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Abstract We consider orthogonal decompositions of Pearson’s chi-square statistic
in three-way contingency tables. We derive algebraic formulae for the decomposi-
tions, conditionally on given marginal frequencies. Results indicate that the order in
which various effects are taken into account play a crucial role. This is analogous to
multiple regression analysis with correlated predictor variables. Because of their or-
thogonality, terms in the decompositions follow independent asymptotic chi-square
distributions under suitable null hypotheses. We also compare our results with par-
titions of the log likelihood ratio (LR) chi-square associated with log linear models
for contingency tables.

1 Introduction

Research in psychology and other social sciences often involves discrete multivari-
ate data. Such data are conveniently summarized in the form of contingency tables.
There have been two widely used classes of techniques for analysis of such tables.
One is log linear models (e.g.,Andersen, 1980; Bishop et al., 1975), and the other
is correspondence analysis (CA; e.g., Greenacre, 1984; Nishisato, 1980). The for-
mer allow ANOVA-like decompositions of the log likelihood ratio (LR) statistic
(also known as the deviance statistic or the Kullback-Leibler (1951) divergence).
This statistic measures the difference in log likelihood between the saturated and
independence models. When the latter model is correct, it follows the asymptotic
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chi-square distribution with degrees of freedom (df) equal to the difference in the
number of parameters in the two models.

In CA, on the other hand, an emphasis is placed on graphical representations
of associations between rows and columns of contingency tables. This approach
typically uses PCA-like (componentwise) decompositions of Pearson’s (1900) chi-
square statistic, measuring essentially the same thing as the log LR chi-square statis-
tic. In this paper, we develop ANOVA-like decompositions of Pearson’s chi-square
statistic, similar to those for the log LR statistic.

These decompositions are useful in constrained CA, such as canonical correspon-
dence analysis (CCA; ter Braak, 1986) and canonical analysis with linear constraints
(CALC; Böckenholt & Böckenholt, 1990), in which the total association between
rows and columns of contingency tables is decomposed into what can and cannot be
explained by the constraints. Different terms in the decompositions highlight differ-
ent aspects of the total association. The terms in the proposed decompositions are
mutually orthogonal and follow independent asymptotic chi-square distributions un-
der suitable null hypotheses. This is in contrast with the decompositions suggested
by Lancaster (1951), in which individual terms do not necessarily follow asymptotic
chi-square distributions (Placket, 1962). All terms in the proposed decompositions
can be obtained in closed form unlike some of the terms in the decompositions of
the log LR chi-square statistic.

Takane and Jung (2009b) proposed similar decompositions of the CATANOVA
C-statistic (Light & Margolin, 1971), which also follows an asymptotic chi-square
distribution. This statistic, however, has been developed for situations in which rows
and columns of contingency tables assume asymmetric roles, that is, one is the pre-
dictor, and the other is the criterion. It thus represents the overall predictability of,
say, rows on columns. Pearson’s chi-square statistic, on the other hand, represents
a symmetric association. It may be argued, however, that a symmetric measure of
association may still be useful in the predictive contexts. There are many cases in
which symmetric analysis methods (those that do not distinguish between predic-
tors and criterion variables) are used for prediction purposes. For example, canon-
ical correlation analysis (Hotelling, 1936) and its special cases, canonical discrim-
inant analysis (Fisher, 1936), CCA and CALC (cited above), reduced rank regres-
sion analysis (Anderson, 1951; Izenman, 1975), maximum likelihood reduced-rank
GMANOVA (growth curve models; Reinsel & Velu, 1998), and the curds and whey
method (Breiman & Friedman, 1997) all involve some kind of symmetric analysis.
This suggests that decompositions of a symmetric measure of association, such as
Pearson’s chi-square statistic, may well be useful in predictive contexts.

This paper is organized as follows. Section 2 briefly reviews basic facts about
Pearson’s chi-square statistic and its historical development. Section 3 presents our
main results, the proposed decompositions, starting from elementary two-term de-
compositions to full decompositions. It will be shown that the order in which various
effects are taken into consideration plays a crucial role in deriving the decomposi-
tions. Section 4 compares the proposed decompositions to those for the log LR
statistic recently proposed by Cheng et al. (2006). Section 5 draws conclusions.
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2 Preliminaries

We use upper-case Roman alphabets (e.g., A, B, ...) to designate variable names
and the corresponding characters in italic (e.g., A, B, ...) to denote the number of
categories (levels) in the variables. Categories of a variable are indexed by the cor-
responding lower case alphabets in italic (e.g., a = 1, · · ·A).

