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Abstract

Since the introduction of the Spearman’s two factor model in 1904, a number of books and

articles on factor analysis theories have been published. During the same period, a number

of matrix methods have also been developed, particularly in the theory of g-inverses and

projection matrices. In this chapter, we integrated these two lines of developments, matrix

methods and some important topics of factor analysis such as identifiability conditions,

communality problems, analysis of image and anti-image variables, estimation of factor

scores, and equivalence conditions on canonical factor analysis, thereby extending some

of the earlier theories. In particular, we developed the conditions under which the SMC

of a variable is equal to the communality of the variable, and some equivalent conditions

under which the eigenvalues resulting from canonical factor analysis are either 1 or 0. We

also introduced methods for estimating factor score matrices when the uniqueness variance

matrix is singular.
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1 Introduction

Over the past hundred years since the introduction of Spearman’s two-factor model of in-

telligence (in 1904), a number of books and articles have been published on factor analysis

theories. During the same period of time, there have been a number of interesting devel-

opments in matrix theory, particularly in the theory of g-inverses and projectors. In this

chapter we attempt to integrate these two lines of developments, matrix methods and some

important topics of factor analysis such as identifiability conditions, communality problems

with special reference to squared multiple correlation (SMC), image and anti-image analy-

sis, estimation of factor scores, equivalence conditions on canonical factor analysis, etc.

Through this exercise, we also attempt to generalize some of the earlier theories. Through-

out this chapter, we emphasize the use of g-inverse and projection matrices, which have been

proven useful (Takeuchi, Yanai, & Mukherjee, 1982; see also Takane (2004)) in explicating

some intricate concepts underlying factor analysis models as well as other multivariate data

analysis techniques. All matrices considered in this paper are real matrices.

2 Fundamentals of matrix methods

2.1 General definitions of g-inverse matrices and orthogonal projectors

Let A be a matrix of order n ×m, and let X be a matrix of order m × n. Consider the

following four equations:

(i) AXA = A, (ii) XAX = A, (iii) (AX)′ = AX, (iv) (XA)′ = XA. (1)

Matrix X satisfying (i) is called g-inverse of A and is generally denoted as A−, while X

satisfying both (i) and (iii) is called least squares g-inverse of A, and X satisfying both (i)

and (iv) is called minimum norm g-inverse. These three types of g-inverses are not uniquely

determined. Matrix X satisfying all of the above four conditions is called Moore-Penrose

(g)-inverse matrix and is generally denoted as A+. The Moore-Penrose inverse is uniquely

determined. (See (c) below.)
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We give some basic properties of g-inverses and orthogonal projectors:

(a) Let X = A−
` be a least squares g-inverse of A. Then,

AX = AA−
` = A(A′A)−A′ = PA, (2)

where PA is the orthogonal projector onto Sp(A), space spanned by the column vectors of

A.

(b) Let X = A−
m be a minimum norm g-inverse of A. Then,

XA = A−
mA = A′(AA′)−A = PA′ , (3)

where PA′ is the orthogonal projector onto Sp(A′), space spanned by the row vectors of

A. Observe that PA and PA′ are symmetric and invariant over any choice of g-inverse of

A′A and AA′, respectively, and for any choice of bases vectors spanning Sp(A) and Sp(A′),

respectively.

(c) Let X1 and X2 be two Moore-Penrose inverse matrices of A. Then,

X1 = (X1A)X1 = (X2A)X1 = X2(AX1) = X2(AX2) = X2 (4)

due to the relationships given in (2) and (3). This shows the uniqueness of the Moore-

Penrose inverse matrix.

2.2 Decompositions of the orthogonal projector

Let A and B be n× p and n× q matrices, respectively, and let Sp(A) and Sp(B) represent

subspaces spanned by the column vectors of A and B. Let In be the identity matrix of

order n. Then, QA = In−PA and QB = In−PB are the orthogonal projectors onto Sp(A)⊥

and Sp(B)⊥, respectively, where Sp(A)⊥ and Sp(B)⊥ are the ortho-complement subspaces

of Sp(A) and Sp(B). Obviously, PAQA = QAPA = PBQB = QBPB = O.

We introduce three important properties of the orthogonal projectors:

Property 1 (Rao & Yanai, 1979). Let Sp(A,B) represent the space spanned by column
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vectors of matrix [A,B]. Let P[A,B] be the orthogonal projector onto Sp(A,B). Then,

P[A,B] = PA + PQAB = PB + PQBA. (5)

Property 2 (Yanai & Puntanen, 1993). Let Q[A,B] be the orthogonal projector onto the

ortho-complement subspace of Sp(A,B), that is, Sp(A,B)⊥. Then,

Q[A,B] = QQABQA = QQBAQB. (6)

Property 3 (Baksalary, 1987). Let A and B be n × p and n × q matrices, respectively.

Further, let PA and PB be orthogonal projectors onto Sp(A) and Sp(B). Then the following

eight statements are equivalent:

1) PAPB = PBPA. 2) A′B = A′PBPAB.

3) (PAPB)2 = PAPB. 4) QBPAB = O.

5) QAPBA = O. 6) P[A,B] = PA + PB − PAPB.

7) rank(QBA) = rank(A)− rank(A′B). 8) A′QBQAB = O.

Bakasalary (1987, Theorem 1) provides thirty eight other equivalent conditions.

Property 4 (Baksalary & Styan, 1990). Let A, B, PA, PB, QA and QB be matrices as

defined in Properties 1, 2 and 3. Then,

rank(A′B) = rank(A′QBQAB) + rank(A) + rank(B)− rank(A,B). (7)

A straightforward proof of the equivalence between 7) and 8) in Property 3 can be given

by combining Property 4 and the following rank formula:

rank(A,B) = rank(A) + rank(QAB) = rank(B) + rank(QBA). (8)

2.3 Image and anti-image vectors

Let X = [x1, · · · , xp] be a column-wise centered data matrix of order n × p. Further, let

X(j) = [x1, · · · , xj−1, xj+1, · · · , xp] be the n by p − 1 matrix excluding the j-th column
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vector, xj , from X. Then, using an orthogonal projector we can write the squared multiple

correlation, SMC(j), obtained by regressing xj onto X(j) as

SMC(j) ≡ R2
j/(j) = ||PX(j)

xj ||2/||xj ||2. (9)

We also have

xj = PX(j)
xj +QX(j)

xj (10)

for i = 1, · · · , p, where PX(j)
xj and QX(j)

xj are called image vector of xj on Sp(X(j)) and

anti-image vector of xj on Sp(X(j))⊥, respectively. Note that the image and anti-image

vectors of xj are orthogonal.

