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ESTIMATION OF THE RECRUITMENT LATENT
CLASS BY LEAST SQUARES METHODS

YOSHIO TAKANE!

Department of Psychology, University of Tokyo

First the formal relationship between factor analysis and latent class model of
latent structure analysis was explicated and thereupon the recruitment latent
class was estimated in the same manner that factor scores are estimated in factor

analysis.

Introduction

One objective of the study is to show the
formal relationship between two multi-
variate analysis models, both to be applied
in the situation where appropriate external
criteria are unknown. They are factor
analysis and latent class model of latent
structure analysis.

Conceptually factor analysis and latent
structure analysis in general (not confined
to latent class model) bear resemblance in
that they both hypothesize latent (unob-
servable) variates thereby to elucidate cor-
relational structures among manifest (ob-
servable) variates (Green, 1952). Latent
variates are specifically called ° factors’ in
factor analysis and ¢ latent traits ’ in latent
structure analysis. They differ, however,
in the metric property of manifest variates
they are intended to cover. Latent struc-
ture analysis was originally formulated for
dichotomous manifest variates (Lazarsfeld,
1950), whereas factor analysis model as-
sumes continuous manifest variates (it
actually best fits to the data under the
normal distribution in the sense that a
variety of statistical inferences can be made
which otherwise are unavailable). This

1 This paper is based on master’s thesis of the pre-
sent author. He wishes to express his appreciation
to Dr. Yoshihisa Tanaka of Univ. of Tokyo for his
academic advice and to the members of multivariate
analysis study group at the Educational Psychology
Department.

Finally thus obtained results were compared with the one through
direct recruitment probability procedure.

difference, however, is not of great con-
cern now that latent structure analysis
model has been so extended that it can
deal with any continuous data. First
latent class model was generalized into
latent profile model (Gibson, 1959) and
then the most general formulation where
both manifest variates and latent variates
can be either discrete or continuous, was

provided (McDonald, 1962a; Anderson,

- 1959). Latent class model will be referred

hereafter as it implies general latent class
model including latent profile model as
well as original latent class model.

Still one more difference lies in their
restriction upon the functional forms
through which latent variates relate to
manifest variates. In usual factor analysis,
even if normality of the distribution is not
assumed, linearity of regression of manifest
variates on latent variates is assumed. On
the other hand in latent structure analysis
no such restraint is imposed; any cur-
vilinear type of regression is within the
scope of the model. This limitation of
factor analysis, however, is not essential.
Nonlinear Factor Analysis (McDonald,
1962b, 1967) and Transform Factor Anal-
ysis (Nishisato, 1971) are just two examples
of the attempt to formulate a more general
model of factor analysis which does not
necessarily involve the linearity assump-
tion.

Thus, one direction of methodological
developments is in the generalization of
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models, and from a sufficiently general
model, existing models are derived as its
special cases, describing their common and
peculiar characteristics at the same time.
This paper is not along this line, however;
arguments are rather confined to linear
models—(linear) factor analysis and latent
class model.

Now before going further into the main
theme of the paper, let’s briefly review
some of the significant remarks which have
been pointed out regarding the specific
context of this study.

(I) Green (1951) has shown that the
solution of latent class parameters is noth-
ing but a particular solution of factor
analysis, which directly implies that latent
class model is a special type of factor anal-
ysis. He has not stated this fact explicitly
in his 1951 thesis (it is aimed to provide
with a general estimation procedure for
latent class parameters), nevertheless it is
shown that any solution of latent class
parameters can be obtained through rotat-
ing the diagonal-centroid factor pattern
matrix in a certain specified way.

(2) Anderson (1959) takes up a general
model

x=ptd6+u

and from this model derives various scaling
models among which are factor analysis
and latent structure analysis including
latent class model. Here two models are
distinguished by different additional as-
sumptions.

(3) Lord & Novick (1968) charac-
terize latent trait models including latent
structure analysis as models involving the
assumption of local independence, whereas
factor analysis only requires linear local
independence.

(4) Ikuzawa (1968) has applied dis-
criminant analysis to the individual’s iden-
tification problem in latent class model.
Transforming individuals’ response pat-
terns into canonical variates is also a kind
of factor measurements, say, in terms of
discrimination.