Let there be A mutually exclusive events with known probabilities of occurrence,
pa (a = 1, · · · ,A), and let fa (a = 1, · · · ,A) denote the observed frequency of event
a out of N replicated observations. Then the following statistic

χ2
A =

A

∑
a=1

(
fa −N pa√

N pa

)2

(1)

asymptotically follows the chi-square distribution with A df (Pearson, 1900). Here,
N pa is the expected value of fa under the prescribed conditions. This is the generic
form of Pearson’s chi-square statistic, from which many special cases follow.

In one-way layouts (i.e., when there is only one categorical variable), we are
typically interested in testing H0 : pa = p for all a (a = 1, · · · ,A). We estimate p by
p̂ = 1/A. If we insert this estimate in (1), we obtain

χ2
A−1 =

A

∑
a=1

(
fa −N/A√

N/A

)2

. (2)

This statistic follows the asymptotic chi-square distribution with A−1 df under H0.
Note that we lose 1 df for estimating p. When A > 2, the above statistic can be
partitioned into the sum of A− 1 independent chi-square variables each with 1 df.
Let g denote the A-component vector of ( fa−N/A)/

√
N/A (a = 1, · · · ,A). We may

transform this vector by the Helmert type of contrasts for unequal cell sizes (Irwin,
1949; Lancaster, 1949). For A = 3, this contrast matrix looks like

T =


√

p̂2
p̂1+p̂2

−
√

p̂1
p̂1+p̂2

0√
p̂3 p̂1

( p̂1+p̂2)(p̂1+p̂2+p̂3)

√
p̂3 p̂2

( p̂1+p̂2)(p̂1+p̂2+ p̂3)
−
√

p̂1+p̂2
p̂1+p̂2+p̂3

′

, (3)

where p̂a = fa/N. Define
h = T′g. (4)

Then each of the A−1 elements of h asymptotically follows the independent stan-
dard normal distribution under H0, whose sum of squares (i.e., h′h) asymptotically
follows the chi-square distribution with A−1 df under H0. Note that T is not unique.
It can be any columnwise orthogonal matrix with one additional requirement that it
is also orthogonal to the vector with the square root of p̂a as the a-th element for
a= 1, · · · ,A. It can be easily verified that T′T= IA−1, and that T′p̂= 0 for T defined
in (3), where p̂ = (

√
p̂1, · · · ,

√
p̂A)

′.



4 Takane and Zhou

In two-way layouts, we assume that there is another variable B with B categories.
Let fba denote the observed frequency of category b of variable B and category a of
variable A. Let fba be arranged in a B by A contingency table F. We are typically
interested in testing the independence between the rows and columns of F, i.e.,
H0 : pba = pb pa, where pba is the joint probability of row b and column a, and
pb and pa are the marginal probabilities of row b and column a, respectively. Let
p̂b = ∑a fba/N and p̂a = ∑b fba/N denote the estimates of pb and pa, and define

χ2
(B−1)(A−1) =

B

∑
b=1

A

∑
a=1

(
fba −N p̂b p̂a√

N p̂b p̂a

)2

. (5)

This statistic represents the total association (or the departure from independence)
between the rows and columns of F. It is sometimes referred to as the A by B
interaction and is denoted as χ2(AB). It follows the asymptotic chi-square distri-
bution with (B− 1)(A− 1) df under H0. As before, it can be decomposed into the
sum of (B−1)(A−1) independent chi-square variables each with 1 df when B > 2
and/or A > 2. Let G represent the B by A matrix whose ba-th element is equal to
( fba −N p̂b p̂a)/

√
N p̂b p̂a. We then pre- and postmultiply G by something analogous

to T′ and T defined in (3). The resultant matrix has (B− 1)(A− 1) independent
asymptotically standard normal variables under H0, whose sum of squares follows
the asymptotic chi-square distribution with (B−1)(A−1) df.

It will be handy to have a matrix representation of the chi-square statistic given
above. Let K and L denote the diagonal matrices whose diagonal elements are the
row and the column totals of F, and let Q1/K = IB − 1B1′BK/N, where 1B is the
B-element vector of ones. Then, G can be expressed in terms of F by

G =
√

NK−1Q′
1/KFL−1 =

√
NQ1/KK−1FL−1. (6)

The χ2
(B−1)(A−1) can then be rewritten as

χ2
(B−1)(A−1) = tr(G′KGL) = SS(G)K,L. (7)

In three-way layouts, we take into account a third variable C with C categories.
Let fcba denote the observed frequency of category c of variable C, category b of
variable B, and category a of variable A, and define

χ2
CBA−C−B−A+2 =

C

∑
c=1

B

∑
b=1

A

∑
a=1

(
fcba −N p̂c p̂b p̂a√

N p̂c p̂b p̂a

)2

. (8)