Observe that (9) ensures that SMC(j) can be computed even if X ′
(j)X(j) is singular. Let

XI = [PX(1)
x1, · · · , PX(p)

xp], (11)

and

XA = [QX(1)
x1, · · · , QX(p)

xp]. (12)

Then, it follows from (10) that X = XI +XA. Assume that X is columnwise standardized.

Then, R = (1/n)X ′X, where R is the correlation matrix.

Property 5 (Yanai & Mukherjee, 1987, Theorem 1).

1
n
X ′

AX =



d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · dp


≡ D, (13)

where 1− dj = R2
j/(j) (the latter having been defined in (9)), and

XA = PXXA = XR−D, (14)

X ′
AXA = DR−D, (15)

X ′
IXI = (R−D)R−(R−D), (16)
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and

X ′
AXI = D −DR−D. (17)

Proof. (13) follows immediately by noting that x′jQX(j)
xi = 0 because xi ∈ Sp(X(j)) for i 6=

j. (14) follows, since Sp(XA) ⊂ Sp(X) and XA = PXXA = X((1/n)X ′X)−(1/n)X ′XA =

XR−D. (15), (16) and (17) are direct consequences of (13) and (14). To prove (15), note

that X ′
AXA = X(X ′X)−XA = X ′

AXR
−D = DR−D, observing that X = XA +XI . 2

The above results are extensions of Kaiser (1976) in that R+ (the Moore-Penrose inverse of

R) is replaced by a weaker g-inverse R−.

Now, from X one can construct an n× j matrix of the form Xj = [x1, · · · , xj ]. Further,

let PY |X = PQXY . Then, Properties 1 and 2 can be extended to the following lemmas.

Lemma 1 (Rao & Yanai, 1979). Let Vi = Sp(Xi), and let Vi|i−1 = {x|x = QXi−1y, y ∈ Vi}.

Then,

PX = PX1 + PX2|X1
+ · · ·+ PXj |Xj−1

+ · · ·+ PXp|Xp−1
, (18)

where PXi|Xi−1
is the orthogonal projector onto Vi|i−1.

Lemma 2.

QX = QX1QX2|X1
· · ·QXj |Xj−1

· · ·QXp|Xp−1
. (19)

2.4 Matrix inequalities

Property 6 (Beckenbach & Bellman, 1961). If A and B are positive-semidefinite (PSD)

matrices of order p, such that A−B is also PSD, then

ρj(A) ≥ ρj(B) (20)

for 1 ≤ j ≤ p, where ρj(A) is the j-th largest eigenvalue of A.

Property 7 (Poincare Separation Theorem). Let A be a symmetric matrix of order p, and

let B be a p×m matrix such that B′B = Im. Then,

ρp−m+i(A) ≤ ρi(B′AB) ≤ ρi(A) (21)
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for i = 1, · · · , p.

Property 8 (Anderson & Gupta, 1963). If A and B are symmetric matrices of order p,

ρi(A+B) ≤ ρj(A) + ρk(B) (22)

for j + k ≤ i+ 1.

2.5 Miscellaneous properties of matrix and its rank

Property 9 (Yanai, 1990). Let A and B be matrices of order p×m and q×m, respectively.

Then, rank(AB′) = rank(A) is necessary and sufficient for

B′(AB′)−AB′ = B′. (23)

Further, let rank(AB′) = rank(A) = rank(B). Then, B′(AB′)−A is the projector onto

Sp(B′) along Ker(A).

Property 10 (Kristof, 1970). Let Tj (j = 1, · · · ,m) denote orthognal matrices of order p,

and let Dj (j = 1, · · · ,m) denote diagonal matrices of order p with nonnegative diagonal

elements. Then, tr(
∏m

j=1 TjDj) ≤ tr(
∏m

j=1Dj).

When m = 1, Property 10 reduces to the following.

Property 11 (ten Berge, 1993). Let T and X be n×p matrices. Let T ′T = Ip, and let the

singular value decomposition of X be given by X = V∆U ′, where V ′V = U ′U = UU ′ = Ip.

Then, tr(T ′X) ≤ tr(∆), and the equality is attained when

T = V U ′ = X(X ′X)−1/2. (24)

Proof. Let H = U ′T ′V denote a square matrix of order p. Then, H ′H = V ′TUU ′T ′V =

V ′PTV ≤ V ′V = Ip, where V ′PTV ≤ V ′V indicate V ′V −V ′PT is PSD. Since
∑p

k=1 h
2
jk ≤ 1

implies h2
jj ≤ 1, where H = (hjk), we obtain 0 ≤ hjj ≤ 1, establishing

tr(T ′X) = tr(T ′V∆U ′) = tr((U ′T ′V )∆) = tr(H∆) =
p∑

j=1

hjjδj ≤
p∑

j=1

δj = tr(∆),
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where δj is the j-th diagonal element of ∆. The equality holds when H = Ip yielding

U ′T ′V = Ip, which implies T = V U ′. 2

3 Applications of matrix methods to factor analysis

3.1 Lower bounds for communalities

Let X denote an n × p columnwise standardized data matrix, and consider the following

traditional factor analysis model:

X = FΛ′ + EΨ1/2, (25)

where F = [f1, · · · , fm] is the n×m common factor score matrix, Λ is the p×m factor loading

matrix, E = [e1, · · · , ep] is the n×p unique factor score matrix, and Ψ is the positive-definite

diagonal matrix of order p of uniqueness variances. We typically assume (1/n)E′E = Ip,

and F ′E = O. In an orthogonal solution, we additionally assume (1/n)F ′F = Im, so that

R = ΛΛ′ + Ψ, (26)

where R = (1/n)X ′X is a correlation matrix, and Ψ is a diagonal matrix whose j-th

diagonal element, ψj , is the uniqueness variance of the j-th variable, xj . Let h2
j denote the

communality of this variable satisfying h2
j + ψj = 1 for j = 1, · · · , p.

