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1. Introduction 

 The use of multiple-choice response formats is common in psychology and other 

fields of inquiry. This format offers several advantages: Firstly, it provides respondents 

with a faster and less tedious response format in comparison to rating or rank-order 

question formats. Secondly, its use leads to higher survey completion rates while 

enabling the inclusion of a greater number of questions and/or response categories in a 

survey (Arimond & Elfessi, 2001; Dolničar & Leisch, 2001). Thirdly, the use of multiple-

choice question formats represents a simpler means of data collection/management thus 

reducing data entry costs (Javalgi, Whipple, McManamon & Edick, 1992). Finally, 

multiple-choice response formats are highly flexible in the sense that other types of 

categorical data such as binary, frequency table and sorting data can be regarded as 

special cases of this general format (e.g., Nishisato, 1994; Takane, 1980).   

Correspondence analysis (CA) and multiple correspondence analysis (MCA) 

represent descriptive multivariate techniques for exploring the associations inherent to 

multiple-choice questions (Benzécri, 1973; Gifi, 1990; Greenacre, 1984; Lebart, 

Morineau, & Warwick, 1984; Nishisato, 1980). The distinction between CA and MCA 

rests in the former’s focus on interrelationships between two multiple-choice questions 

whereas the latter emphasizes interrelationships among more than two multiple-choice 

questions. The reader is referred to Nishisato (2007) for an extensive historical overview 

of CA and MCA.  

Technically, CA and MCA are closely related to canonical correlation analysis 

(CCA) (Hotelling, 1936) and multiple-set canonical correlation analysis (MCCA) 

(Carroll, 1968; Horst, 1961; Meredith, 1964), respectively. CCA is used to describe 
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interrelationships between two sets of ‘continuous’ variables whereas MCCA captures 

those among more than two sets of continuous variables. In CCA and MCCA, a series of 

linear combinations or weighted composites of each set of variables, called the canonical 

variates, are obtained in such a way that they are mutually orthogonal to each other 

within the same set of linear combinations while remaining maximally correlated with 

different set(s) of linear combinations. These correlations between the variates are termed 

canonical correlations.  

CA and MCA aim to construct linear combinations of the ‘response categories’ of 

multiple-choice questions in the same way as in CCA and MCCA, respectively. Thus 

they treat a single response category of each multiple-choice question as one variable in 

each set of variables in CCA and MCCA. CA and MCA typically display the weights for 

the linear combinations of response categories jointly in a low-dimensional graphical 

map. By representing interrelationships among the response categories of multiple-choice 

questions in the map, CA and MCA have proved useful to both practitioners and 

academics alike (Hoffman, de Leeuw, & Arjunji, 1994). Moreover, they are 

nonparametric approaches and therefore do not require the a priori and correct 

specification of the distribution underlying multiple-choice data. Thus, CA and MCA are 

popular mapping methods that describe the association structures in multiple-choice data 

without recourse to stringent distribution assumptions (Green, Krieger, & Carroll, 1987). 

The purpose of this chapter is to provide an account of the technical 

underpinnings and applications of CA and MCA. As stated earlier, when data are in the 

form of multiple-choice questions, CA and MCA may be regarded as special cases of 

CCA and MCCA, respectively. Hence, we will begin with descriptions of CCA and 
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MCCA so as to facilitate understanding of CA and MCA. Subsequently, we shall discuss 

two latest extensions of MCA – regularized MCA and a combined approach to MCA and 

a hard-clustering technique (c-means) for accommodating cluster-level respondent 

heterogeneity. 

  

2. Correspondence Analysis 

2.1. Canonical Correlation Analysis 

Canonical correlation analysis (CCA) aims to extract linear combinations from 

each of two sets of continuous variables which are simultaneously: (1) correlated as 

highly as possible with a different set of linear combinations and (2) uncorrelated within 

the same set. Let  and denote n by1X 2X p and n by q matrices of variables, respectively, 

where n is the number of respondents, and p and q are the numbers of variables. Assume 

that  and  are mean-centered, indicating that each column mean is eliminated from 

the individual cases of the column as follows: Let  and  denote the original, 

uncentered data matrices. Then,

1X 2X

1Z 2Z

11 QZX =  and 22 QZX = , where  and I is an 

identity matrix and 1 is an n by 1 vector of ones.  

'111IQ −−= n

Let . Note that21'XXJ = QQQ =' , and we have 

 Let  and  denote 

p by d and q by d matrices consisting of canonical weights assigned to the variables (= 

columns) of  and , respectively, where d ≤ min(p,q). Then, 

.''')'(''' 21
1

212
1

12121 Z11ZZZZ11IZQZZXXJ −− −=−=== nn 1W 2W

1X 2X 111 WXF =  and 

 indicate the linear combinations or canonical variates of  and , 

respectively.  

222 WXF = 1X 2X
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The objective of CCA is to determine  and  in such a way that the resultant 

canonical variates, F

1W 2W

1 and F2, are maximally correlated between them and are 

uncorrelated within each. This problem is equivalent to maximizing the following 

criterion:  

)'(trace)''(trace),( 212211211 JWWWXXWWW ==φ ,                      (1) 

with respect to  and , subject to the within-set orthonormality constraints 

 and 

1W 2W

IFFWXXW == 111111 ''' IFFWXXW == 222222 '''  (e.g., ten Berge, 1993, p. 53). 

This maximization criterion can be re-expressed as 

 ,                            (2) ))'()'('(trace),( 2
2/1

22
2/1

111211 MXXJXXMWW −−=φ

where  and , subject to the constraints 

 (ten Berge, 1993, p.53). Thus, maximizing (2) with respect to M

1
2/1

111 )'( WXXM = 2
2/1

222 )'( WXXM =

IMMMM == 2211 '' 1 

and M2 is equivalent to solving the following singular value decomposition (SVD) 

problem: 

( ) ')'()'(SVD 2/1
22

2/1
11 ΓΛΣXXJXX =−− ,                                  (3) 

where Γ and Σ are matrices of row and column singular vectors, respectively, with the 

orthonormality property IΣΣΓΓ == '' , and Λ is a diagonal matrix consisting of singular 

values (λ’s) as elements in descending order. Then, M1 = Γ and M2 = Σ. In turn, the 

canonical weights for CCA can be obtained by:  

ΓXXW 2/1
111 )'( −=  and .                              (4) ΣXXW 2/1

222 )'( −=

Moreover, each singular value in Λ is equivalent to the canonical correlation between a 

pair of the canonical variates from each of the two sets of variables.  
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This approach to CCA involving (2), (3), and (4) is also known to be equivalent to 

the generalized singular value decomposition (GSVD) of the following matrix: 

1
22

1
11 )'()'( −−= XXJXXC                                                 (5) 

with  and  as row and column metric matrices, respectively (see Greenacre, 

1984; Takane & Hwang, 2002). 

11'XX 22 'XX

 

2.2. Correspondence Analysis 

CA can be viewed as a special case of CCA where  and  are n by and n 

by q ‘indicator’ matrices of two multiple-choice questions, respectively, where p and q 

indicate the numbers of the response categories to the two questions. Here, an indicator 

matrix represents a data format where 1 is assigned to the response category chosen by a 

respondent and 0 to the other response categories of non-choice for each question. To 

illustrate, consider that five respondents are measured on two multiple-choice questions 

(Q1 and Q2) with three response categories each, as displayed in the left-hand table 

below. This table simply presents which category is chosen by each respondent. The two 

multiple-choice questions in this condensed format can be transformed into two indicator 

matrices (Z

1Z 2Z p

1 and Z2), as shown in the right-hand table below. 