Formal Relationship

Let’s employ the algebraic model of
factor analysis. That is,

Z = FA+U )

where Z is an N Xn data matrix of stand-
ardized measure, F an N Xr matrix of
common factor scores, 4 an nX7 matrix of
factor pattern coefficients, and U designates
unique portion of the score Z.

This model is reformulated as regression
of Z on F, though F is unknown at first.
(This may not be an accurate statement:
Z may be considered as a set of # N-com-
ponent vectors and F a set of r N-compo-
nent vectors. Regression of Z on F means
projection of each of n vectors in Z on the
space spanned by r vectors in F.) Thus
the vectors in Z are decomposed into two
parts, images of F and anti-images of F.

This is denoted by

Z=F(F'FY\FZ
+{I—F(F'FY\FZ . )
If we put
(F'FY\F'Z=A4
and
(I-F(F'FY\FYZ =U

then it is evident that (1) and (2) are
formally identical. Now consider an N X
(r+1) matrix G of dummy variables in-
dicating individuals’ recruitment latent
classes (unknown at first) and an Nxn
matrix ¥ of data (either continuous or dis-
crete; either raw score or standardized
measure), and define a supermatrix,

X = [INX]

where 1y is an N-component vector whose
elements are all unity. According to the
notion of regression analysis mentioned
above, let’s decompose X with respect to
G; that is, to get a projection of X on G
and its residual.

X = GGG 'G'X+(I-GG'G)1GHX (4)
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TasLe 1

A bypothesized set of latent class parameters (relative class sizes and within-class means):
diagonal elements of D, and matrix L/

Class C_lass Variate No. ‘
81z€s 0 2 3 4
1 0.600 1.000 0.900 0.200 0.800 0.400
2 0.400 1.000 0.100 0.100 0.300 0.300
If we define R = AQA’+ §? ()

1 lll ...... [1"
L'=@@GrGX=|: ¢ C | )
1 l(7+1)1"'l(r+1)n .

L is a within-class mean matrix, which is
the latent class parameters. (As a special
case, if X is dichotomous variates, L in-
dicates what portions of individual in each
class respond positively to items.)

Also define (I—G(G'G)"1G")X=V, and
take the product moment of (4); that is,
to premultiply the transpose of itself, we
get

1

N N

Since JLVG'G is a diagonal matrix whose

diagonal elements are relative class sizes,
we equate this to D,. Namely,

D IGGFIO] 7

¢ = ar 4 ( )
N 0 dr+1

lV’V is a within-class variance-co-

N

variance matrix, which is also a diagonal
matrix because all within-covariances
vanish on account of the assumption of
local independence. Its diagonal elements
are within-class variances which are usually
non-zero, and we denote this matrix by

D2 Then (4) is rewritten as follows.
%X 'X = LD L'+ D2 ®)

This agrees with Green’s representation
of the second moment equation of latent
class model (Green, 1951).

If we regard G as F in factor analysis
model (1), (8) is identical with

XX=%J@®%%£VW. ®)
" factor score matrix.
" in the metric properties of G and F. G’s

which is the moment equation of (1), and
where
1 1

R= 2%, 0= FF
and
1
D e 1
A _NUU.
Then
' X=GL+V (10)

is supposed to be the basic equation for
latent class model. Thus latent class
model is a kind of factor analysis with G as
Differences are only

matric elements are either 0 or 1 measured
on the nominal scale. G must also satisfy
the following conditions.

Gl =1y Q)]

and

1 dy
WG'IN = Dclr+1 = d :

4l

(12)

Column means of G are relative class sizes
which are usually non-zero.

On the contrary F consists of measures
on the interval or ratio scale, and its
column means are usually taken to be zero.
That is,

1

WF,IN =0, (13)

where 0, is an r-component zero vector.