We first give a property that allows to represent the communality in terms of orthogonal

projector onto Sp(F ), the space spanned by column vectors of F .

Property 12. Let h2
j denote the communality of the j-th observed variable, xj , and let PF

denote the orthogonal projector onto Sp(F ). Then,

h2
j = ||PFxj ||2/||xj ||2. (27)

The relationships among xj , Sp(F ), PFxj , and hj = ||PFxj || are depicted in Figure 1.
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————————————

Insert Figure 1 about here

————————————

Observe that 0 ≤ h2
j ≤ 1, where the first equality holds if xj ∈ Sp(F )⊥ and the second

equality if xj ∈ Sp(F ). The uniqueness variance, ψj , is obtained by

ψj = ||QFxj ||2/||xj ||2. (28)

We next give a well-known property on the relationship between communality and SMC.

Property 13 (Roff, 1936). For 1 ≤ j ≤ p, SMC(j) is a lower bound to communality h2
j ,

i.e.,

SMC(j) ≤ h2
j . (29)

Using Property 1, we are in a position to give a straightforward proof of Property 13 and

look into the conditions under which the equality in (29) holds.

Theorem 1. Let X(j) = [x1, · · · , xj−1, xj+1, · · · , xp] be a columnwise standardized n by

p− 1 matrix obtained by eliminating xj from X. Then, (29) holds, and the equality in (29)

holds in the following two cases:

SMC(j) = 1 (Case 1), (30)

and

SMC(j) 6= 1, and rjiψi = 0 for any i 6= j (Case 2), (31)

where rji is the (j, i)-th element of R−.

Proof. By Property 1, we have

PF + PQF X(j)
= PX(j)

+ PQX(j)
F . (32)

By pre- and post-multiplying the above equation by x′j and xj , respectively, we obtain from

(26) and (1/n)F ′F = Im that

(1/n)x′jQFX(j) = (1/n)x′jX(j) − x′jFF
′PX(j)

= r′j/(j) − λ′jΛ(j) = 0, (33)
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where Λ(j) is the factor loading matrix with p − 1 variables excluding xj , λj is the vector

of factor loadings of the j-th variable, and rj/(j) is the vector of correlation coefficients

between xj and the remaining p− 1 variables. It follows from (27) and (33) that

h2
j = SMC(j) + x′jPQX(j)

Fxj , (34)

which implies (29), since x′jPQX(j)
Fxj is nonnegative.

We now look for conditions under which the equality holds in (29). If (33) is true,

then x′jPQX(j)
Fxj = 0, leading to x′jQX(j)

F = 0′, which implies that anti-image vector

QX(j)
xj (j = 1, · · · , p) is orthogonal to Sp(F ). Noting that Sp(QX(j)

) ⊂ Sp(X), we obtain

(PXQX(j)
xj)′F = x′jQX(j)

XR−Λ = O. (35)

By postmultiplying (35) by Λ′, and using (26), we obtain from (13) that

(QX(j)
xj)′X((1/n)X ′X)−{(1/n)X ′X −Ψ} =

(QX(j)
xj)′X(Ip − ((1/n)X ′X)−Ψ) = (0, · · · , 0, 1− SMC(j), 0, · · · , 0)(Ip −R−Ψ) = 0′,

which implies

(1− SMC(j))rjiψi = 0 (i 6= j), and (1− SMC(j))(1− rjjψj) = 0. (36)

This completes the proof of Theorem 1. 2

We provide an example of Theorem 1, assuming that rji 6= 0, which implies ψi = 0 (i 6=

j), and h2
i = 1 (i 6= j). We will discuss the case in which rji = 0 (i 6= j) later.

Example 1. Suppose that the correlation matrix among four variables, x1, x2, x3, and x4,

is given by

R =



1 0 a a

0 1 a −a

a a 1 0

a −a 0 1


,
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where 2a2 ≤ 1. The SMC of x1 can be computed as

1− det(R)/det


1 a −a

a 1 0

−a 0 1

 = 1− (1− 2a2)2

(1− 2a2)
= 2a2,

provided that 2a2 6= 1. Similarly, it can be shown that the SMC’s of all the four variables

are equal to 2a2.

The following factor loading matrix Λ and the uniqueness variance matrix Ψ,

Λ =



1 0

0 1

a a

a −a


, and Ψ =



0 0 0 0

0 0 0 0

0 0 1− 2a2 0

0 0 0 1− 2a2


,

on the other hand, satisfy the factor analysis model, (26). The communalities of the four

variables can be computed as (1, 1, 2a2, 2a2). Thus, the SMC’s are equal to the communali-

ties for variables 3 and 4, while the SMC’s are smaller than (or equal to) the communalities

for variables 1 and 2. Since the communalities of variables 1 and 2 are unity, factors f1 and

f2 can be rotated to coincide with them. Since the SMC’s are equal to the squared length

of the projection of x3 and x4 onto the factor space which are now spanned by x1 and x2 , it

can be easily seen that the SMC’s of variables x3 and x4 coincide with their communalities.

In terms of the factor analysis model, we can write

ψ1 = ψ2 = 0, and ψ3 = ψ4 = 1− 2a2. (37)

This result covers Case 2 in (31). It also covers Theorem 3 of Roff (1936, p. 5), which states

that SMC(j) is equal to the communality of variable j, if variables contain m (m < p)

statistically independent variables each with unit communality (where p is the number of

variables and m is the number of common factors).

In (31) it is important to consider the case in which ψi = 0 (i 6= j) does not hold. In

such a case, rji = 0 (i 6= j) should be true. Since rji is the (j, i)-th element of R−, it follows
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from 8) of Property 3, that

(QX(j)
xj)′(QX(i)

xi) = 0 (i 6= j), (38)

provided that Rj/(j) 6= 1, which implies that the diagonal matrix D as defined by (13) is

nonsingular. (38) implies that the anti-image of variable j is uncorrelated with that of

variable i. It is interesting to note that (38) is closely related to Theorem 4 of Guttman

(1953), which states that if a common-factor space of dimensionality m is determinate for an

infinitely large universe of content, then there is no other determinate common factor space.