Q1 Q2 
1 
2 
2 
3 
1 

2 
3 
1 
1 
3 

Z1 Z2
1 0 0 
0 1 0 
0 1 0 
0 0 1 
1 0 0 

0 1 0 
0 0 1 
1 0 0 
1 0 0 
0 0 1 

 

Let  and denote diagonal matrices of the column sums of 

 and , respectively. Again,  and  represent the mean-centered matrices of  

111 'ZZD = 222 'ZZD =

1Z 2Z 1X 2X 1Z
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and , respectively. CA aims to choose weights, W2Z 1 and W2, assigned to the response 

categories (columns) of  and  in the same way as in CCA. This in turn involves the 

calculation of the GSVD of C in (5) with metric matrices  and . Note that in 

CA,  and  in C can be replaced by D

1X 2X

11'XX 22 'XX

11'XX 22 'XX 1 and D2, respectively, because the data 

are presented in the form of indicator matrices (refer to Takane & Hwang, 2002).  

Thus, CA is equivalent to calculating the GSVD of the following matrix: 

1
2

1
1

1
22

1
11 )'()'( −−−− == JDDXXJXXC ,                                    (6) 

with D1 and D2 as row and column metric matrices, respectively. As described earlier, 

this GSVD involves solving the following SVD problem: 

( ) 'SVD 2/1
2

2/1
1 ΓΛΣJDD =−− .                                           (7) 

Then,  and .  In CA, these canonical weights are called the 

standard coordinates of the response categories of each multiple-choice question. Again, 

Λ contains singular values in descending order.  

ΓDW 2/1
11
−= ΣDW 2/1

22
−=

If the matrix C in (6) is divided by n, a more familiar formulation of CA in the 

literature is obtained as follows: 

                             (8) 

,)'(

)'''(
1

2
1

1

1
221

1
21

11
1

1
2

1
1

11

−−

−−−−

−−−−

−=

−=

=

DrcPD

DZ11ZZZD

JDDC

nn

nn

where  is the so-called p by q correspondence matrix (= the frequency table 

of two multiple-choice questions/n),  is a p by 1 vector of row masses (row 

totals of the frequency table /n),  is a 1 by q vector of column masses (column 

11
1 'ZZP −= n

1Zr '1
1−= n

2
1 '' Z1c −= n
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totals of the frequency table/n) (e.g., Blasius & Greenacre, 1994). The GSVD of (8) result 

in the same standard coordinates as those from the GSVD of (6).  

Dual scaling (Nishisato, 1980) provides essentially the same solutions as those in 

CA, although it optimizes a different criterion to obtain W1 and W2. It aims to determine 

each column of W1 and W2 successively by maximizing the corresponding squared 

correlation ratio η, i.e., the between-subject sum of squares divided by the total sum of 

squares in ANOVA. As an example, the first column of W2, say w2, is obtained by 

maximizing:  

22

2
1

2
22 '

'')(
wDw
JwDJww

c

r
−

==ηφ .                                          (9) 

By setting the derivative of (9) with respect to w2 (divided by 2) equal to zeros, we have 

,)'(
)'(

)'(

)'(

')(
2
1

2

2
2/12/112/1

2
2/12/12/11

2
1

22
1

2

22

0mIAA
wDIJDDJD

wDDJDDJ

wDJDJ

wDJwDJ
w
w

=−=
−=

−=

−=

−=
∂

∂

−−−

−−

−

−

η
η

η

η

ηφ

ccrc

cccr

cr

cr

                              (10) 

where  and . Solving (10) comes down to calculating the 

eigenvalue decomposition (EVD) of  as in principal components analysis (PCA). The 

first eigenvector of  equals to m

2
2/1

2 wDm c= 2/12/1 −−= cr JDDA

AA'

AA' 2. Then, , which is equivalent to the 

first column of W

2
2/1

2 mDw −= c

2 in CA. By a similar procedure, the first column of W1, say w1, is 

obtained by solving 0mIAA =− 1)'( η , where . The first eigenvector of 

equals to m

1
2/1

1 wDm r=

'AA 1. Then, , which is equivalent to the first column of W1
2/1

1 mDw −= r 1 in 
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CA. The next columns of W1 and W2 are successively obtained by eliminating the effects 

of the previous solutions from  and , respectively (see Nishisato, 1994, p. 105).  AA' 'AA

In CA, the so-called principal coordinates (Greenacre, 1984, p.90) are obtained 

by post-multiplying the standard coordinates by Λ:  

ΓΛDW 2/1
11

~ −=  and .                                     (11) ΣΛDW 2/1
22

~ −=

Thus, these principal coordinates are simply the standard coordinates rescaled by singular 

values. Note that they can be re-expressed as 

21
1

11 '~ FXDW −=  and 12
1

22 '~ FXDW −= .                                   (12) 

Equation (12) is derived from 

21
1

1221
1

1
2/1

221
2/1

1
2/1

1
2/1

1
2/1

11 '''~ FXDWXXDΣDXXDDΣΓΛΣDΓΛDW −−−−−−− ===== '  ( 2
~W is 

also derived in a similar way). This indicates that the principal coordinates for one 

multiple-choice question are obtained by regressing the canonical variates of the other 

question onto the question in a way similar to estimating regression coefficients in linear 

regression analysis (Hirschfeld, 1935). This is called the barycentric principle or dual 

relations (Nishisato, 1980) in CA. Roughly speaking, this principle holds that the 

principal coordinates for one multiple-choice question depend on the canonical variates 

(and in turn the standard coordinates) of the other question. 

The results of CA are graphically displayed in a low-dimensional space. In 

practice, the principal coordinates for two multiple-choice questions are jointly displayed 

in a low-dimensional space. This is called the symmetric map. The principal coordinates 

in this map are comparable to each other given that they are expressed in the same unit. 

Also, as shown above, the principal coordinates for one multiple-choice question rely on 

those for the other multiple-choice questions, i.e., the barycentric principle. More 
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precisely, each of them is a weighted average of the canonical variates of the other 

multiple-choice. Thus, the principal coordinates may be interpreted in terms of closeness, 

e.g., response categories positioned close together are similar to each other. However, it 

is noteworthy that no distance-based interpretations are feasible between the principal 

coordinates for different multiple-choice questions because W1 and W2 are involved in 

different data sets, X1 and X2, respectively, so that the computation of the distance 

between them is not justifiable (e.g., Greenacre, 1994; Lebart, Morineau, & Warwick, 

1984, Nishisato, 2007).  

As in CCA and other data-reduction techniques, CA also invites a focus on the 

first few dimensions for interpretation. The number of dimensions may be determined in 

various ways. For example, as in PCA, we may select the dimensions whose eigenvalues 

(= squared singular values) explain a majority of the total sum of eigenvalues. In CA, the 

eigenvalues are often called inertias. Also, a scree plot of inertias against dimensions 

may be examined to identify an elbow point in the trajectory of eigenvalues. Furthermore, 

other criteria such as graphical and/or substantive interpretability may also be considered 

for dimensionality selection. For instance, in practice, a two-dimensional solution is 

usually displayed for facilitating interpretation.  