Factor Score Estimation
Now there is good reason to estimate G
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TABLE 2

Between-class moments: matrix LD,L’

TaBLE 4
Absolute frequencies of response patterns

0 i 2 3 4 No. Response Class Total
1.000  0.580 0.160 0.600  0.360 patterns I 11
0.580 0.490 0.112 0.444 0.228 1 0000 6 160 166
0.160 0.112 0.028 0.108 0.060 9 0001 2 64 66
0.600 0.444 0.108 0.420 0.228 3 0010 16 53 69
0.360 0.228 0.060 0.228 0.132 4 0011 17 33 50
5 0100 1 17 18
6 0101 3 5 8
7 0110 8 . 8 16
8 0111 5 4 9
Tapre 3 9 1000 38 17 55
Absolute class sizes and frequencies of positive 10 1001 37 7 44
response to each variate (of the generated 1 1010 208 10 218
data)
12 1011 142 5 147
Class Class Variate No. 13 1100 9 1 10
No. sizes 1 9 3 4 14 1101 11 0 11
15 1110 68 1 69
1 605 547 139 498 251 16 1111 34 0 34
2 385 41 36 114 118
Total 990 588 175 612 369 Total 605 385 990
TABLE 5
Estimates of relative class sizes and within-class means calculated from
the generated data: diagonal elements of ﬁc and matrix 1’
Class glzis: Variate No.
0 2 3 4
1 0.611 1.000 0.904 0.230 0.823 0.414
2 0.389 1.000 0.106 0.094 0.296 0.306

via usual least squares techniques which
they often use in estimating factor scores.
Computer experiment has been performed
to test, with hypothetical data, the ade-
quacy of estimating G on the principle of
least squares. First an arbitrary set of
latent class parameters are hypothesized
(Table 1) and according to this set of para-
meters, dichotomous data are generated
using uniform random numbers. Generat-
ed data are shown in tabulated forms in
Tables 3 and 4. R
Then within-class mean matrix L and
estimated class size matrix D, (Table 5)
are calculated. And using these Land D,

as estimates of L and D, respectively, 6 dif-
ferent estimates of G are calculated. These
estimating methods are provided by Shiba
(1969).

Gy = XB(B'B)"\D 2

(14

G = XB(B'PB)-12D A2 (15)

Gy = XPY(P—D2)B(B'By'D 12  (16)
Gs = XP-\P—D2B(B'(P—D,?)

X P~Y(P —D2)B)-12D I (17)

Gis = XP-1BD 12 (18)

Gu = XP-1B(B'PB)-112D M2 (19)

where B = LD}k
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TABLE 6
Matrix B’ = ﬁcl/’l‘:

0 1 2 3 4
0.781 0.706 0.179 0.643 0.323
0.623 0.066 0.058 0.184 0.190

TABLE 7

Estimates of between-class moments :

. AA A
matrix LD L’

0 1 2 3 4
1.000 0.593 0.177 0.617 0.371
0.593 0.503 0.130 0.466 0.241
0.177 0.130 0.035 0.126 0.069
0.617 0.466 0.126 0.447 0.243
0.371 0.241 0.069 0.243 0.141

TasLE 8

Estimates of total moments: matrix (1/N)X’X

0 1 2 3 4
1.000 0.593 0.176 0.618 0.372
0.593  0.593 0.125 0.472 0.238
0.176  0.125  0.176  0.129  0.062
0.618 0.472  0.129 0.618 0.242
0.372  0.238  0.062 0.242  .372

TABLE 9

A list of solutions of factor score estimates in
term of different combinations of conditions
(¥rom Shiba, 1969)

Restriction
(orthogonality
. of estimates) | Non Yes
Minimizing
criteria
X-GL G, G,
GL'—GL G G,
G-& Gus Gu
and P= LX 'X.
N
B is required in order to satisfy
1.
WH 'H = Ir+1

in the equation which is a modified ver-
sion of (10). That is,

© Method (1)
Factor I Method (2}

o

6

o

15 16

1
o 13
1115 17| *12  Mean characteristics
T of class 1

140.14

L]
0.5- 9

© Mean characteris-
ties of class Il

\ ( Factor II
0.5 501\,6\6

oo

F16. 1. Configurations of estimated factor scores
by methods (1) and (2).

© Method (7)
Factor 1 Method (8)

1601516 hi5
16 Mean characteristic:
”1’1:-%33521/7“ class e
14 0%4
13%1310
105’319
0.51
8
8‘;014 Mean characteris-
45-. tics of class II
6
Factor 11 5 1#;5. 2
0.5 1.0

F1c. 2. Configurations of estimated factor scores
by methods (7) and (8).