This statistic represents the departure from independence among the three categor-
ical variables. Under the independence hypothesis (i.e., H0: pcba = pc pb pa), this
statistic follows the asymptotic chi-square distribution with CBA−C−B−A+2 df,
which are always larger than 1. Consequently it can always be decomposed into the
sum of CBA−C−B−A+2 independent chi-square variables each with 1 df.
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As in the case of two-way layouts, we can express the above chi-square in matrix
notation. We first arrange a three-way table into a two-way format by factorially
combining two of the three variables. Suppose that variables B and C are combined
to form row categories. (Which two variables we choose to combine makes no dif-
ference for our immediate purpose. Note, however, that this will have a rather grave
impact on the decompositions of Pearson’s chi-square statistic that follow.) We may
then take categories of A as columns. Suppose further that the row categories are or-
dered in such a way that the index for B categories moves fastest. (See Table 1 below
for an example.) Let F denote the two-way table thus constructed. Let K=DC⊗DB,
where DC and DB are diagonal matrices with marginal frequencies of categories of
variables C and B, and ⊗ indicates a Kronecker product. Let L = DA denote the
diagonal matrix of column totals of F, and define

G = NK−1(F−K1CB1′AL/N2)L−1. (9)

Then
χ2

CBA−C−B−A+2 = tr(G′KGL) = SS(G)K,L. (10)

Consider, as an example, the three-way contingency table given in Table 1. This
is a 2 by 2 by 2 table arranged in a 4 by 2 two-way format according to the prescrip-
tion given above. This is a famous data set used by Snedecor (1958) to illustrate
the differences in the notion of the three-way interaction effect in a three-way con-
tingency table given by several prominent statisticians, including Bartlett (1935),
Mood (1950), and Lancaster (1951). According to Cheng et al. (2006), however, all
of them made crucial mistakes in conceptualizing the three-way interaction effect.
We are going to use this same data set to demonstrate our proposed decompositions
of Pearson’s chi-square statistic (Section 3) and compare them with those of the log
LR statistic (Section 4). For the moment, however, we are satisfied with only calcu-
lating χ2

4 for this data set using the formula given in (8) or (10). This value turns out
to be 131.99.

Table 1 A three-way contingency table arranged in two-way format

A1 A2 Total
C1 B1 79 177 256

B2 62 121 183
C2 B1 73 81 154

B2 168 75 243
Total 382 454 836

The χ2
4 for this table reflects the joint effects of four sources, the A by B, A

by C, B by C, and A by B by C interaction effects with the main effects of the
three variables A, B, and C being eliminated by their marginal probabilities. Thus,
χ2

4 may also be written as χ2(AB,AC,BC,ABC). Note, however, that these four
effects are usually not mutually orthogonal due to unequal marginal frequencies,
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and consequently their joint effects cannot be obtained by their sum. In this paper,
we develop systematic ways of orthogonalizing these effects to make them additive.

3 The Proposed Decompositions

In order to derive proper decompositions of Pearson’s chi-square statistic for a three-
way contingency table, its reduction to a two-way table seems essential. Table 1
shows one way of reduction. There are two other ways of reducing a three-way table
into two, depending on which two of the three variables are combined to create
a new variable. In Table 1, B and C were combined, but A and B, and A and C
could likewise be combined. Generally, different decompositions result, depending
on which reduction method is employed. In this section we start with the reduction
method used in Table 1, and then expand our view to other situations.

If we look at Table 1 as purely a two-way table, we notice that the total associ-
ation in this table excludes certain effects in the chi-square statistic for the original
three-way table. The independence model for Table 1 implies that the expected cell
frequency is estimated by N p̂cb p̂a, where p̂ba is the estimate of the joint marginal
probability of category c of variable C and category b of variable B. Following
(5), Pearson’s chi-square statistic representing the association between the rows and
columns of Table 1 is given by

χ2
(CB−1)(A−1) =

CB

∑
cb=1

A

∑
a=1

(
fbca −N p̂cb p̂a√

N p̂cb p̂a

)2

. (11)

This is obviously different from (8), which further assumes p̂cb = p̂c p̂b.
How can we account for the difference? As noted toward the end of the previous

section, χ2
CBA−C−B−A+2 reflects the joint effects of the AB, AC, BC, and ABC inter-

actions, and thus it may be written as χ2(AB,AC,BC,ABC). The χ2
(CB−1)(A−1), on

the other hand, reflects the joint effects of the AB, AC, and ABC interactions (i.e.,
χ2
(CB−1)(A−1) = χ2(AB,AC,ABC)) with the BC interaction effect excluded as the

marginal effect of the rows of the table. The difference then must be due to the BC
interaction effect. More specifically, we call this effect the BC interaction eliminat-
ing the joint effects of the AB, AC, and ABC interactions because it represents the
portion of the AB,AC,BC,ABC effects left unaccounted for by AB,AC,ABC. This
effect is denoted by BC|AB,AC,ABC, where the variables listed on the right of “|”
indicate those eliminated from the effect listed on the left. The size of this effect is
found by the difference between the two chi-squares, i.e.,