Other than these heuristics for dimensionality selection, the permutation test may 

be employed for directly testing the significance of canonical correlations (Takane & 

Hwang, 2002). The permutation test is beneficial because it does not rely on any 

distributional assumptions on the data. In principle, this test is applied only for testing the 

significance of the largest canonical correlation. However, the significance of subsequent 

canonical correlations can also be examined by eliminating the effects of previous 
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canonical correlations from the data sets through the procedure discussed below (see 

Legendre & Legendre, 1998; ter Braak, 1990).  

The permutation test based on Manley’s (1997) procedure for testing the 

significance of the largest canonical correlation can be carried out as follows: 

Step 1: Apply CA to X1 and X2, and compute the observed value of Bartlett’s (1938) 

statistic oϕ , given by 

∑
=

−⎥⎦
⎤

⎢⎣
⎡ ++−−−=

J

j
jo qpN

1

2 ),1log()1(
2
1)1( λϕ                             (13) 

where J = min(p,q), and λj is a sample canonical correlation obtained from CA.  

Step 2: Randomly permute the cases (or randomly select one case at a time without 

replacement) of one data matrix, say X2, so as to create a ‘permuted’ sample of the data 

matrix, denoted by .  *
2X

Step 3: Apply CA to X1 and , and calculate the permuted Bartlett’s statistic, denoted 

by 

*
2X

pϕ . 

Step 4: Repeat Steps 2 and 3 B times (e.g., B = 1,000). This results in the null distribution 

of pϕ  , i.e., the distribution of pϕ  under the independence assumption between two data 

sets. 

Step 5: Compute the so-called Permutation Achieved Significance Level (PASL) which 

is equal to the probability that pϕ  ≥ oϕ . 

If the PASL is less than .05, we may reject the null hypothesis of independence at a 5% 

level, indicating that the largest canonical correlation is significantly different from zero.  

To test the second largest canonical correlation, we remove the effect of the 

largest canonical correlation from X1 and X2. Specifically, the effect of the largest 
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canonical correlation can be eliminated from X1 and X2 by 111 ΩXX =  and , 

respectively, where  and

222 ΩXX =

11111 '' XXwwIΩ −= 22222 '' XXwwIΩ −= . As a result, the 

second largest canonical correlation now becomes the largest one because the effect of 

the latter disappears in the data. Thus, the same permutation procedure described above 

can be carried out to test the significance of the second largest canonical correlation. The 

same strategy is utilized for testing the significance of subsequent canonical correlations. 

This approach is essentially the same as that of Legendre and Legendre (1998). Note that 

although the above procedure employs Bartlett’s statistic, other statistics such as Roy’s 

max lambda (nλ2) can also be used for the permutation test.  

The bootstrap method (Efron, 1979) can be used for assessing the reliability of the 

weight estimates of CA. In this method, a number of random samples (bootstrap samples) 

of X1 and X2 are repeatedly sampled from the original data matrices with replacement. 

CA is applied to each bootstrap sample so as to obtain the estimates of weights. Then, the 

mean and the variance-covariance of the estimates are calculated across entire bootstrap 

samples. They are used for the computation of the standard errors or the construction of 

the confidence regions (Ramsay, 1978) of the estimates, which indicate how reliable the 

estimates are. 

 
2.3. Application: The 2000 Canadian Federal Election Data 

The present example is part of the Canadian Election Survey (CES) conducted by 

the Institute for Social Research at York University to investigate political opinions or 

preferences of Canadians during the 2000 federal election campaign. Telephone 

interviews were given to randomly chosen Canadian citizens of voting age (18 years of 

age or older), which began on October 24, 2000 and terminated at the last day of the 
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campaign - November 26, 2000.  

Two items were selected from the CES data for this example. Item 1 asked the 

province where respondents live, and item 2 asked which party respondents would vote 

for in the upcoming election. We removed the respondents who refused to answer the 

second question from the original data. Item 1 consisted of 10 Canadian provinces from 

East to West: 1 = Newfoundland (NF), 2  = Prince Edward Island (PE), 3 = Nova Scotia 

(NS), 4 = New Brunswick (NB), 5 = Quebec (QC), 6 = Ontario (ON), 7 = Manitoba 

(MA), 8 = Saskatchewan (SK), 9 = Alberta (AB), 10 = British Columbia (BC). Item 2 

comprised 10 response categories: 1 = Other, 2 = Liberal Party, 3 = Alliance Party, 4 = 

Conservative Party, 5 = New Democratic Party, 6 = Bloc Quebecois Party, 7 = Green 

Party, 8 = Will not vote, 9 = None, 10 = Don’t know/undecided. The sample size was 

3185. 

Table 1 provides the inertias (squared canonical correlations) estimated from CA 

and their percentages of the total inertia. It was found from the permutation test with 

1000 permuted samples that the first four canonical correlations turned out to be 

significant, although the last two significant ones appear quite small. This may be due to 

the large sample size. In fact, the first two inertias accounted for about 87% of the total 

inertia. This suggests that the two-dimensional solution is likely to capture a majority of 

the associations among the response categories of the two items.  

_____________________ 

Insert Table 1 about here 

_____________________ 
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Figure 1 displays the two-dimensional symmetric plot of the principal coordinates 

of the response categories of the two items. To make the figure concise, the coordinates 

of the ten provinces in item 1 are labelled NF, PE, NS, NB, QC, ON, MA, SK, AB, and 

BC. The order of the labels is equivalent to that of the categories in item 1. The 

coordinates of the ten response categories in item 2 are represented by their category 

numbers from 1 to 10. The symbol ‘+’ indicates the origin of the two-dimensional plot.  

_____________________ 

Insert Figure 1 about here 

_____________________ 

In Figure 1, ‘QC’ is closely located with ‘1 (Other)’, ‘6 (Bloc Quebecois)’, ‘8 

(Will not vote)’, and ‘9 (‘None’). This suggests that Quebec residents were more likely to 

vote for Bloc Quebecois among federal parties in the upcoming election. Moreover, they 

seemed to show less preference to current federal parties or were more likely to give up 

voting in the election, compared to those in other provinces. In addition, they were more 

likely to choose other parties than extant federal parties compared to other provinces’ 

residents. On the other hand, ‘AB’ is very close to ‘3 (Alliance)’, indicating that the 

residents of Alberta were more likely to support the Alliance Party. ‘BC’ and ‘SK’ appear 

to close to ‘7 (Green Party)’, suggesting that the major supporters for the party resided in 

the two provinces. Furthermore, ‘ON’ and ‘MA’ seem to be closely located with ‘2 

(Liberal Party)’, ‘5 (New Democratic Party)’, and ‘10 (Don’t know/undecided)’. Thus, 

the residents of the two provinces were more likely to vote for a centrist (Liberal) or 

centrist-left (New Democratic) party. Also, the two provinces were likely to entail more 

swing voters. Finally, the provinces on the east coast of Canada, including ‘PE’, ‘NS’, 
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‘NB’ , and ‘NF’, appear to be close to ‘4 (Conservative)’ as well as ‘5 (New 

Democratic)’. Thus, the residents in these provinces were more inclined towards the 

Conservative Party or the New Democratic Party than those in other provinces. 

 

3. Multiple Correspondence Analysis 

Multiple correspondence analysis (MCA) is used to describe interrelationships among 

more than two multiple-choice questions.  As stated earlier, MCA may be regarded as a 

special case of multiple-set canonical correlation analysis (MCCA) (Carroll, 1968; Horst, 

1961; Meredith, 1964). Thus, we begin with the description of MCCA.   