F © Method (13
.| Factor 1 o Method (14
l'615
1?54(2 Mean characteristics
1516'%112 of class
1}
14 413
1413810
10%y9
0.5r 8
°y7 Mean characteris-
8“‘7 tics of class .II
430
%
3° 2
) 6 &5 Factor, IT
0.5 1.0'2.1

Fi6. 3. - Configurations of estimated factor scores
by methods (13) and (14).



92 Y. Takane
TasLe 10
Mean characteristics of class and estimated factor scores by method 1
Class Factor I Factor II
1 1.000 —0.000
2 —0.000 1.000
No. of
response A* Bx* Crxk Factor I Factor II Dy? Dy?
patterns
1 2 2 2 —0.272 - 1.169 2,985 0.102
2 2 2 2 -0.232 1.374 3.407 0.194
3 2 2 2 0.248 0.770 1.158 0.114
4 2 2 2 0.288 0.975 1.458 0.083
5 2 2 2 —0.142 1.087 2.486 0.027
6 2 2 2 " —0.102 1.292 2.885 0.095
7 2 2~ 2 0.378 0.688 0.860 0.240
8 1 2 2 0.418 0.893 1.136 0.186
9 1 1 1 0.609 0.165 0.179 1.067
10 1 1 1 0.649 0.370 0.260 0.817
11 1 1 1 1.130 —0.232 0.071 2.798
12 1 1 1 1.170 —0.027 0.029 2.426
13 1 1 1 0.739 0.083 0.074 1.386
14 1 1 1 0.779 - 0.288 0.132 1,113
15 1 1 1 1.260 =-0.315 0.166 3.317
i6 1 1 1 1.300 '-—0 109 0.102 2.922
* A: Most probable class by maximum likelihood method

#x B: Minimum squared error class by least squares method.
*x% (: Minimum distance class by least squares method.

(Tables 11 through 15 follow the same notations.)

X =HB +V
where

H = GD /12
hence

G = HDJ>2,

Method numbers follow the notation

by Shiba. Table 9 shows the characteristic
of estlmatmg methods in terms of difference
in minimizing criteria and restriction on
orthogonality of estimated factors

In actual estimation, L and D are
utilized in place of L-and D, respectively.
B—LDae is listed in Table 6. Tables 7
and 8 are the estimated matrices of be-
tween-class- moments and total moments.
Goodness of fit of the generated data

‘evaluated in terms of chi square is 18.062

with 15 degrees of freedom. (McHugh,
1956) [p(x*>7.261)=0.95, p(x2>24.996)
==0.05] ‘

Tables 10-15 show the estimated factor
scores. Figs. 1-3 show thelr respective
conﬁguratlons ’ r

It is observed that different estimating
methods yield more or less 51m11ar results
except perhaps G; and Gz In G7, Gs, Gm
and Gu conﬁ'guratlon points are nearly
in a line, whereas in Gl and Gz they are
somewhat more scattered around a line.
We prove the following equation;

Gislyss = 1y (20)

Gis is the 50 called regression method of
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Tasre 11
Mean characteristics of class and estimated factor scores by method 2