In this case, the communalities are uniquely determined and are equal to the corresponding

total norms, and in addition the common-factor scores are the total image scores, and the

unique factor scores are the total ant-images. If (38) holds for any combination of i and j,

then anti-image variable QX(j)
xj behaves like the unique factor, ej , corresponding to the

j-th variable, xj .

Note 1. If Sp(F ) is a subspace of Sp(X(j)), then PX(j)
F = F , leading to X ′

(j)QX(j)
F = O.

In case of orthogonal factor analysis, F is columnwise orthogonal. Then, if m vectors in

X(j) are orthogonal, Sp(F ) can be embedded in a subspace of Sp(X(j)). Thus, the equality

in (29) holds.

Note 2. Let X1 = [x1, · · · , xk] and X2 = [xk+1, · · · , xp], which satisfies the following factor

analysis model:

[X1, X2] = F [Λ′
1,Λ

′
2] + E

 Ψ1/2
1 O

O Ψ1/2
2

 ,
where F is the n×m matrix of common factor scores, Λ1 and Λ2 are k×m and (p−k)×m

factor loading matrices corresponding to X1 and X2, respectively, and Ψ1 and Ψ2 are

diagonal matrices of uniqueness variances of order k and p − k, corresponding to X1 and

X2, respectively. Then,

ΛjΛ′
j ≥ X ′

jPXiXj , (j, i = 1, 2, j 6= i) (39)

where ΛjΛ′
j ≥ X ′

jPXiXj means ΛjΛ′
j −X ′

jPXiXj is PSD.

12



From Property 1, we have

P[F,Xi] = PF + PQF Xi = PXi + PQXi
F . (40)

Premultiplying (40) by PXj and noting that (1/n)X ′
jQFXi = (1/n)X ′

jXi − ΛjΛ′
i = O, we

obtain X ′
jPFXj = X ′

jPXiXj +X ′
jPQXi

FXj , establishing (39). The term on the left side of

(39) represents generalized forms of communalities for variables Xj , and the term on the

right may be called generalized SMC’s.

3.2 Stronger upper and lower bounds for communalities

In this section, we consider the random model of factor analysis as opposed to the traditional

model of factor analysis introduced earlier in (25). The random model of factor analysis is

written as

x = Λf + e (41)

with E(f) = 0, E(e) = 0, Cov(f, e) = E(f ′e) = O, V(f) = Φ, and V(e) = Ψ, where E, V, and

Cov are expectation, variance, and covariance operators, respectively. The corresponding

representation of the factor analysis model in terms of a correlation matrix can be expressed

as

Σ = ΛΦΛ′ + Ψ, (42)

where Σ is the population correlation matrix. We have

Property 14 (Yanai & Ichikawa, 1990).

(a) Let h2
(j) denote the j-th largest communality among the p variables. Then, for 1 ≤ j ≤ p,

h2
(j) ≥ 1− ρp+1−j(Σ), (43)

where ρp+1−j(Σ) is the (p+ 1− j)-th largest eigenvalue of Σ.

(b) For any positive definite correlation matrix Σ with distinct eigenvalues, we have

1− ρp(Σ) ≥ SMC(j) (44)
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for 1 ≥ j ≥ p.

(c) For any 1 ≥ j ≥ p,

h2
(j) ≤ 1− ρ(p+m+1−j)(Σ). (45)

These results can be proved by the matrix inequalities given by (20), (21), and (22).

Example 2. Suppose we have the following factor loading matrix, Λ, and the uniqueness

variance matrix, Ψ:

Λ =



.6 .5 .4

.6 .4 .4

.2 .6 .5

.2 .5 .6

.4 .6 .2

.5 .4 .2


and Ψ = diag



.23

.32

.35

.35

.44

.55


,

which yields

Σ = ΛΛ′ + Ψ =



1 .72 .62 .61 .62 .58

.72 1 .56 .56 .56 .54

.62 .56 1 .64 .54 .44

.61 .56 .64 1 .50 .42

.62 .56 .54 .50 1 .48

.58 .54 .44 .42 .48 1


.

With some calculations, the eigenvalues of Σ are found to be ρ1 = 3.810, ρ2 = .648,

ρ3 = .490, ρ4 = .432, ρ5 = .355, and ρ6 = .265, from which we obtain the new lower bounds

(NLB), and the upper bounds (UB) summarized in Table 1. For comparison we also give

SMC’s in the last column of the table. The NLB’s for variables 1, 2, 3, and 4 improve upon

SMC’s used as lower bounds of communalities. It seems that there are generally more than

one variable in which the NLB is better than the SMC.
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———————————-

Insert Table 1 about here

———————————-

Example 3. Let Σk (k = p − 1 and p) be a correlation matrix of order k with all the

correlation coefficients being equal to a (0 < a < 1). The SMC’s of all p variables are

computed by

SMC(j) = 1− det(Σp)/det(Σp−1)

= 1− {(1 + (p− 1)a)(1− a)p}/{1 + (p− 2)a)}(1− a)p−1

= a2/(a+ (1− a)/(p− 1)), (46)

and the eigenvalues of Σp are:

ρ1(Σp) = 1 + (p− 1)a, and ρj(Σp) = 1− a for 2 ≤ j ≤ p.

Note that the last p− 1 eigenvalues are equal to a. Furthermore, from (a) of Property 14,

a gives a stronger lower bound of communality for each of the p− 1 variables, since

a− a2/(a+ (1− a)/(p− 1)) = a(1− a)/((1− a) + a(p− 1)) > 0.

It is interesting to note that as p approaches infinity, SMC(j) computed by (46) approaches

a which coincides with the communalities of the p variables. This is consistent with the

suggestion first made by Roff (1936) and later proved by Guttman (1940).

3.3 Variable selection in factor analysis

It is recommended that some rotation methods be applied to the factor loading matrix

derived by some initial factor extraction method to construct some psychological scales

such as personality, vocational interest, and so on. In some cases, a number of items load

highly on some factors, while smaller numbers of items load highly on other factors. In

such cases, it is important to check whether a particular variable is a suitable indicator
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of a factor extracted. We present a stepwise variable selection method in factor analysis,

following Yanai (1980).