 

3.1. Multiple-set Canonical Correlation Analysis (MCCA) 

Let  denote n by  matrix of variables, where  is the number of variables 

( ). Assume that  is mean-centered. Let  denote a  by d matrix of 

canonical weights assigned to the variables of . Then, 

kX kp kp

Kk ,,1= kX kW kp

kX [ ]KXXXX ,,, 21=  is an n by 

p row block matrix consisting of side by side, where , 

 is a p by d column block matrix stacking  one below another, 

and  is a block diagonal matrix consisting of 

as the k-th diagonal block. 

kX ∑
=

=
K

k
kpp

1

[ '',,',' 21 KWWWW = ] kW

]',,','[ 2211 KKdiag XXXXXXΦ =

kk XX '

The objective of MCCA is to determine  in such a way that the resultant 

canonical variates are maximally correlated among different sets of canonical variates 

while uncorrelated within the same set. This problem is equivalent to maximizing the 

following criterion:  

kW
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)''(trace)(3 XWXWW =φ ,                                          (14) 

with respect to W, subject to the within-set orthogonality constraints  

(Carroll, 1968). This maximization criterion can be re-expressed as: 

IΦWW ='

 ,                                  (15) )''(trace)( 2/12/1
2 MXΦXΦMW −−=φ

where , subject to the constraint WΦM 2/1= IMM =' . Thus, maximizing (15) with 

respect to M is equivalent to obtaining the following eigenvalue decomposition (EVD): 

( ) ''EVD 22/12/1 ΣΣΛXΦXΦ =−− ,                                      (16) 

where and ΛIΣΣ =' 2 is a diagonal matrix consisting of eigenvalues (squared singular 

values) as elements. The EVD in (16) is equivalent to the singular value decomposition 

(SVD) of , whose singular values become equal to the eigenvalues from 

(16). Then, M = Σ. In turn, W is obtained by             

2/12/1 ' −− XΦXΦ

ΣΦW 2/1−= .                                                     (17) 

This approach to MCCA involving (15), (16) and (17) is known to be equivalent 

to the generalized eigenvalue decomposition (GEVD) of the following matrix:  

11 ' −−= XΦXΦG                                                     (18) 

with Φ as both row and column metric matrices (Greenacre, 1984; Takane & Hwang, 

2002).   

MCCA can be alternatively formulated through the criterion for homogeneity 

analysis or K-set canonical correlation (Gifi, 1990; Yanai, 1998). This is equivalent to 

minimizing the following criterion: 

,)(SS),(
1

4 ∑
=

−=
K

k
kkk BXFBFφ                                        (19) 
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with respect to F and BBk, subject to IFF =' , where SS(H) = trace( ) , F is an n by d 

matrix of canonical variates, and Bk

HH '

B

]

 is a pk by d matrix of canonical weights. Let 

 denote a column block matrix stacking B[ '',,',' 21 KBBBB = Bk one below another. If F 

is considered to be fixed, minimizing (19) reduces to solving the least-squares estimation 

problem with respect to BkB  as in linear regression analysis. Thus, we obtain 

                                     , or collectively, FXXXB ')'(ˆ 1
kkkk

−= FXΦB 'ˆ 1−= .                 (20)      

By inserting (20) to (19), we obtain 

.)')'((SS)(
1

1
115 ∑

=

−−=
K

k
kk FXXXXFFφ                                  (21) 

Let Ωk  = ' .  Note that)'( 1
kkkk XXXX −

kkk ΩΩΩ ='  and kk ΩΩ =' . This criterion can be 

re-expressed as:  

.'

)''(

)(SS)(

1

1

1
5

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−=

−=

−=

∑

∑

∑

=

=

=

FΩF

FΩFFF

FΩFF

P

p
k

K

k
k

K

k
k

traceKd

trace

φ

                                      (22) 

Thus, minimization of (22) with respect to F is equivalent to maximizing  

        .                                               (23) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡∑
=

FΩF
K

k
ktrace

1

'

This problem reduces to calculating the eigenvalue decomposition of ∑ whose 

eigenvectors are equal to F (Yanai, 1998). The matrix B in (20) is related to W in (17) by 

B = WΛ.  

=

K

k
k

1
Ω
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CCA may be viewed as a special case of MCCA when there are only two sets of 

variables (K = 2). Specifically, let [ ]21, XXX = , and [ ]'',' 21 WWW = . Then, (16) can be 

expressed as 
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(24) 

From (24), it follows that  and , and ΛΓΦW 2/1
11
−= ΣΦW 2/1

22
−= 2 = I + Λ (ten Berge, 

1979; also see Gifi, 1990, p. 273). This indicates that the canonical weights from CCA 

are equivalent to those from MCCA when K = 2.  

 

3.2. Multiple Correspondence Analysis (MCA) 

MCA can be viewed as a special case of MCCA where  is an n by  

‘indicator’ matrix of a multiple-choice question, where  indicates the number of 

response categories of the question. In MCA, the metric matrix for MCCA, i.e., Φ, can be 

replaced by  which is a block diagonal matrix consisting of 

as the k-th diagonal block, similarly to the CA case.  

kX kp

kp

],,,[ 21 Kdiag DDDD =

kkk ZZD '=

Thus, MCA is equivalent to calculating the generalized eigenvalue decomposition 

(GEVD) of the following matrix:  

11 ' −−= XDXDG                                                     (25) 
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with D as both row and column metric matrices. In MCA, is called the centered Burt 

table: , where is called the (uncentered) Burt table. 

As described earlier, this GEVD involves solving the following SVD problem: 

XX'

Z11ZZZQZZXX ''''' 1−−== n ZZ'

( ) ''SVD 22/12/1 ΣΣΛXDXD =−− .                                        (26) 

Then, the standard coordinates W are obtained by  

ΣDW 2/1−= .                                                   (27) 

The principal coordinates can be obtained by             

ΣΛDW 2/1~ −= .                                                 (28) 

Thus, B in (20) is equivalent to W~ in (28) in MCA, i.e., the principal coordinates of 

response categories. 

As shown above, CCA can be viewed as a special case of MCCA when K = 2. 

Similarly, CA is also a special case of MCA when there are only two multiple-choice 

questions. The only difference between the two approaches is in the eigenvalue value 

matrix, thus rendering principal coordinates scaled differently from each other, i.e., 

2/12/1
111 )(~ ΛIΓDBW +== − and 2/12/1

222 )(~ ΛIΣDBW +== −  in MCA. 

In MCA, the proportions of the total inertia (squared singular values) accounted 

for by the inertias tend to be underestimated because the total inertia is inflated due to 

fitting both diagonal and off-diagonal blocks of the Burt table (Greenacre, 1984). One 

way of dealing with this problem is to adjust the inertias greater than 1/K using 

Benzécri’s (1979) formula, quoted in Greenacre (1984, p.145). Let jγ
~  denote the 

adjusted inertia for the j-th inertia, γj. Then, the formula is given by 
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Then, the adjusted inertias are expressed as percentages of the following average off-

diagonal inertia (Greenacre, 1993):  
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In MCA, the same heuristics as those for CA described in Section 2.2 may also be 

used for dimensionality selection. In particular, a similar permutation procedure may be 

applied to MCA, in which one data matrix is fixed while the other data matrices are 

separately permuted at random. Then, the Permutation Achieved Significance Level 

(PASL) can be calculated based on Roy’s max lambda (nλ2) in order to test the 

significance of the largest inertia. As in CA, the bootstrap method can be adopted for 

examining the reliability of the weight estimates of MCA.  