Class Factor I Factor I1I
1 0.921 0.098
2 0.067 0.877
No. of )
response  A* . B¥*  (Ckxk Factor I Factor II D,? D,?
patterns
B! 2 2 2 -0.171 0.999 2.008 ©0.072
2 2 2 2 -0.121 1.183 2.265 0.129
3 2 ‘2 2 0.281 0.700 0.773 0.076
4 2 2 2 0.331 0.884 0.966 0.069
5 2 2 2 —0.057 0.939 1.668 0.019
6 2 2 2 —0.007 1.123 1.915 0.066
7 2 2 2 0.395 0.641 0.572 0.163
8 1 2 2 0.445 0.825 0,755 0.145
9 1 1 1 0.573 ~ 0.205 0.132 - 0.707
10 1 1 1 0.623 0.389 0.173 0.548
11 1 1 1 1.026 —0.093 - 0.047 1.862
12 1 1 1 1.076 0.090 . 0.024 1.638
13 1 1 1 0.686 0.145 0.057 0.919
14 1 1 1 0.737 0.329 , 0.087 0.749
15 1 1 1 1.139 - —0,153 0.110 2,212
16 1 1 1 1.190 : 0.030 0.076 1.978
Tanprg 12
Mean' characteristics of class, and. estimated factor scores by method 7
Class Factor I Factor 11
1 0.876 0.122
0.194 0.807
No. of . .
response Ax* B*x Cokxe Factor 1 - Factor II - - Dyt Dy
patterns
1 2 2 2 0.035 0.967 1.421 - 0.050
2 2 2 2 0.064 0.938 - 1.325 - 0.034
3 2 2 2 0.276 0.722 0.720 0.013
4 2 2 2 0.305 0.693 0.652 0.025
5 2 2 2 0.105 0.893 1.188 0.015
6 2 2 2 0.134 0.864 1.100 0.006
7 2 2 2 0.346 0.648 0.557 0.048
8 1 2 2 0.375 0.619 0.497 0.068
9 1 1 1 0.715 0.288 . 0.053 0.541
10 1 1 1 0.744 0.258 0.036 - 0.603
11 1 1 1 0.956 0.043 ~0.012 1.164
12 1 1 1 0.985 0.013 0.023 1.254
13 1 1 1 0.785 0.214 0.016 0.701
14 1 1 1 0.814 0.184 0.007 0.772
15 1 1 1 1.026 ~0.030 0.046 - 1.395
16 1 1 1 1.055 —0.060 + 0,065 1.498
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TasLe 13

Mean characteristics of class and estimated factor scores by method 8

Class Factor I Factor II
1 0.932 0.044
2 0.148 0.887

"No. of

response  A* Bk Cxkx Factor I Factor II Dy,? Dy,?

patterns
1 2 2 2 —0.034 1.084 2.018 0.072
2 2 2 2 —0.001 1.048 1.882 0.048
3 2 2 2 0.242 0.783 1.023 0.019
4 2 2 2 0.275 0.747 0.926 0.035
5 2 2 2 0.046 0.994 1.687 0.021
6 2 2 2 0.079 0.957 1,562 0.009
7 2 2 2 0.323 0.692 0.791 0.068
8 1 2 2 0.356 0.656 0.706 0.096
9 1 1 1 0.747 0.247 0.075 0.768
10 1 1 1 0.780 0.211 0.051 0.856
11 1 1 1 1.024 —0.053 0.018 1.653
12 1 1 1 1.057 —-0.090 0.033 1.782
13 1 1 1 0.828 0.156 0.023 0.996
14 1 1 1 0.861 0.120 0.010 1.096
15 1 1 1 1.105 —0.144 0.065 1.982
16 1 1 i 1.138 —0.180 0.092 2.192

TasLe 14
Mean characteristics of class and estimated factor scores by method 13

Class Factor I Factor 11
1 0.873 0.126
2 0.198 0.802

No. of

response A* B** C*¥x Factor 1 Factor II D,? D,*?

patterns
1 2 2 2 0.038 0.963 1.396 0.051
2 2 2 2 0.087 0.911 1.233 0.024
3 2 2 2 0.253 0.747 0.769 0.006
4 2 2 2 0.302 0.695 0.649 0.022
5 2 2 2 0.138 0.865 1.085 0.007
6 2 2 2 0.187 0.813 0.941 0.000
7 2 2 2 0.354 0.649 0.543 0.047
8 1 2 2 0.402 0.597 0.443 0.083
9 1 1 1 0.717 0.282 0.048 0.539
10 1 1 1 0.766 0.230 0.022 0.649
11 1 1 1 0.933 0.066 0.007 1.080
12 1 1 1 0.981 0.015 0.024 1.233
13 1 1 1 0.818 0.184 0.006 0.765
14 1 1 1 0.866 0.132 0.000 0.895
15 1 1 1 1.033 —0.031 0.050 1.391
16 1 1 1 ' 1.082 —0.082 0.087 1.564
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TaBLE 15