Let X = [x1, · · · , xp] denote a standardized data matrix, and assume that the factor

score matrix, F = [f1, · · · , fm], consists of m orthogonal factors. Let R2
X/fj

denote the

squared multiple correlation obtained by regressing fj onto X. Then, from Lemma 1 we

obtain

s = R2
X/f1

+ · · ·+R2
X/fm

=
m∑

j=1

(f ′jPXfj)/(f ′jfj) = tr(PX

m∑
j=1

Pfj
) = tr(PXPF ), (47)

using the relationship, PF = Pf1 + · · ·+ Pfm , which follows from Lemma 1 and the orthog-

onality of F . Note that s defined in (47) is the sum of the squared canonical correlation

coefficients between F and X representing the relationship between the extracted factors

and observed data. We propose a forward inclusion method for stepwise selection of vari-

ables in factor analysis by employing the following decomposition of tr(PXPF ):

s = tr(PXPF ) = tr(Px1PF ) + tr(Px2|x1
PF ) + · · ·+ tr(Pxp|X[p−1]

PF )

= s1 + s2 + · · ·+ sp. (48)

Then, the proposed procedure of stepwise selection can be described as:

Step 1: Select a variable xj with the largest communality h2
j , since tr(PxjPF ) =

||PFxj ||2/||xj ||2 = h2
j follows from (27).

Step 2: Suppose that variable xj is selected. Then, select variable xk (k 6= j) with the

largest value of

sk = tr(Pxk|xj
PF ) = tr(PQxj xk

PF ) = (h2
jr

2
jk + h2

k − 2rjk
√
h2

jh
2
k)/(1− r2jk), (49)

where rjk is the correlation coefficient between xj and xk.

Step 3: In earlier j−1 steps, suppose, for simplicity, that j−1 variablesXj−1 = [x1, · · · , xj−1]
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are selected. (This is just for notational convenience.) Then, select a variable xk (k ≥ j)

with the largest value of

sk = tr(Pxk|Xj−1
PF ) = ||bk||2/(1−R2

Xj−1/xk
), (50)

where bk = λk − Λ′
j−1R

−
j−1,j−1r(j−1)/k.

Example 4. We first performed principal factor analysis and extracted four common factors

from the data with twelve scales in Yatabe-Guilford Personality Inventory. (This is the most

popular personality inventory in Japan.) We show the result of stepwise selection of the

variables in Table 2, in which scales are arranged in descending order of sj for j = 1, · · · , p.

(The list of the twelve scales is given in Table 3.) We then computed the communalities

for the twelve scales. It turned out that the Depression scale (Scale D for short) had the

largest communality of .728 among the twelve scales. In the second step, Scale A with the

sk value (defined in (49)) of .698 was selected. Interestingly, Scale D had the highest factor

loading on the first factor, while Scale A had the highest factor loading on the second factor.

Continuing this way, we came to the final step where Scale I was selected with the sk value

(defined in (50)) of only .020. In reference to the values of s(j) = s1 + · · ·+ sj given in the

last column of Table 2, we may say that only five or six scales are sufficient for explaining

the information contained in the four common factors. As an alternative method of stepwise

selection in factor analysis, Kano and Harada (2000) developed SEFA (Stepwise variable

selection in Exploratory Factor Analysis) by employing several goodness-of-fit measures

used in structural equation modeling.

———————————————

Insert Tables 2 and 3 about here

———————————————

3.4 Representation of SMC when the correlation matrix may be singular

Let R denote a correlation matrix with three variables, x1, x2, and x3, with correlation

coefficients rx1x2 = rx1x2 = a (a 6= ±1) and rx2x3 = 1. We write R, and a g-inverse of R,
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denoted by P = R−, as

R =


1 a a

a 1 1

a 1 1

 , and P = (1/(1− a2))


1 −wa −(1− w)a

−xa t1 t2

−(1− x)a t3 1− t1 − t2 − t3

 ,
where −1 ≤ a ≤ 1, and t1, t2, t3, w, and x are arbitrary. Let I3 − RP = [g1, g2, g3]. Then

with some computations, we obtain g1 = 0, and gj 6= 0 (j = 2, 3). According to Theorem

1 of Khatri (1976), SMC(1) = a2, and SMC(j) = 1 for j = 2, 3. Thus, SMC’s can be

computed for all variables, even if R is singular.

Furthermore, let W = [X,Y ] be a matrix of order n × (p + q), where X = [x1, · · · , xp]

and Y = [y1, · · · , yq] are matrices of orders n× p and n× q, respectively. Let R = RWW be

the correlation matrix, and let P = R− denote a g-inverse of R. Let R and P be partitioned

analogously:

R =

 RXX RXY

RY X RY Y

 , and P =

 PXX PXY

P Y X P Y Y

 . (51)

Then, with some computations, we obtain

RXX.Y P
XXRXX.Y = RXX.Y , where RXX.Y = RXX −RXYR

−
Y YRY X . (52)

Let

SMC(X|Y ) =



R2
x1|Y Rx1x2|Y · · · Rx1xp|Y

Rx2x1|Y R2
x2|Y · · · Rx2xp|Y

...
...

. . .
...

Rxpx1|Y Rxpx2|Y · · · R2
xp|Y


a square matrix of order p, where

R2
xj |Y = ||PY xj ||2, and Rxixj |Y = x′iPY xj .

Then, we have the following lemma.

Lemma 3. Let R and P be matrices defined in (51). Further, let

H = RP =

 HXX HXY

HY X HY Y

 , and B =

 HXX − Ip

HXY


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be matrices of orders p+ q and (p+ q)× p, respectively. If B = O, then

SMC(X|Y ) = RXYR
−
Y YRY X = RXX − (PXX)−1, (53)

and if rank(B) = p, then SMC(X|Y ) = RXX .

Proof. It follows from Lemma 4 of Khatri (1976) that rank(B) = p−rank(X ′QYX). If B =

O, then rank(X ′QYX) = p, indicating RXYR
−
Y YRY X is nonsingular. Then, RXX.Y P

XX =

Ip follows from (52), establishing (53). If rank(B) = p, then X ′QYX = O, which implies

SMC(X|Y ) = X ′PYX = X ′X. 2

The term SMC(X|Y ) defined in Lemma 3 coincides with the right hand side of (39), which

we call generalized SMC, since it reduces to the communality of a variable when X consists

of a single vector. The above result represents an extension of Khatri (1976).