   

3.3. Application: The 2000 Canadian Federal Election Data 

The present example consists of three items from the 2000 Canadian Election Survey 

(CES). The first two items are the same ones used in Section 2.3 for the illustration of 

correspondence analysis, i.e., the province of residence and the party respondents are 

likely to vote for in the upcoming election in 2000. The third item asked which party 

respondents actually voted for in the previous federal election in 1996. We selected only 

the respondents who recalled if they voted in the 1996 federal election and also answered 

the second and third questions. In the example, the first item (province of residence) 

involved the same 10 provinces. The second item consisted of 9 response categories: 1 = 

Liberal Party, 2 = Alliance Party, 3 = Conservative Party, 4 = New Democratic Party, 5 = 
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Bloc Quebecois Party, 6 = Green Party, 7 = Will not vote, 8 = None, 9 = Don’t 

know/undecided. The last item consisted of 8 response categories: 1 = Liberal Party, 2 = 

Conservative Party, 3 = New Democratic Party, 4 = Reform Party, 5 = Bloc Quebecois 

Party, 6 = Annulled votes, 7 = Green Party, 8 = Other. The sample size was 2213. 

Table 2 shows the adjusted inertias and their percentage of the total adjusted 

inertia. It is shown that the adjusted inertias appeared to gradually decrease after the first 

three inertias. On the other hand, the first seven inertias turned out to be significant 

according to the permutation test with 1000 permuted samples. This large number of 

significant inertias may be due to the large sample size. Here, the two dimensional 

solutions of the response categories are only provided so as to facilitate the interpretation 

of the association among the categories, although it seems to be adequate to look into 

higher dimensional solutions as well.  

_____________________ 

Insert Table 2 about here 

_____________________ 

Figure 2 displays the two-dimensional symmetric plot of the principal coordinates 

of the response categories of the three items. Again, the estimated coordinates of the ten 

provinces in item 1 are labelled NF, PE, NS, NB, QC, ON, MA, SK, AB, and BC. The 

order of the labels is equivalent to that of the categories in the item. The coordinates of 

the nine response categories in item 2 are represented by two digit numbers from 21 to 

29. The estimated coordinates of the eight response categories in item 3 represented by 

two digit numbers from 31 to 38. The order of the two-digit labels is consistent to that of 
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the categories in items 2 and 3. The symbol ‘+’ indicates the origin of the two-

dimensional plot.  

In Figure 2, ‘QC’ is closely located with such categories as ‘25 (Bloc Quebecois - 

2000)’, ‘35 (Bloc Quebecois -1997)’, ‘27 (Will not vote in 2000)’, ’36 (Annulled vote in 

1997)’, and ‘28 (None in 2000)’. This suggests that Quebec residents were more 

supportive for Bloc Quebecois than other federal parties in both 1997 and 2000 elections. 

Moreover, they showed or were more inclined to no voting in both elections than those in 

the other provinces. Additionally, they seemed to show less preference to the extant 

federal parties than those in other provinces.  On the other hand, ‘AB’ is close to ‘22 

(Alliance Party in 2000)’ and ’34 (Reform Party in 1997). This indicates that the 

residents of Alberta were more likely to vote for the Reform Party in 1997 and tended to 

be more supportive for the Alliance Party in 2000, which was the successor to the Reform 

Party.   

‘BC’ and ‘SK’ appear to close to ‘26 (Green Party in 2000)’, ‘37 (Green Party in 

1997)’, ‘32 (Conservative Party in 1997)’, ‘23 (Conservative Party in 2000)’. This 

suggests that residents in the two provinces were more supportive for the Green Party and 

the Conservative Party in both elections. Furthermore, ‘ON’, ‘MA’, ‘PE’,’NS’, ‘NF’, and 

‘NS’ seem to be closely located with ‘31 (Liberal Party in 1997)’, ‘21 (Liberal Party in 

2000)’, ‘24 (New Democratic Party in 2000)’, ’33 (New Democratic Party in 1997), and 

‘29 (Don’t know/undecided in 2000)’, ’38 (Other in 1997)’, and ‘23 (Conservative Party 

in 2000)’. Thus, the residents of these provinces were likely to show preferences for other 

parties besides the parties Reform/Alliance and Bloc Quebecois in both elections.  

_____________________ 
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Insert Figure 2 about here 

_____________________ 

 

4. Recent Developments 

In this section, we introduce two latest extensions of multiple correspondence analysis – 

regularized MCA and a combined use of MCA and c-means for capturing cluster-level 

respondent heterogeneity. 

 

4.1. Regularized multiple correspondence analysis  

A regularized version of MCA has recently been proposed that often renders the 

estimates of MCA closer to the population parameters on average, compared to ordinary 

or non-regularized MCA (Takane & Hwang, 2006). This regularized MCA is easy to 

apply and also computationally simple as will be seen shortly.  

The basic motivation of regularized MCA comes from ridge regression (Hoerl & 

Kennard, 1970). Ridge regression is an efficient tool for dealing with the problem of 

multicollinearity in multiple regression analysis, i.e., high correlations among predictor 

variables. Ridge regression may be described as follows: let X and y denote a matrix of 

predictor variables and a vector of dependent variable, respectively. Let b denote a vector 

of regression coefficients. Then, the ordinary least squares estimates of regression 

coefficients are given by  

.')'(ˆ 1 yXXXb −=                                                      (31) 

In ridge regression, on the other hand, regression coefficients are estimated by  

,')'(ˆ 1 yXIXXb −+= ωr                                                (32) 
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where the additional scalar, ω, is called the ridge parameter. The ridge parameter 

typically takes a small positive value. The least squares estimator is known to be the best 

(minimum variance) unbiased estimates under mild distributional assumptions on errors. 

However, it may turn out to be poor estimates of regression coefficients (associated with 

large variances) when the matrix  in (31) is ill-conditioned (nearly singular) due to 

multicollinearity. The ridge estimator, on the other hand, is biased but is more robust 

against multicollinearity. A small positive number added to the diagonals of tend to 

provide more stable estimates than the ordinary least squares counterparts.  

XX'

XX'

The quality of parameter estimates is measured by the squared Euclidean distance 

between the estimates and parameters. If we take the expected value of the squared 

distance over data, we obtain the mean squared error (MSE). The MSE can be 

decomposed into two distinct components. One is the squared bias (the squared distance 

between the population parameters and the means of the estimates), and the other is the 

variance (the average distance between individual estimates and the means of the 

estimates). The least squares estimates involve no bias, but they may have large variances 

particularly in the presence of multicollinearity. On the other hand, the ridge estimates 

are biased but are usually associated with a smaller variance. If the variance is small 

enough, the ridge estimates are likely to have a smaller MSE than their least squares 

counterparts. In spite of their bias, therefore, the ridge estimates are on average closer to 

the population parameters. Indeed, for a certain range of values of ω, it is known that 

ridge estimators always have a smaller MSE than the ordinary least squares estimates, 

regardless of the existence of the multicollinearity problem (Hoerl & Kennard, 1970). 

Regularized MCA applies this idea of ridge regression to MCA so as to obtain better 
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estimates.  

Let Ω denote a block diagonal matrix consisting of Ωk in (22) as the k-th
 
diagonal 

block. Let us define   

ΩDD ωω +=)( .                                                  (33) 

In (33), the value of ω is assumed to be prescribed by some cross validation method, as 

will be discussed later.  