χ2(BC|AB,AC,ABC) = χ2(AB,AC,BC,ABC)−χ2(AB,AC,ABC). (12)

An equivalent way of looking at the above equation is that AB,AC,BC,ABC is de-
composed into the sum of the effects of AB,AC,ABC and BC|AB,AC,ABC, that
is,
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χ2(AB,AC,BC,ABC) = χ2(AB,AC,ABC)+χ2(AB|AC,BC,ABC). (13)

For Table 1, we find χ2
3 (AB,AC,ABC) = 86.99, so that χ2

1 (BC|AB,AC,ABC) =
131.99−86.99 = 45.00.

If χ2(BC|AB,AC,ABC) has more than 1 df, it may be further decomposed into
the sum of the effects each with 1 df. In the present case, it has only 1 df, so that no
further decompositions are applicable. The χ2(AB,AC,ABC), on the other hand, has
3 df, which invites further decompositions. There are a number of (in fact, infinitely
many) possible decompositions. For example, we may use the Helmert type of con-
trasts, as before, to decompose this chi-square. However, then each component χ2

may be empirically less meaningful. We therefore focus on the decompositions that
reflect the factorial structure among the rows of Table 1. This means that we are
decomposing χ2(AB,AC,ABC) into separate effects of AB, AC, and ABC interac-
tions. The problem is that these effects are usually not orthogonal to each other, and
consequently must be orthogonalized to derive additive decompositions of the chi-
square. As has been alluded to earlier, the order in which they are taken into account
will have a crucial effect in this orthogonalization process. There are six possible
ways of ordering three effects. We may, however, cut down this number by consid-
ering only those orderings in which lower-order interactions are always considered
prior to higher-order interactions. We are then left with only two possibilities. One
is in which AB is considered first, then AC, and then ABC, and the other is in which
AC is considered first, then AB, and then ABC.

When we add a new effect, we only add its unique effect. For example, when we
add AC in the first situation described above, we add only the portion of the AC not
already explained by AB. This effect, called AC eliminating AB, is orthogonal to
AB, and is denoted as AC|AB. The effect of AB considered first, on the other hand,
ignores all other effects (AC and ABC), and is simply written as AB. The ABC ef-
fect considered last eliminates both AB and AC, and is written as ABC|AB,AC. In
general, the effect taken into account first ignores all other effects, the effect con-
sidered last eliminates all other effects, and the effect taken into account in-between
eliminates all the effects considered earlier, but ignores all the effects considered
later. How to calculate the chi-square for these effects will be described shortly.

The two possible orderings of AB, AC, and ABC suggested above give rise to two
orthogonal decompositions of the joint effects of AB, AC, and ABC. Symbolically,
this is written as

χ2(AB,AC,ABC) = χ2(AB)+χ2(AC|AB)+χ2(ABC|AB,AC) (14)

= χ2(AC)+χ2(AB|AC)+χ2(ABC|AB,AC). (15)

Combining (13) and (14), we obtain the first decomposition of AB,AC,BC,ABC.

Decomposition (i):

χ2(AB,AC,BC,ABC) = χ2(AB)
+χ2(AC|AB)+χ2(ABC|AB,AC)+χ2(BC|AB,AC,ABC). (16)
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Combining (13) and (15), we obtain the second decomposition of AB,AC,BC,ABC.

Decomposition (ii):

χ2(AB,AC,BC,ABC) = χ2(AC)
+χ2(AB|AC)+χ2(ABC|AB,AC)+χ2(BC|AB,AC,ABC). (17)

The χ2(AB), χ2(AC|AB), and χ2(ABC|AB,AC) are calculated as follows. We
first set up contrast vectors,

t1 =


1

−1
1

−1

, t2 =


1
1

−1
−1

, and t3 =


1

−1
−1

1

. (18)

The t1 represents the main effect of B among the rows of Table 1. When it is used
as a linear constraint on the rows, it captures the portion of the association between
the rows and columns that can be explained by the main effect of B, which is called
the AB interaction effect. Similarly, t2 captures the AC interaction effect, and t3
captures the ABC interaction effect. Note that these contrast vectors assume that
there are only two categories in all three variables. We will need more than one
contrast to represent each of these effects if there are more than two levels in some
of the variables. For example, if B = 3, t1 will be a matrix like

t1 =


1 1

−1 1
0 −2
1 1

−1 1
0 −2

. (19)