3.5 Interpretation of communalities from a regularization perspective

A major difference between principal factor analysis (PFA) and principal component analy-

sis (PCA) is that the former obtains the eigen-decomposition of R − Ψ (assuming that Ψ

is tentatively known), whereas the latter obtains that of R. The analysis of R − Ψ may

be justified from a regularization perspective. In the ridge type of regularization (Hoerl &

Kennard, 1970) estimates of regression coefficients in linear regression models are obtained

by

b̃ = (X ′X + κIp)−1X ′y, (54)

where X is an n× p matrix of predictor variables, y is an n-component vector of criterion

variable, and κ is a ridge parameter, which typically takes a small positive value. The

prediction vector is obtained by

Xb̃ = P (κ)y, (55)

where P (κ) = X(X ′X+κIp)−1X ′ is called ridge operator. The ridge estimates of regression

coefficients are usually biased, but are associated with smaller MSE (mean square errors;

Hoerl & Kennard, 1970).
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Takane and Yanai (2005) recently introduced the following metric,

M(κ) = In + κ(XX ′)+, (56)

in an effort to generalize the ridge type of regularization to other techniques of multivari-

ate analysis. Using M(κ), they could rewrite P (κ) as P (κ) = X(X ′M(κ)X)−X ′, where

X ′M(κ)X = X ′X + κPX′ , and PX′ is the orthogonal projector onto Sp(X ′), which reduces

to Ip when X is columnwise nonsingular. Note that P (κ) is invariant over the choice of

g-inverse of X ′M(κ)X, and that (X ′X + κIp)−1 ∈ {(X ′M(κ)X)−}. Takane and Yanai

(2005) further extended the metric matrix to:

M (L)(κ) = In + κ(XL−X ′)+, (57)

where L is PSD with Sp(L) = Sp(X ′). With this generalized metric matrix, we obtain

X ′M (L)(κ)X = X ′X + κL.

The ridge estimation generally has the effect of shrinking the estimates toward zero by

adding κPX′ or κL to X ′X on the predictor side. Presumably, a similar shrinkage effect

can be obtained by subtracting the same from the criterion side. Let

M (Ψ)(−1) = In − (XΨ−1X ′)+. (58)

Then,

(1/n)X ′M (Ψ)(−1)X = R−Ψ, (59)

which, as noted earlier, is the matrix whose eigen-decomposition is taken in PFA. (59) may

be seen from (XΨ−1X ′)+ = XΨ−1/2((Ψ−1/2X ′XΨ−1/2)+)2Ψ−1/2X ′ = X(X ′XΨ−1X ′X)+X ′.

This indicates that in PFA we are sort of obtaining shrinkage estimates (of factor loadings)

relative to PCA loadings. This leads to the idea that the estimate of Ψ is chosen in such a

way that it reproduces an R that cross-validates best.

3.6 Methods of estimating factor scores

It is useful to estimate factor scores of individual subjects. A number of methods of esti-

mating factor scores have been proposed so far.
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The first estimator starts from the parametric model of factor analysis, x = Λf + e,

where E(e) = 0, and V(e) = Ψ is a nonsingular diagonal matrix of uniqueness variances. It

is assumed that the factor loading matrix, Λ, and the uniqueness variance matrix, Ψ, are

known, and only e is a vector of random variables analogous to the disturbance terms in

linear regression models. The generalized least squares estimate of f , which we denote by

f1, minimizing

(x− Λf)′Ψ−1(x− Λf) (60)

is given by

f1 = (Λ′Ψ−1Λ)−1Λ′Ψ−1x. (61)

It can be easily verified that this estimator is unbiased and its covariance matrix is given

by V(f1) = (Λ′Ψ−1Λ)−1. This is called Bartlett estimator (Bartlett, 1937).

Note 3. If we neglect Ψ, the minimization of (x− Λf)′(x− Λf) with respect to f yields

f2 = (Λ′Λ)−1Λ′x, (62)

which was first derived by Horst (1965). Note that f2 defined above is also unbiased.

We now consider an estimation of f when Ψ is possibly singular.

Lemma 4 (Rao & Yanai, 1979). Under the Gauss-Markov model, (y,Xβ, α2G) where G

may be singular, the BLUE (the best linear unbiased estimator) of Xβ can be expressed as

Xb = Py (63)

where P satisfies both (i) PX = X, and (ii) PGZ = O, where Z = QX is the orthogonal

projector onto Sp(X)⊥. If Sp(X) and Sp(GZ) cover the entire space of En, P is the pro-

jector onto Sp(X) along Sp(GZ), and it can be expressed in the following three forms:

1) X(X ′QGZX)−X ′QGZ . 2) In −GZ(ZGZ)−Z.

3) X(X ′T−1X)−X ′T−1, where T = XUX ′ +G and rank(T ) = rank(X,G) .

We attempt to minimize (60) when Ψ is singular. To deal with this problem, Bentler

and Yuan (1997) minimized (x−Λf)′Ψ+(x−Λf). Our solution, on the other hand, is based
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on Lemma 4.

Lemma 5. If En = Sp(Λ) + Sp(Ψ), and W = QΛ is the orthogonal projector onto Sp(Λ)⊥,

the BLUE of f can be expressed in the following three equivalent forms:

1) Λ(Λ′QΨW Λ)−Λ′QΨWx. 2) (In −ΨW (WΨW )−W )x.

3) Λ(Λ′T−1Λ)−Λ′T−1x, where T = ΛUΛ′ + Ψ and rank(T ) = rank(Λ,Ψ) .