In regularized MCA, the following criterion is maximized  

))'('(trace)(6 WΩXXWW ωφ += ,                                    (34) 

with respect to W, subject to IWDW =)(' ω . Similarly to the case of ordinary MCA, 

maximizing (19) reduces to calculating the generalized eigenvalue decomposition of the 

following matrix:  

,)()'()( 11 −− + ωωω DΩXXD                                             (35) 

with )(ωD  as both row and column metric matrices (Takane & Hwang, 2006).   

Once the value of the ridge parameter ω is chosen, therefore, the computation of 

regularized MCA is as simple as ordinary MCA. In regularized MCA, the G-fold cross-

validation method (Hastie, Tibshirani, & Friedman, 2001) may be used for selecting an 

optimal value of the ridge parameter. In this cross-validation method, the data set at hand 

are randomly divided into G sub-samples. One of the sub-samples is set aside, and the 

estimates of parameters are obtained from the remaining sub-samples. These estimates 

are then used to predict the cases in the sample set aside to assess the amount of 

prediction error. These steps are repeated G times, setting aside one of the G sub-samples 

at a time.  

More specifically, let  denote the g-th sample selected from X and )( gX
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)( g−X denote the remaining data after is eliminated from X ()( gX Gg ,,1= ). 

Regularized MCA is applied to 
 

)( g−X so as to obtain . Then, '  is 

calculated. This procedure is repeated for all G sub-samples, and all cross validated 

predictions  are collected in matrix

)( g−W )()()( ggg −− WWX

')()()( ggg −− WWX 1)( −ωXD . We then calculate  

,))()((SS)( )(,
11

ωωωωε DI
−− −= XDXD                                  (36) 

as an index of prediction error, where ))('()(SS )(, ωω HDHH traceDI = . We compare the 

values of ε(ω) for different values of ω (e.g., ω = 0, 1, 2, 5, 10, 20, 30), and choose the 

value of ω associated with the smallest value of ε(ω).  

Note that the above cross-validation procedure for determining an optimal value 

of ω is applied under the condition that the number of dimensions is already known in the 

regularized MCA solution. The permutation test may be used for dimensionality selection. 

The permutation test may be applied initially with ω = 0, i.e., ordinary MCA, by which a 

tentative dimensionality is determined, and subsequently the G-fold cross validation 

method is applied to select an optimal value of ω.  

To illustrate regularized MCA, we analyzed the data from Green and Krieger 

(1998). In the data, 25 consumers responded to three multiple choice items. The first item 

asked consumers to indicate which of four soft drinks they prefer: (1) Coke, (2) 7-up, (3) 

Dr. Pepper, and (4) Nehi Grape. The second item asked how much they spend on soft 

drinks per week: (1) Under $2.00, (2) $2.00 - $ 3.99, and (3) $4.00 and over. The last 

item asked consumers to indicate which snacks they prefer to eat with soft drinks: (1) 

Pretzels, (2) Peanuts, (3) M&M’s, (4) Fritos, and (5) Dried Fruits.   

We first applied ordinary/non-regularized MCA (i.e., ω = 0) to the data for 

comparative purposes. The permutation test with 1000 permuted samples was applied to 
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the data under this non-regularized case.  According to the permutation test, the first three 

inertias turned out to be significant. On the other hand, the adjusted inertias tended to 

decrease gradually after the first two. Moreover, the first two adjusted inertias explained 

about 91% of the total adjusted inertia, indicating that a two-dimensional solution 

accounted for a majority of the total variations among item categories. Thus, we chose 

dimensionality = 2. This in turn helped facilitate the interpretation of the solution.  

Figure 3 displays the two-dimensional plot of the estimated principal coordinates 

of the response categories of the three items from non-regularized MCA. Figure 3 also 

provides the 95% confidence regions of the estimated category points obtained by the 

bootstrap method with 1000 bootstrap samples. 

_____________________ 

Insert Figure 3 about here 

_____________________ 

In the figure, the estimated coordinates for item 1 are labelled ‘d1’, ‘d2’, ‘d3’, and ‘d4’, 

those of item 2 are labelled ‘m1’, ‘m2’, and ‘m3’, and those of item 3 are labelled ‘s1’, 

‘s2’, ‘s3’, ‘s4’, and ‘s5’. The order of the labels is equivalent to that of the categories in 

each item. The symbol ‘+’ indicates the origin of the two-dimensional space.  

The bottom right portion of the display contains the category point of ‘m3 ($4.00 

and over)’. This point seems closer to such item categories as ‘d4 (Nehi Grape)’, and ‘s4 

(Fritos)’. This suggests that heavier soft drinkers are more likely to consume Nehi Grape 

along with Fritos. On the other hand, the upper right portion of the display comprises the 

category point of ‘m1 (under $2.00)’. This point is closely located to such item categories 

as ‘d2 (7-Up)’ and ‘Dried Fruits (s5)’. This indicates that light soft drink users were more 
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likely to consume 7-up along with dried fruits. Finally, the middle left portion of the 

display appears associated with moderate users of soft drinks because it embraces the 

category point of ‘m2 ($2.00 - $3.99)’. This point is positioned closer to such item 

categories as ‘d1 (Coke)’, ‘d3 (Dr. Pepper)’, ‘s1 (Pretzels)’, ‘s2 (Peanuts)’, and ‘s3 

(M&M’s)’. This suggests that moderate soft drinkers appeared to prefer Coke and Dr. 

Pepper to other non-cola products, along with such snacks as Pretzels, Peanuts, and 

M&M’s.  

Given the predetermined dimensionality, regularized MCA was subsequently 

applied to the same data. The G-fold cross validation method was applied to find an 

optimal value of the ridge parameter. In particular, in this example, we set G = n. This 

procedure is called leaving-one-out method. The leaving-one-out method was used here 

because the sample size was small.  

The estimate of prediction error (ε) was found to be .2927 for ω = 0, .2914 for ω = 

.1, .2904 for ω = .2, .2898 for ω = .3, .2894 for ω = .4, .2893 for ω = .5, .2895 for ω = .6, 

.2898 for ω = .7, .2903 for ω = .8, .2918 for ω = 1.0, and .3053 for ω = 2.0. Thus, the 

optimal value of ω was chosen as .5.  

Figure 4 displays the two-dimensional plot of the estimated principal coordinates 

of the same response categories obtained from regularized MCA under ω = .5. It also 

exhibits the 95% confidence regions of the estimated category points obtained by the 

bootstrap method with 1000 bootstrap samples. As shown in Figure 4, the confidence 

regions appear almost uniformly smaller for the parameter estimates obtained from 

regularized MCA than those from the non-regularized counterpart, indicating that the 

parameters were more reliably estimated in the former.  
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_____________________ 

Insert Figure 4 about here 

_____________________ 

 

4.2. An extension of MCA for capturing cluster-level respondent heterogeneity 

The parameters of MCA are currently estimated by pooling the data across 

respondents under the implicit assumption that all respondents come from a single, 

homogenous group. However, it often seems more realistic to assume that respondents 

come from heterogeneous groups, so that they are different with respect to their choices. 

Such cluster-level respondent heterogeneity has been discussed from several different 

theoretical and modeling perspectives (e.g., Arabie & Hubert, 1994; Bagozzi, 1982; 

Kamakura, Kim & Lee, 1996).  