Note also that if we want to decompose the effects of AB,AC,ABC differently, for
example, if AB,AC,ABC is decomposed into AB within C1, AB within C2, and AC,
t1, t2, and t3 would be:

t1 =


1

−1
0
0

, t2 =


0
0
1

−1

, and t3 =


1
1

−1
−1

. (20)

The following computations use t1, t2, and t3 defined in (18). The χ2 due to
the AB interaction ignoring all other effects (AC and ABC) is calculated by first
defining

H =
√

NPQ1/K t1K−1FL−1, (21)

where
PQ1/K t1/K = Q1/Kt1(t′1Q′

1/KKt1)
−1t′1Q′

1/KK (22)
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is the projector onto Sp(Q1/Kt1) (the space spanned by Q1/Kt1) along Ker(t′1Q′
1/KK)

(the space spanned by all vectors y such that y′Q1/Kt1 = 0). Recall that N is the total
sample size, K and L are diagonal matrices of row and column totals of F, respec-
tively, and Q1/K = I−11′K/N, where 1 is the CB-element vector of ones. Note that
Q′

1/KK = Q′
1/KKQ1/K . We then calculate

χ2(H) = SS(H)K,L. (23)

This value turns out to be 24.10(1) for the data in Table 1 (the value in parentheses
indicates the df). The χ2(H) is equal to the chi-square representing the total asso-
ciation in the marginal two-way table obtained by collapsing the three-way table
across the levels of C.

The χ2(AC|AB) (the AC interaction eliminating AB, but ignoring ABC) is cal-
culated as follows: Let T1 = [1, t1], and define QT1/K similarly to Q1/K above, that
is,

QT1/K = I−T1(T′
1KT1)

−1T′
1K. (24)

Then, define
PQT1/K t2/K = QT1/Kt2(t′2Q′

T1/KKt2)
−1t′2Q′

T1/KK, (25)

and
E =

√
NPQT1/K t2/KK−1FL−1. (26)

Again, note that Q′
T1/KK = Q′

T1/KKQT1/K , and that PQT1/K t2/K is the projector onto
Sp(QT1/Kt2) along Ker(t′2Q′

T1/KK). Finally,

χ2(E) = SS(E)K,L. (27)

This value is found to be 55.83(1) for the data in Table 1. (There are other ways to
calculate this quantity. See (37) and (38) in Takane and Jung (2009b).)

The χ2(ABC|AB,AC) (the ABC interaction eliminating both AB and AC) is cal-
culated as follows: First let T12 = [1, t1, t2], and define QT12/K = I−T12(T′

12KT12)
−1

×T′
12K. Then, define

PQT12/K t3/K = QT12/Kt3(t′3Q′
T12/KKt3)

−1t′3Q′
T12/KK, (28)

and
J =

√
NPQT12/K t3/KK−1FL−1. (29)

Note that Q′
T12/KK = Q′

T12/KKQT12/K , and that PQT12/K t3/K is the projector onto
Sp(QT12/Kt3) along Ker(t′3Q′

T12/KK). Finally,

χ2(J) = SS(J)K,L. (30)

This value turns out to be 7.06(1) for the data in Table 1. Takane and Jung (2009b)
showed that J above can also be calculated by
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J =
√

NK−1t3(t′3K−1t3)
−1t′3K−1FL−1, (31)

which is somewhat simpler.
It can be easily verified that 24.10(1), 55.83(1), and 7.06(1) add up to 86.99(3)

calculated previously. The χ2(AC) and χ2(AB|AC) can be calculated similarly to
the above. It turns out that the former is 68.66(1), and the latter is 11.27(1). These
and 7.06(1) for the ABC interaction again add up to 86.99(3). So there are in-
deed two alternative decompositions of χ2(AB,AC,ABC) depending on whether
AB or AC is taken into account first. Corresponding to the two decompositions of
AB,AC,ABC, there are two decompositions of χ2(AB,AC,BC,ABC), as stated in
(16) and (17).

As remarked earlier, there are two other possible arrangements of a three-way
table into two. In Table 1, variables B and C were combined to form rows of the
table. We may have also combined A and B, or A and C. In either case, the remaining
variable constitutes the columns. Each of these two cases gives rise to two different
decompositions of AB,AC,BC,ABC analogous to those given in (16) and (17).

