = ax + b)

is admissible. In the ratio scale level, a ratio between two numbers is also mean-

ingful (e.g., temperature measured on the absolute scale where −273oC is set as the

zero point). In the ratio scale, any similarity transformation (x′ = ax) is admissible.

In optimal scaling, a specific transformation of the observed data is sought within

each class of the admissible transformations consistent with the scale level on which

observed data are assumed to be measured.

It is assumed that one of these transformations is tacitly applied in a data gener-

ation process. For example, if observed dissimilarity data are measured on an ordinal

scale, the model prediction, dij, is assumed error-perturbed and then monotonically

transformed to obtain the observed dissimilarity data, δij. Optimal scaling reverses

this operation by first transforming back δij to the error-perturbed distance by m,

which is then represented by the distance model, dij(X).
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Figure 1: A stimulus configuration obtained by nonmetric multidimensional scaling

of confusion data [4] among Morse code signals.
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Figure 2: An optimal data transformation of the confusion probabilities.
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