Mean characteristics of class and estimated factor scores by method 14

Class Factor 1 Factor II
1 . 0.930 0.069
2 0.108 0.891
No. of
rcsgg;a:; Ax* B** Cotkok Factor I Factor 11 D, Dyt
pal
1 2 2 2 —0.086 1.087 2.069 0.076
2 2 2 2 —0.026 1.024 1.827 0.036
3 2 2 2 0.176 0.825 1.139 0.008
4 2 2 2 0.235 0.762 0.962 0.032
5 2 2 2 0.035 0.967 1.607 0.011
6 2 2 2 0.095 0.905 1.395 0.000
7 2 2 2 0.298 0.705 0.804 0.070
8 1 2 2 0.357 0.642 0.656 0.123
9 1 1 1 0.741 0.259 0.071 0.799
10 1 1 1 0.800 0.196 0.032 0.961
11 1 1 1 1.003 —0.003 0.010 1.600
12 1 1 1 1.063 —0.065 0.035 1.826
13 1 1 1 0.863 0.139 0.009 1.133
14 1 1 1 0.922 0.077 0.000 1.325
15 1 1 1 1.125 -0.122 0.074 2.060
16 1 1 1 1.185 -0.185 0.129 2.317
factor score estimation; that is, regression It =TIl
of G on X. . ¥ oo
R Since
Gls = X(X’X)_IX’G HN]-N - lN
where and
(lexx) ‘o p Mily =0y,
and XXXy X'y = lNAholds. ~
1 Because estimates L and D, are used in
(J_VX ' G) = BD? = LD, . place of parameters, there can be observed
Th some fluctuations, but still the relation (20)
en

Giglyey = X(X'X)1X'1, .

Since X contains 1y as one of its vector
elements, the relation

X(X' X)X
= Hy+1§ (X O3 X 0 Ty
holds (Takeuchi & Yanai, 1972), where

1

HN:N

lNl’N

and

holds in an approximate sense. (20) states
that the configuration forms a line on the
simple plane; that is, in case the number
of latent classes is two.

And also if (8) is true, then

P-D}=LDJI" =BB.

This leads to the following equation (Shiba,
1972):

Gr=Gus.
Again L and B, cause the discrepancy be-
tween these two methods.
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TaBLe 16

Relative class sizes and within-class means calculated on the basis of assigned class
by least squares methods: diagonal elements of D, and matrix ¥

Variate No.
Class Class sizes
0 2 3 4
1 0.593 1.000 1.000 0.210 0.795 0.401
2 - 0.406 1.000 0.000 0.126 0.358 0.330

It seems that orthogonality condition im-
posed upon estimated factors only stretch
or contract configurations along a line,
and yield a very close result to the cor-
responding method without this condition.

Now it is clear why the results are all
alike except G, and G, and they are in the
form of a ‘ quasi’ straight line.

Let’s consider

G = X*L(I'Ly
where X* = GL’, and
Gy = XL Lyt

= G+VLILyYt. (21

Thus G; can be conceived as an approxi-
mate method for what is called ‘ideal
variables’. But the problem is that (21)
counts uniqueness variation as part of G
This may be why G, and its orthogonal
counterpart, G, give somewhat different
configurations from others.
The recruitment class of a response pat-
tern is determined in two different ways.
In the first we find a dummy variable
matrix which best fits to @; that is G
which minimizes trace of E’E, where
E=G—G. Thisincidentally agrees simply
to find J such that
~ ~
j= mja'x(gkj)
where
~ A
gl =G.
In the second we transform within class
means L into factor scores and measure the
distances between these class means and

each of response patterns. In the first way
we have assumed that the characteristics

of latent classes are represented as the
points (1,0) or (0, 1) on factor scores. But
it is only in method (1) that these points
also signify the mean characteristics of
latent classes.
G, = XB(B'B)1D
= XLD %D ML LD 12)-1D 1
= XL('Ly™!

If we replace X by L', we get
Gn=LLLLY'=1,,.

No other estimation methods have this
theoretical feature. Distances are calcu-
lated in the following way.

D = % (8ri— @)
i

where
i: response pattern index.
J: factor index.
a: class index.
4w mean characteristic of class a
on factor j.
Dy : distance between class a and

response pattern £.
The decision function is

& = minDkz(,,) B
a

We call the first way ‘ minimum squared
error method’ and the second ‘minimum
distance method ’.