Let us start with the case in which A and B are combined. In this case, (13) will
become:

χ2(AB,AC,BC,ABC) = χ2(AC,BC,ABC)+χ2(AB|AC,BC,ABC), (32)

and (14) and (15) become

χ2(AC,BC,ABC) = χ2(AC)+χ2(BC|AC)+χ2(ABC|AC,BC) (33)

= χ2(BC)+χ2(AC|BC)+χ2(ABC|AC,BC). (34)

The terms in these decompositions can be calculated similarly to the above. We find
χ2(AC,BC,ABC)= 93.73(3) (the df in parentheses), so that χ2(AB|AC,BC,ABC)=
38.26(1) = 131.99(4)−93.73(3) = χ2(AB,AC,BC,ABC)−χ2(AC,BC,ABC). We
also find χ2(AC) = 68.66(1) (this is the same χ2(AC) calculated previously),
χ2(BC|AC) = 18.44, and χ2(ABC|AC,BC) = 6.63, so that 68.66(1) + 18.44(1)
+ 6.63(1) = 93.77(3) = χ2(AC,BC,ABC), verifying (33). We also find χ2(BC) =
31.80(1), and χ2(AC|BC) = 55.30(1), so that 31.80(1) + 55.30(1) + 6.63(1) =
93.77(3), verifying (34). Combining (32) with (33) and (34), we respectively ob-
tain

Decomposition (iii):

χ2(AB,AC,BC,ABC) = χ2(AC)
+χ2(BC|AC)+χ2(ABC|AC,BC)+χ2(AB|AC,BC,ABC)), (35)

and Decomposition (iv):

χ2(AB,AC,BC,ABC) = χ2(BC)
+χ2(AC|BC)+χ2(ABC|AC,BC)+χ2(AB|AC,BC,ABC). (36)
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Similarly, when A and C are combined, we obtain

χ2(AB,AC,BC,ABC) = χ2(AB,BC,ABC)+χ2(AC|AB,BC,ABC), (37)

and

χ2(AB,BC,ABC) = χ2(AB)+χ2(BC|AB)+χ2(ABC|AB,BC) (38)

= χ2(BC)+χ2(AB|BC)+χ2(ABC|AB,BC). (39)

For the illustrative data we have been using, we find χ2(AB,BC,ABC) = 49.96(3),
so that χ2(AC|AB,BC,ABC)= 82.03(1)= 131.99(4)−49.96(3)= χ2(AB,AC,BC,
ABC)− χ2(AB,BC,ABC). We also find χ2(AB) = 24.10(1) (this is the same
χ2(AB) calculated previously), χ2(BC|AB) = 19.18(1), and χ2(ABC|AB,BC) =
6.35(1), so that 24.10(1) + 19.51(1) + 6.35(1) = 49.96(3) = χ2(AB,BC,ABC), veri-
fying (38). We also find χ2(BC) = 31.80(1) (this is the same χ2(BC) calculated be-
fore), and χ2(AB|BC) = 1181(1), so that 31.80(1) + 11.81(1) + 6.35(1) = 49.96(3),
verifying (39). Combining (37) with (38) and (39), we obtain the fifth and sixth de-
compositions of χ2(AB,AC,BC,ABC).

Decomposition (v):

χ2(AB,AC,BC,ABC) = χ2(AB)
+χ2(BC|AB)+χ2(ABC|AB,BC)+χ2(AC|AB,BC,ABC), (40)

and Decomposistion (vi):

χ2(AB,AC,BC,ABC) = χ2(BC)
+χ2(AB|BC)+χ2(ABC|AB,BC)+χ2(AC|AB,BC,ABC). (41)

Altogether we obtain (at least) six fundamental decompositions of Pearson’s
chi-square statistic for a three-way contingency table. Lancaster (1951) defined
χ2(ABC|AB,AC,BC) by

χ2(ABC|AB,AC,BC)
= χ2(AB,AC,BC,ABC)−χ2(AB)−χ2(AC)−χ2(BC). (42)

Then, χ2(ABC|AB,AC,BC) is unique. However, as has been noted earlier, χ2(AB),
χ2(AC), and χ2(BC) are usually not independent from each other, and conse-
quently, χ2(ABC|AB,AC,BC) may not follow an asymptotic chi-square distribution
(Placket, 1962).
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4 Analogous Decompositions of the Log LR Statistic

In this section, we discuss decompositions of the log LR chi-square statistic analo-
gous to Decompositions (i) through (vi). The log LR statistic for a three-way con-
tingency table is defined as

LRCBA−C−B−A+2 =−2
C

∑
c=1

B

∑
b=1

A

∑
a=1

fcba log
fcba

p̂c p̂b p̂a
. (43)

This statistic, like Pearson’s chi-square statistic, represents the departure from the
three-way independence model, and reflects the joint effects of AB, AC, BC, and
ABC (i.e., AB,AC,BC,ABC). Similarly to the case of Pearson’s chi-square statistic,
these four effects are not mutually independent, and consequently their joint effects
cannot be obtained by their sum. We find the effect of AB,AC,BC,ABC to be 120.59
for the data given in Table 1, using the above formula.