Note that in the parametric model of factor analysis, a factor score vector and a raw data

vector can be defined for each of n individual subjects. Let f(j) and x(j) denote these

vectors for the j-th subject. These vector may be represented collectively by matrices

F ′ = [f(1), · · · , f(n)] and X ′ = [x(1), · · · , x(n)]. Anderson and Rubin (1956) obtained an

estimate of F which minimizes

(1/n)
n∑

j=1

(x(j) − Λf(j))
′Ψ−1(x(j) − Λf(j)) (64)

subject to (1/n)F ′F = (1/n)
∑n

j=1 f(j)f
′
(j) = Φ, where Φ is the matrix of correlations among

m factors and thus is positive-definite (PD). Observe that (1/n)
∑n

j=1 tr(f ′(j)Λ
′Ψ−1Λf(j))

= tr(Λ′Ψ−1Λ((1/n)
∑n

j=1 f(j)f
′
(j))) = tr(Λ′Ψ−1ΛΦ). Thus, the minimization of (64) is equiv-

alent to maximizing
∑n

j=1 f
′
(j)Λ

′Ψ−1x(j) = tr(FΛ′Ψ−1X ′) = tr(FΦ−1/2(XΨ−1ΛΦ1/2)′) sub-

ject to (1/n)F ′F = Φ. Note that (1/n)F ′F = Φ is equivalent to Φ−1/2(1/n)F ′FΦ−1/2 = Im.

We obtain from Property 11 that

F = XΨ−1ΛΦ1/2(Φ1/2Λ′Ψ−1X ′XΨ−1ΛΦ1/2)−1/2Φ1/2, (65)

which yields

f(j) = Φ1/2(Φ1/2Λ′Ψ−1X ′XΨ−1ΛΦ1/2)−1/2Φ1/2Λ′Ψ−1x(j) (j = 1, · · · , n). (66)

Note that

Φ1/2Λ′Ψ−1X ′XΨ−1ΛΦ1/2 =

Φ1/2Λ′Ψ−1(ΛΦΛ′ + Ψ)Ψ−1ΛΦ1/2 = (Φ1/2Λ′Ψ−1ΛΦ1/2)2 + Φ1/2Λ′Ψ−1ΛΦ1/2.
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By denoting L = Φ1/2Λ′Ψ−1ΛΦ1/2, we may rewrite (66) as

f(j) = Φ1/2(L2 + L)−1/2Ψ1/2Λ′Ψ−1x(j). (67)

We denote (67) by f3 for any j. Obviously, (1/n)F ′F = Φ holds. This estimator was further

discussed by Rao (1979) and ten Berge (1999).

Next, let us consider a random effect model of the form, x = Λf + e, where Λ is a

factor loading matrix of order p×m, x and e are p dimensional random vectors, the latter

satisfying E(fe′) = O. Let P denote a square matrix of order p and define Px as an estimate

of Λf where f is assumed to be random. Differentiating

g(P ) = tr(E(Px− Λf)(Px− Λf)′)

= tr(E(Pxx′P ′ − Pxf ′Λ′ − Λfx′P ′ + Λff ′Λ′))

= tr(PΣP ′ − PΛΦΛ′ − ΛΦΛ′P ′ + ΛΦΛ′) (68)

with respect to P , we obtain

PΣ = ΛΦΛ′. (69)

If Σ is nonsingular, we have

Λf4 = Px = (ΛΦΛ′Σ−1)x = ΛΦΛ′(ΛΦΛ′ + Ψ)−1x,

yielding

f4 = ΦΛ′Σ−1x = ΦΛ′(ΛΦΛ′ + Ψ)−1x, (70)

which coincides with the regression estimator of f on x first introduced by Thurstone (1935)

and further discussed by Thomson (1946).

If Σ is singular, we obtain from (69) that

P = ΛΦΛ′Σ− + Z(I − ΣΣ−), (71)

where Z is arbitrary. Let S = ΣΣ−x − x. Then, E(SS′) = O, which implies ΣΣ−x = x.

Postmultiplying (71) by x, we obtain Λf4 = Px = ΛΦΛ′Σ−x, yielding

f4 = ΦΛ′Σ−x. (72)
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The relationships among the four methods of estimating factor scores were discussed in

McDonald and Burr (1967).

Now we consider the relationship between f1 and f4. With some derivations, it follows

that

f4 = ΦΛ′Σ−1x = ΦΛ′(Ψ + Λ′ΦΛ)−1x

= ΦΛ′(Ψ−1 −Ψ−1Λ(Λ′Ψ−1Λ + Φ−1)−1Λ′Ψ−1)x

= Φ(Im − Λ′Ψ−1Λ(ΛΨ−1Λ + Φ−1)−1)Λ′Ψ−1x

= (Λ′Ψ−1Λ + Φ−1)−1Λ′Ψ−1x (73)

= (I + Φ−1(Λ′Ψ−1Λ)−1)−1(Λ′Ψ−1Λ)−1Λ′Ψ−1x

= (I + Φ−1(Λ′Ψ−1Λ)−1)−1f1.

Assume that Φ = Im. Then, it follows from Anderson (2003, Section 14.7) that the mean

square errors of f4 given by

E[(f4 − f)(f4 − f)′] = (Im + Λ′Ψ−1Λ)−1

are smaller than the variances of the unbiased estimator, f1, given by V(f1) = (Λ′Ψ−1Λ)−1.

The above result indicates that f4 is a linear combination of f1.

3.7 Application of Property 3 to canonical factor analysis

Let F denote a matrix of common factor scores, and let X denote a standardized data

matrix of p variables. Further, let f = Xw denote a linear composite score vector. Then,

maximizing

||PF f ||2/||f ||2 (74)

with respect to w yields

(X ′PFX)w = λ(X ′X)w, (75)

leading to

Rw = λΨw, where λ = 1/(1 + λ)
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in view of ΛΛ′ = R−Ψ. (75) is the eigen-equation resulting from canonical factor analysis

introduced by Rao (1955). Note that the sum of eigenvalues obtained from (75) coincides

with tr(PXPF ), as defined by (47).

Using Property 3, we can establish:

Theorem 2. Let Λ denote a factor loading matrix of order p × m. Then, the following

seven statements are all equivalent:

1) λj = 1 or 0 for j = 1, · · · ,m.

2) PXPF = PFPX . 3) ΛΛ′(X ′X)−Λ = Λ.

4) Ψ(X ′X)−Λ = O. 5) ((X ′X)−ΛΛ′)2 = (X ′X)−ΛΛ′.

6) rank(X) = rank(Λ) + rank(Ψ). 7) (X − FΛ′)′QXF = O.