In the present case, results of class as-
signment agree unanimously through dif-
ferent estimating methods of factor scores
and different ways of determining classes,
though this is not confirmed generally.
(The author has found in another example
the case in which different estimating meth-
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TABLE 17

Total moments calculated on the basis of assigned
class by least squares methods: matrix P

0 1 2 3 4
0.999 0.593 0.176 0.618 0.372
0-593 0.593 0.125 0.472 0.238
0.176 0.125 0.032 0.118 0.067
0.618 0.472 0.118 0.428 0.237
0.372 0.238 0.067 0.237 0.140

ods lead to different class assignments.)
Tables 16 and 17 are computed on the

basis of assigned classes in the ways men-

tioned above to show how they can repro-

duce original matrices L and D,, and how
they satisfy the assumption of local inde-
pendence.

Goodness of fit of I and D, to L and D,
is evaluated in terms of chi square which
amounts to 7.460 with 15 degrees of free-
dom. This is a fairly good approximation.
It is interesting to note that this suggests
a possibility of an easy, though rough, ap-
proximating method for latent class param-
eters by partitioning response patterns
into classes through rotating principal or
diagonal-centroid factor score matrix into
simple structures.

Finally the results of least squares meth-

TasLE 18
Recruitment probabilities

No. of

response A* P(k) Pk, 1) P(k, 2) P(1/k) P2[k)

patterns
1 2 .158623 .004684 .153938 .029532 .970467
2 2 .071184 .003309 .067874 .046493 .953506
3 2 .086506 .021782 .064724 .251798 .748201
4 2 .043927 .015388 .028538 .350324 .649675
5 2 .017370 .001399 .015971 .080554 .919445
6 2 .008030 .000988 .007042 .123099 .876900
7 2 .013221 .006506 .006715 .492097 .507902
8 1 .007557 .004596 .002960 .608216 .391783
9 1 .062365 .044113 .018252 .707335 .292664
10 1 .039165 .031165 .008047 .794768 .205231
11 1 .212789 .205115 .007674 .963935 .036064
12 1 . 148294 .144910 .003383 .977182 .022817
13 1 .015070 .013176 .001893 .874342 .125657
14 1 .010144 .009309 .000834 .917688 .082311
15 1 .062064 .061268 .000796 987171 .012828
16 1 043636 .043285 .000351 991954 .008045

A¥*: Most probable class.
k: Response pattern index.
J: Latent class index.

Py :

Marginal probability of response pattern £.

P(k,j): Joint probability of response pattern k and class j.
P(j/k): Conditional probability of class j given response pattern k (Recruitment probability).

P(k,j) = djiljl lija‘ik(l_lij)l—zik

%;x: Response of pattern k to it® variate.
PRy = ; Pk, 5).
P(jIk) = Pk, j)IP(F) .
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ods are compared with the one via recruit-
ment probability procedure, a sort of maxi-
mum likelihood method of estimation.
Recruitment probability is the probability
that an individual with a certain response
pattern to items belongs to a certain latent
class, and it can be calculated whenever
the type of population distribution is known
and estimates for distribution parameters
are available (Lazarsfeld, 1954; Lazarsfeld
& Henry, 1968). (Recruitment probability
is the conditional probability of latent
class given a response pattern.) Computa
tional procedure is given at the bottom of
Table 18.

It is found that least squares methods do
not always give results which perfectly
agree with the most probable class by
maximum likelihood method. Here Re-
sponse Pattern No. 8 is always assigned to
Class II by least squares methods and to
Class I by maximum likelihood method.
Generally maximum likelihood method
seems to have more acute discriminating
power than least squares methods.

But a pretext here is that the marginal
probability of Response Pattern No. 8 is
so small (less than 8 out of 1000) that this
error of discrimination would only raise
the total error probability by approxi-
mately 0.1649, (from 9.8259%, to 9.989%)).
In addition maximum likelihood methods
cannot be applied unless the type of popula-
tion distribution is known, while least
squares methods facilitate much broader
applications.