In this section, we first take a heuristic approach to get an intuitive idea about
proper decompositions. We then present a theory due to Cheng et al. (2006) to back
up our intuition. Our heuristic approach begins with analyzing the data in Table 1
by log linear models. In log linear analysis, no reduction of a three-way table into
a two-way format is necessary in contrast to Pearson’s statistic. The three variables
are treated completely symmetrically.

We first ran the “Hiloglinear” procedure in SPSS. We obtained the three-way
interaction effect of LR(ABC|AB,AC,BC) = 6.82(1). We also obtained the joint
effects of three two-way interactions of LR(AB,AC,BC) = 113.77(3). The three
individual two-way interaction effects (these were the two-way interactions elimi-
nating all other two-way interactions) were found to be LR(AB|AC,BC)= 12.22(1),
LR(AC|AB,BC) = 57.54(1), and LR(BC|AB,AC) = 20.00(1). These effects do not
add up to LR(AB,AC,BC), as 12.22+ 57.54+ 20.00 = 89.76 ̸= 113.77. Note that
in log linear analysis, only the independence or conditional independence models
can be fitted non-iteratively, which implies that none of the above quantities can be
calculated in closed form.

In order to find proper constituents of the joint two-way interaction effects, we
had to run another log liner analysis procedure in SPSS called “Loglinear”, which
provided individual two-way interaction effects ignoring the other two-way interac-
tion effects. They were found to be LR(AB) = 24.23(1), LR(AC) = 69.54(1), and
LR(BC) = 32.04(1). These quantities can be calculated in closed form. They do
not add up to LR(AB,AC,BC), either, as 24.23+69.54+32.02 = 125.79 ̸= 113.77.
However, we find

LR(AB)+LR(AC)+LR(BC|AB,AC)
= 24.23+69.54+20.00 = 113.77 = LR(AB,AC,BC), (44)

LR(AC)+LR(BC)+LR(AB|AC,BC)
= 69.54+32.02+12.22 = 113.77 = LR(AB,AC,BC), (45)
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and

LR(AB)+LR(BC)+LR(AC|AB,BC)
= 32.02+24.23+57.54 = 113.77 = LR(AB,AC,BC). (46)

That is, we cannot add the three two-way interactions all ignoring the other two to
obtain their joint effects. One of the three must be the two-way interaction eliminat-
ing the other two.

Adding one more term, LR(ABC|AB,AC,BC) = 6.82, to the above identities, we
obtain three alternative decompositions of

LR(AB,AC,BC,ABC)
= LR(AB,AC,BC)+LR(ABC|AB,AC,BC) = 113.77+6.82 = 120.59, (47)

namely, Decomposition (a):

LR(AB,AC,BC,ABC)
= LR(AB)+LR(AC)+LR(BC|AB,AC)+LR(ABC|AB,AC,BC), (48)

Decomposition (b):

LR(AB,AC,BC,ABC)
= LR(AC)+LR(BC)+LR(AB|AC,BC)+LR(ABC|AB,AC,BC), (49)

and Decomposition (c):

LR(AB,AC,BC,ABC)
= LR(AB)+LR(BC)+LR(AC|AB,BC)+LR(ABC|AB,AC,BC). (50)

It is obvious that Decomposition (a) “corresponds” with Decompositions (i) and (ii),
(b) with (iii) and (iv), and (c) with (v) and (vi) for Pearson’s chi-square statistic.

These three decompositions are consistent with Cheng et al.’s (2006) decom-
positions derived rigorously through information identities. Cheng et al., however,
arrived at these decompositions via a somewhat different route. They first derived
the sum of the last two terms in each of the above three decompositions. For ex-
ample, they first obtained LR∗(BC|A) ≡ LR(BC|AB,AC)+ LR(ABC|AB,AC,BC)
for Decomposition (a). This quantity can be calculated in closed form using the in-
formation identities, whereas neither of the two terms on the right-hand side can.
Cheng et al. (2006) called the quantity on the left-hand side, i.e., LR∗(BC|A), the
conditional dependence between B and C across levels of A (or the simple two-way
interaction between B and C across levels of A). They then split this into two addi-
tive terms on the right-hand side, LR(BC|AB,AC) (LR(BC||A) in their notation) and
LR(ABC|AB,AC,BC), by way of log linear analysis. The first term was interpreted
as the uniform part, and the second as the non-uniform part, of the conditional de-
pendence between B and C across levels of A (or equivalently, the homogeneous and
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heterogenous aspects of the simple two-way interactions between B and C across
levels of A). In our framework, the former is interpreted as the BC interaction elim-
inating the effects of AB and AC. It is interesting to find that this effect is equivalent
to the uniform part of the simple two-way interactions. The latter is nothing but the
three-way interaction among A, B, and C eliminating the joint effects of AB, AC,
and BC. Similar remarks can be made for Decompositions (b) and (c).