 MCA was recently extended to explicitly account for cluster-level heterogeneity 

in respondents’ preferences/choices (Hwang, Dillon, & Takane, 2007). Specifically, this 

approach combines MCA with the c-means algorithm (MacQueen, 1967) in a unified 

framework. The c-means algorithm is perhaps the most popular method for non-

overlapping clustering (Wedel & Kamakura, 1998). It is efficient in dealing with large 

data (Green, Carmone, & Kim, 1990). More importantly, the c-means algorithm turns out 

to be beneficial because it is easily combined with the homogeneity criterion for MCA in 

a single framework.  

We first discuss the technical underpinning of this unified approach in brevity. 

We then present an empirical application to illustrate the usefulness of the approach. 
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Let c denote the prescribed number of clusters. Let Π denote an n by c matrix of 

binary memberships, which allocates respondents into only one of c clusters (1 = member 

and 0 = non-member). Let Δ denote a c by d matrix of the centroids or mean values of 

clusters. Let 1α  and 2α  denote non-negative scalars.  

The objective of the proposed unified approach is to combine MCA and c-means 

into a single framework. This problem is equivalent to minimizing the following:  

),(SS)(SS),,,( 2
1

17 ΠΔFBXFΔΠBF −+−= ∑
=

ααφ
K

k
kkk                       (37) 

with respect to F, BBk, Π, and Δ, subject to IFF ='  and 121 =+αα . When 11 =α , the first 

term in (37) reduces to the homogeneity criterion for MCA in (19). When 12 =α , the 

second term is equivalent to the standard criterion used in the c-means clustering 

algorithm. By minimizing both criteria in (37) simultaneously, F is obtained in such a 

way that it recognizes the cluster structure that may be inherent in multiple-choice 

questions.  

 The values of 1α  and 2α are a priori specified by the investigator. By 

specifying 5.21 ==αα , the two terms for MCA and c-means are to be balanced. On the 

other hand, the two terms may be differently weighted for adjusting for their relative 

importance. For instance, we may wish to weigh the first term more heavily than the 

second term under the belief that data reduction is of more importance than clustering.  

 An alternating least squares algorithm (de Leeuw, Young, & Takane, 1976) is 

developed to minimize (37). In the algorithm, the unknown parameters, F, BBk, Π, and Δ, 

are updated alternately until convergence. The updates of one parameter matrix are 

obtained such that they minimize (37) in the least squares sense, while the others remain 
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fixed. Refer to Hwang et al. (2007) for the detailed description of the alternating least 

squares algorithm.  

 In effect, the alternating least squares algorithm monotonically decreases the 

value of criterion (37) which, in turn, is also bounded from below. The algorithm is 

therefore convergent. However, it does not guarantee that the convergence point is the 

global minimum. In particular, the c-means algorithm has been shown to be sensitive to 

local optima (Steinley, 2003). To safeguard against local minima, we repeat the 

alternating least squares procedure with a large number (say, 100) of random initial 

values for Π. (The initial values for Δ are obtained from Π.) We then compare the 

obtained function values after convergence and subsequently choose the solution 

associated with the smallest one. Besides Π (and Δ), MCA is applied to the original data 

and the resultant low-dimensional data are used as rational starts for F. The initial values 

for  are obtained on the basis of F. kB

In the proposed method, we need to decide a priori on the number of clusters, c, 

as well as the number of dimensions in the data, d. One simple approach consists in first 

selecting d by applying MCA to the data, and then deciding on the value of c by 

examining how the values of (37) change across different numbers of clusters (Wedel & 

Kamakura, 1998). It is recommended that the number of clusters be greater than the 

number of dimensions (Van Buuren & Heiser, 1989; Vichi & Kiers, 2001). In practice, 

non-statistical heuristics for evaluating the usefulness and relevance of clusters (e.g., 

cluster size, potential, interpretability, etc.) also plays an important role in deciding c 

(Arabie & Hubert, 1994; Wedel & Kamakura, 1998). 
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The example presented below was chosen for illustrative purposes. The data were 

part of the television program preference data presented in Adachi (2000). In this 

example, 100 Japanese undergraduate students (49 males and 51 females) were asked to 

provide their favourite TV program among six different program categories at each of 

three time points. The purpose of our analysis is to provide a low-dimensional 

representation of television viewing preferences while investigating whether groups of 

respondents exhibit qualitatively distinct patterns of choice responses to the different TV 

programs over time.  

The three time points correspond to i) the first year of elementary school (t = 1), 

ii) the first year of junior high school (t = 2), and iii) the freshman year at university (t = 

3).  In Japan, these time points usually correspond with ages 6-7, 12-13 and 18-20, 

respectively. The six TV program categories are: animation (a), cinema (c), drama (d), 

music (m), sports (s), and variety (v). Thus, we can describe these data as consisting of 

three multiple-choice questions corresponding to the three time points, each of which is 

composed of six response categories corresponding to the six different TV programs.  

At first, ordinary MCA was utilized so as to gain a basic understanding of the 

associations between variables and clusters. We chose d = 2 because the values of the 

adjusted inertias appeared to decrease slowly after the first two. The first two adjusted 

inertias explained about 84% of the adjusted total inertia. Next, with d fixed, we 

investigated changes in the value of (37) by varying numbers of clusters. The values of 

(37) appear to decrease gradually beyond three clusters, suggesting that no substantial 

changes in the criterion values are obtained by having more than three clusters. Thus, c = 

3 was adopted for our analysis.   
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Next, given the predetermined numbers of dimensions and clusters, the proposed 

unified approach was applied to the same data. Figure 5 displays the two-dimensional 

plot for the estimated principal coordinates of the response categories of the two 

questions as well as the estimated centroids of three clusters obtained from the unified 

approach. 

_____________________ 

Insert Figure 5 about here 

_____________________ 

In this map, the estimated response categories at each time were represented by a two-

digit label, in which the first digit indicates one of the six TV programs and the second 

corresponds to the time point number (t = 1, 2, 3). For example, ‘a1’ = animation at t = 1, 

‘c2’ = cinema at t = 2, ‘d3’ = drama at t = 3, and so forth. Moreover, the three centroids 

were labelled ‘CL1’, ‘CL2’, and ‘CL3’. The symbol ‘+’ represents the origin of the 

display. 

In Figure 5, the first cluster of respondents, whose centroid is represented by 

‘CL1’, is located on the bottom of the map. ‘CL1’ is closer to such response categories as 

‘v1’, ‘v2’, and ‘v3’. It suggests that the respondents in this cluster are likely to 

exclusively choose the variety-show program over time—in other words, they show 

strong preference for variety programming and their preferences do not change with time. 

Approximately 29% of the respondents were classified into this cluster.  

On the other hand, the second cluster of respondents appears to be located on the 

middle right-hand side of the map, where its centroid (‘CL2’) is located. This centroid is 

closely located with such response categories as ‘s1’, ‘s2’, ‘s3’, and ‘d1’. This indicates 
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that the respondents in the second cluster seem to show preferences for sport and drama 

programming at an early age; moreover, their preference for sports programming does 

not change over time, their preference for drama programming does. About 9% of the 

respondents belong to the second cluster. 

Finally, the middle left-hand side of Figure 5 is best associated with the third 

cluster. This centroid (‘CL3’) is positioned close to the other remaining response 

categories, i.e., animation, cinema, drama, music at t = 1, 2, and 3 (except drama at t = 1). 