Concluding Remarks

It has been shown that latent class model
is a special type of factor analysis with
dummy variable matrix G as its factor
scores. Then what are the significances of
latent class solution over usual factor analyt-
ic solutions, say perhaps, varimax rota-
tion? One is obviously the uniqueness of
latent class solution, as contrasted to the
fundamental indeterminate nature of factor
decomposition; for the complete specifica-
tion of factors some other criteria such as

varimax should be introduced from outside
the model (1) itself.

Another, still more important to note, is
an fintrinsic’ linearity nature of latent
class model (Gibson, 1959). (Linear) fac-
tor analysis has also this linear property,
but their meanings are quite different.

Now let’s take up the general regression
model,

Y= Qat+ 2 aik¢i+.§aijk¢i§0j+"'+ek (22)
(k = 1: ttt n)
(l,.] = 1) R 1‘)

where 7, is a kt* dependent variate, ¢;(i=
1,...7) an i independent variable, and
@ox, A, @y Tegression coefficients. ¢ is
a disturbance term.

(Sometimes coefficients are not uniquely
determined. This problem involves the
notion of functional independence. And
in fact our second case to be mentioned
below violates this condition. But for the
sake of explanatory convenience we as-
sume that coefficients are determined for
the moment.)

It is expected that (22) is a good approx-
imation to the more general regression
formula,

y=flp)te
where

HIESHERSH
y = s Q= : and & = :
In Pr &n

and f is some unspecified function. If we
ignore all terms equal and higher than the
second degree in (22), we get

Ir = Ot 2 Aapited (23)

where
ek’ = g+ Z.a”kgpigo,+... .
: 125 )

If we further assume that

E(yk)=0 (k= 1,5 m)
E()=0 G=1,--,1)
E(Sk) = 0

(k = 1, M) n)
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hence a4=0, we have factor analytic
model.
On the other hand if we define ¢;, ¢; as

- { 1
[ 0
(Gj=1,...,1)
_ e i=j
PPy = {0 ixj
we have from Eq. (22)
Je = gt 20 i +e 02)

because all higher cross terms vanish and
since gm=g(i=1,...,r) for any integer
m, if we put

&y = agtogt... G=1,..,r)

We have latent class model indicated by
(24). Notice that (23) is only a linear ap-
proximation to (22), while (24) is a perfect
equivalence to (22) except a restriction
upon the ¢;’s domain. This implication is
of considerable interest in that in factor
analysis strict linear relations between
manifest and latent variates are required,
whereas in latent class model manifest and
latent variates are always related linearly
no matter how manifest variates are dis-
tributed.

Finally we go back to the problem of
factor score estimation to give more de-
liberations to some possible reasons why
the disagreement we have observed occurs.

It must be noted that this disagreement
cannot be attributed to the simple fact that
z happens to be just not so good an estimate
of L. There is an evidence to support this
statement. The results of estimation in
which parameters L is used in stead of
estimates £ reveal still one disagreeing
pattern between maximum likelihood
method and each of least squares methods.
(There is no disagreement among least
squares methods, or between I and L)
Response Pattern No. 8 is always assigned
to Class I by maximum likelihood method
and to Class II by least squares methods.

One possible explanation to this is that
least squares methods are exclusively based
on the distances and do not take class
sizes, or prior probabilities, into account.
This supposition is supported by the fact
that without prior probabilities even in
maximum likelihood method, the assigned
class of disagreeing response pattern is so
reversed as to yield a result which perfectly
agrees to those through least squares meth-
ods.

One way to consider prior probabilities
in the discrimination is to assume normality
of the distribution upon factor scores and
to apply maximum likelihood method to
the estimated factor scores. The similar
procedure has been taken up by Ikuzawa
(1968) who has applied maximum
likelihood method to canonical variates
to discriminate latent classes. (Ikuzawa’s
example is somewhat unfair in the respect
that in his example prior probabilities do
not influence the results of discrimination
in any way.) But even his approach is
not a final answer. His procedure ap-
plied to our data has resulted in the same
disagreement to maximum likelihood meth-
od; that is, Rosponse Pattern No. 8 is as-
signed to Class IT even by discriminant
analysis.

Further investigation is yet necessary to
make use of informations about prior pro-
babilities, when available, in the real in-
trinsic way in least squares methods.
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