5 Discussion

As has been observed in the previous section, the order in which two two-way inter-
actions ignoring the other two are accounted for make no difference in the log LR
statistic, while it does in Pearson’s chi-square statistic. In fact, we have

LR(AB) = LR(AB|AC) = LR(AB|BC) ̸= LR(AB|AC,BC), (51)

LR(AC) = LR(AC|AB) = LR(AC|BC) ̸= LR(AC|AB,BC), (52)

and
LR(BC) = LR(BC|AB) = LR(BC|AC) ̸= LR(BC|AB,AC), (53)

while the four versions of the AB interaction effects for Pearson’s chi-square,
χ2(AB), χ2(AB|AC), χ2(AB|BC), and χ2(AB|AC,BC,ABC) ), are all distinct, and
so are the four versions of AC and BC. Also, there is a single unique three-way in-
teraction in the decompositions the log LR statistic (LR(ABC|AB,AC,BC)), while
there are three distinct versions of the three-way interaction effect for Pearson’s chi-
square, (χ2(ABC|AB,AC), χ2(ABC|AB,BC), and χ2(ABC|AC,BC)). These dif-
ferences stem from the fact that there is no way to evaluate χ2(AB,AC,BC) in the
latter, which in turn is more fundamentally caused by the fact that a three-way table
must always be reduced to a two-way table to obtain the decompositions of Pear-
son’s statistic. This prevents us from obtaining quantities such as χ2(AB|AC,BC),
χ2(AC|AB,BC), χ2(BC|AB,AC), and χ2(ABC|AB,AC,BC).

Having fewer distinct terms in the decompositions of the log LR statistic may be
a point in its favor over Pearson’s statistic. However, there are still three alternative
decompositions for the former. A choice among them may not be straightforward.
This is particularly so because log linear analysis treats all variables symmetrically,
yet the resultant decompositions are not symmetric.

The fact that Pearson’s chi-square statistic has six alternative decompositions is
surely a bit unwieldy. However, if one layout of a three-way table into a two-way
format is in some sense more natural than the other two, this number is reduced to
two, which differ from each other only in a minor way. Such is the case when anal-
ysis of contingency tables is conducted in predictive settings, and yet a symmetric
measure of association such as Pearson’s statistic is in order. In CCA, for example,
one of the variables is typically taken as the criterion variable, while the others are
used as predictor variables. There are also other considerations to be taken into ac-
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count. Pearson’s chi-square statistic is known to approach a chi-square distribution
more quickly than the log LR statistic. It is also the case that all the terms in the
decompositions of Pearson’s chi-square can be calculated in closed form, whereas
some of the terms in the log LR statistic must be obtained iteratively.

It may also be pointed out that there seems to be a “cultural” difference between
log linear analysis (based on the log LR statistic) and CA (based on Pearson’s statis-
tic). The former tends to focus on residual effects (eliminating effects). If we fit the
AB interaction effect, for example, we get the deviation chi-square of this model
from the saturated model. It represents the effects of all variables not included in
the model eliminating AB. To obtain the effect of AB ignoring all other variables
we have to subtract this value from the independence chi-square representing the
deviation of the independence model from the saturated model. To obtain the AB
interaction effect eliminating some other effects, we have to fit the model with these
“some other effects” only, and the model with the additional effect of AB, and take
the difference in chi-square values between the two models. In CA, on the other
hand, the chi-square value due to AB ignoring other effects is obtained directly by
the difference between the fitted model and the independence model. We need an
extra step to obtain a residual effect representing the effect of a variable not included
in the fitted model, which amounts to taking the difference in chi-square between
the saturated model (which is equal to Pearson’s chi-square for the total associa-
tion) and the fitted model. A notable exception is van der Heijden and Meijerink
(1989), who attempted to analyze residual effects in constrained CA. In the present
authors’ view, both analyses (analyses of the fitted models and the residual effects)
are equally important, as has been emphasized by Takane and Jung (2009a).

Cheng et al. (2007) attempts to extend their approach to higher-order designs,
thereby generalizing their decompositions of the log LR statistic. Presumably, sim-
ilar things could be done for Pearson’s chi-square statistic.
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