Proof. Equivalence between 1) and 2) is well known. To show 2) implies 3), we note

Λ = (1/n)F ′X. To show 3) implies 4), we note ΛΛ′(X ′X)−Λ = Λ, which implies (R −

Ψ)R−Λ = RR−Λ − ΨR−Λ = Λ. This establishes the desired result, since RR−Λ =

(1/n)(X ′X)(X ′X)−X ′F = (1/n)X ′F = Λ. To show 4) implies 3), we have (X ′X − ΛΛ′)

(X ′X)−X ′F = Λ − ΛΛ′(X ′X)−Λ = O. To show 7) implies 3), ΛF ′QXF == ΛF ′(In −

X(X ′X)−X ′)F = Λ − ΛΛ′(X ′X)−Λ = O. To show 4) implies 7), observe that Sp(ΛΛ′ +

Ψ) = Sp(Λ,Ψ1/2). Further, suppose that ΛΛ′α + Ψβ = 0. By premultiplying both sides

by Λ′(X ′X)−, we obtain ΛΛ′α = 0. Thus, Sp(Λ) and Sp(Ψ) are disjoint, establishing

rank(X ′X) = rank(X) = rank(Λ) + rank(Ψ).

3.8 Some extension of the identifiability condition

It is well known that a sufficient condition for the matrix of uniqueness variances to be

uniquely determined is that there exists at least two disjoint square matrices both nonsin-

gular and of rank m in the factor loading matrix Λ when any one row vector is deleted

from Λ (Anderson & Rubin, 1956). Ihara and Kano (1986), and Kano (1989) gave some

extensions to Anderson and Rubin’s result. We give an alternative extension using Property
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9.

Lemma 6. Suppose that the factor loading matrix, Λ, of order (p1 + p2 + r) ×m, where

p1 ≥ m, p2 ≥ m, and r ≤ min(p1, p2), is partitioned as Λ′ = [Λ′
1,Λ

′
2,Λ

′
3], where Λ1, Λ2,

and Λ3 are of orders p1 ×m, p2 ×m, and r ×m, respectively. The population correlation

(covariance) matrix, Σ, is then expressed in a partitioned form as

Σ =


Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 =


Λ1Λ′

1 + Ψ1 Λ1Λ′
2 Λ1Λ′

3

Λ2Λ′
1 Λ2Λ′

2 + Ψ2 Λ2Λ′
3

Λ3Λ′
1 Λ3Λ′

2 Λ3Λ′
3 + Ψ3

 = ΛΛ′ + Ψ.

Assume further that rank(Λ1Λ′
2) = rank(Λ1) = rank(Λ2), and Sp(Λ′

3) ⊂ Sp(Λ′
2). Then, Ψ

is determined uniquely.

Proof. Sp(Λ′
3) ⊂ Sp(Λ′

2) implies Λ′
3 = Λ′

2W for some W . rank(Λ1Λ′
2) = rank(Λ1) =

rank(Λ2) implies Λ′
2(Λ1Λ′

2)
−Λ1 is the projector onto Sp(Λ′

2) along Ker(Λ1) (Property 9),

and it is thus invariant over any choice of g-inverse of Λ1Λ′
2. We then have

Σ32Σ−
12Σ13 = Λ3Λ′

2(Λ1Λ′
2)

−Λ1Λ′
3 = Λ3Λ′

2(Λ1Λ′
2)

−Λ1Λ′
2W = Λ3Λ′

3 = Σ33 −Ψ3, (76)

establishing Ψ3 = Σ33 − Σ32Σ−
12Σ13, which is invariant over any choice of g-inverse of Σ12.

2

This establishes the desired result. Observe that Lemma 6 covers the result of Anderson

and Rubin (1956), where it was assumed that rank(Λ1Λ′
2) = rank(Λ1) = rank(Λ2) = m,

which automatically implies Sp(Λ′
3) ⊂ Sp(Λ′

2). Lemma 6 also covers Kano (1989), since

m = rank(PΛ′
1
PΛ′

2
) ≤ rank(Λ1Λ′

2) ≤ rank(Λj) = m

for j = 1, 2. Note that rank(PΛ′
1
) = rank(PΛ′

2
) = m, and that Sp(Λ′

3) ⊂ Sp(Λ′
2) also holds.

Note 3. As a reviewer of this manuscript has pointed out (see also Takeuchi, Yanai and

Mukherjee, 1982, section 7.2.2), there are in general an infinite number of possible Ψ’s that

satisfy the factor analysis model if Λ is allowed to change in such a way that Sp(Λ′
3) ⊂ Sp(Λ′

2)
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no longer holds.
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Table 1: Communalities, SMC’s, and upper and lower bounds for communalities in the

numerical example (Yanai & Ichikawa, 1990).

Variable Communality NLB UB SMC

1 .770 .735 · · · .654

2 .680 .645 · · · .573

3 .650 .568 · · · .518

4 .650 .510 .735 .498

5 .560 · · · .645 .453

6 .450 · · · .568 .384
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Table 2: Results of the stepwise selection method in principal factor analysis.

Step Scale Factor 1 Factor 2 Factor 3 Factor 4 Communality sj s(j)

1 D .684 -.298 .254 -.326 .728 .728 .728

2 A .183 .821 -.040 .098 .715 .698 1.426

3 Co .751 .186 -.189 .199 .674 .451 1.877

4 C .466 -.102 .534 -.018 .512 .265 2.412

5 R .032 .457 .209 .438 .445 .190 2.333

6 G -.082 .677 -.030 -.117 .479 .170 2.503

7 S -.135 .795 .012 .030 .651 .099 2.602

8 N .808 -.157 .045 .059 .684 .088 2.690

9 Ag -.056 .404 .407 .026 .332 .057 2.747

10 O .837 .073 -.020 .011 .707 .053 2.800

11 T .157 .092 -.171 .471 .284 .034 2.834

12 I .383 -.535 .185 .000 .461 .020 2.854
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Table 3: List of twelve scales.

No. Symbol Scale

1) D Depression

2) A Ascendance

3) Co Lack of cooperativeness

4) C Cyclic tendency

5) R Rhathymia

6) G General activity

7) S Social extraversion

8) N Nervousness

9) Ag Lack of agreeableness

10) O Lack of objectivity

11) T Thinking extraversion

12) I Inferiority feelings
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Fig. 1.  Representation of communality 2
jh  of a vector jx  in terms of orthogonal projection 

        assuming 1j =x . 
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