Thus, respondents in this cluster have the most eclectic viewing preferences and enjoy a 

broad range of TV programming from animation to music, rather than focusing on a 

particular genre of programming over time. This is the largest cluster representing about 

62% of all respondents. 

 

5. Conclusions 

CA and MCA are flexible exploratory tools for studying interrelationships among 

multiple-choice questions. In this chapter, it was shown that technically CA and MCA 

represent special cases of canonical correlation analysis and multiple-set canonical 

correlation analysis, respectively, where a set of continuous variables are replaced by a 

set of response categories of a multiple-choice question. Accordingly, CA and MCA, 

each assign numerical values (weights) to the response categories of two or more 

multiple-choice questions. The numerical values (scaled by singular values) are 

graphically displayed in a low-dimensional display. This graphical display helps one to 

quickly understand data structures and permits the efficient communication of this 

information to practitioners and other researchers. Also, CA is essentially viewed as a 

 34



special case of MCA where there are two multiple-choice questions involved. Similarly, 

CCA represents a special case of MCCA.  

CA and MCA are nonparametric techniques that do not require distributional 

assumptions underlying multiple-choice questions. In addition, as stated earlier, the data 

for CA and MCA – multiple-choice questions – are very flexible so that they may include 

many other types of categorical variables as special cases (e.g., binary, frequency table, 

sorting data, ranking data, etc.) (Nishisato, 1994). Furthermore, the interpretation of the 

results is straightforward and easy to understand to non-statistical experts. 

Two recent extensions of MCA were also introduced in this chapter along with 

illustrative applications to survey data. In sum, these extensions render MCA more 

versatile in capability. For example, regularized MCA is useful in providing more 

accurate estimates of parameters, particularly when the number of respondents is small. 

Moreover, the unified approach to MCA and c-means is beneficial in revealing 

relationships as well as segmentation structures inherent to multiple-choice questions. 

This unified approach is quite versatile and therefore applicable to various 

clustering/segmentation situations which involve multiple-choice questions. In addition, 

the individual membership information furnished by this approach may be beneficial in 

profiling/describing the clusters when used together with demographic variables of 

respondents. 

Nevertheless, CA and MCA do involve limitations as well. They are essentially 

descriptive statistical techniques. Thus, they are not suitable for hypothesis testing 

although certain types of hypotheses can ‘empirically’ be investigated by the use of linear 

constraints (e.g., Böckenholt & Takane, 1994; Hwang & Takane, 2002; Takane & 
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Hwang, 2002). This may render interpretations of solutions less objective. Moreover, 

they are distribution-free methods. Hence, they suffer from the lack of post-hoc fit 

indices for model selection (e.g., AIC or BIC). However, the entailed subjectivity of the 

interpretations may be regarded as a trade-off with respect to the graphical flexibility of 

the method (Hoffman & Franke, 1986). Furthermore, although the method is not well 

furnished with statistical fit measures for model selection, one can still depend on non-

statistical considerations to alleviate this limitation.  

The two extensions of MCA may also be further generalized so as to enhance its 

data-analytic capability. For example, regularized MCA is currently based on ridge-type 

regularization which involves the specification of a scalar. However, we may also 

consider other, more complicated types of regularization, for instance, a regularization 

term capturing the degree of smoothness in curves (Adachi, 2002; Ramsay & Silverman, 

2005).  Moreover, the unified approach to MCA and c-means may be extended by 

replacing the hard-clustering method by a fuzzy-clustering method such as fuzzy c-means 

(Bezdek, 1974, 1981; Dunn, 1974; Manton, Woodbury, & Tolley, 1994; Wedel & 

Steenkamp, 1989). This fuzzy-clustering extension may be more favorable than the 

current method because it provides a probabilistic classification of respondents (Wedel & 

Kamakura, 1998).  

In sum, CA and MCA are useful techniques that afford a flexible and 

parsimonious graphical display of structures inherent in multiple-choice questions. They 

are versatile in data requirements and easy to use computationally. CA and MCA will 

remain as popular descriptive techniques which give rise to a broad range of applications 

in a variety of areas of inquiry. 
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Table 1. Inertias and corresponding percentages of total inertia obtained from the 2000 
Canadian Election Survey data. 

 
        Inertia Percentage 

0.2792 
0.0803 
0.0248 
0.0192 
0.0062 
0.0027 
0.0006 
0.0002 
0.0000 

67.57 
19.44 
5.99 
4.64 
1.50 
1.00 
.00 
.00 
.00 
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Table 2. Adjusted inertias and corresponding percentages of the average off-diagonal 
inertia obtained from the 2000 Canadian Election Survey data. 

 
        Inertia Percentage 

9.0376 
5.0368 
3.9010 
3.4303 
3.2001 
1.9970 
1.4815 
1.1970 
1.0240 
1.0027 
1.0003 
0.9510 
0.8757 
0.7835 
0.6623 
0.6068 
0.3719 
0.3500 
0.1845 
0.0537 
0.0324 
0.0106 

22.1414 
12.3397 
9.5571 
8.4040 
7.8400 
4.8926 
3.6297 
2.9326 
2.5088 
2.4565 
2.4506 
2.3298 
2.1454 
1.9194 
1.6226 
1.4866 
0.9110 
0.8575 
0.4520 
0.1315 
0.0794 
0.0260 

0.0020 0.0050 

 45



Figure 1. The symmetric map of the 2000 Canadian Election Survey data obtained from 
correspondence analysis.  
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Figure 2. The symmetric map of the 2000 Canadian Election Survey data obtained from 
multiple correspondence analysis.  

 

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

NF
PE

NS
NB

QC

ONMA

SK

AB

BC

21

22

23

24

25

26

2728
29

31

32

33

34

35

36

37

38

+

 47



Figure 3. The symmetric map of the soft drink data obtained from ordinary, non-
regularized multiple correspondence analysis, along with the 95% confidence regions of 
the estimated principal coordinates.  
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Figure 4. The symmetric map of the soft drink data obtained from regularized multiple 
correspondence analysis, along with the 95% confidence regions of the estimated 
principal coordinates.  
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Figure 5. The symmetric map of the TV program preference data obtained from the 
unified approach to multiple correspondence analysis and c-means.  
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	 The use of multiple-choice response formats is common in psychology and other fields of inquiry. This format offers several advantages: Firstly, it provides respondents with a faster and less tedious response format in comparison to rating or rank-order question formats. Secondly, its use leads to higher survey completion rates while enabling the inclusion of a greater number of questions and/or response categories in a survey (Arimond & Elfessi, 2001; Dolničar & Leisch, 2001). Thirdly, the use of multiple-choice question formats represents a simpler means of data collection/management thus reducing data entry costs (Javalgi, Whipple, McManamon & Edick, 1992). Finally, multiple-choice response formats are highly flexible in the sense that other types of categorical data such as binary, frequency table and sorting data can be regarded as special cases of this general format (e.g., Nishisato, 1994; Takane, 1980).  
	MCCA can be alternatively formulated through the criterion for homogeneity analysis or K-set canonical correlation (Gifi, 1990; Yanai, 1998). This is equivalent to minimizing the following criterion:
	Dolničar, S., & Leisch, F. (2001). Behavioral market segmentation of binary guest survey data with bagged clustering. In Dorffner, G., Bischof, H., & Hornik, K. (Eds.). ICANN 2001 (pp. 111-118). Berlin: Springer-Verlag.


