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He knows that his variables do not measure up, as it were, to the assumptions
required by the multiple correlation technique. Some of his variables are
measured at the interval level, as is conventionally required, but others
are ordinal and yet others are (heaven forbid) only nominal. What does
he do in the face of this dilemma? He proceeds as though there were no
problem at all. After all, what other alternatives are there? There is no com-
pletely appropriate alternative, as the only multiple correlation techniques
which permit qualitative variables assume that all variables are qualitative,
or that the independent variables are quantitative while the dependent
variable is qualitative. In the former situation the variables must all be
nominal [Hayashi, 1950], or all ordinal [Lingoes, 1973; de Leeuw, Note 2],
with no mixing of levels and no quantitative variables. In the latter situation
the dependent variable may be ordinal [de Leeuw, Note 3; Carroll, 1972;
Srinivasan, Note 7], nominal (discriminant analysis) or binary [de Leeuw,
Note 4]. With the exception of discriminant analysis, no procedures have
been proposed which permit several dependent variables that may be qualita-
tive.

The work presented in this paper is designed with the above situation
in mind. With the Multiple Optimal Regression by Alternating Least Squares
(MORALS) technique, and the corresponding canonical regression technique
(CORALS), the investigator with variables defined at a variety of measure-
ment levels can investigate their structure while he respects the various
levels of measurement. MORALS optimizes the multiple correlation between
a single criterion variable and a set of predictor variables where any of the
variables (criterion included) may be nominal, ordinal or interval. The
variables do not all have to be measured at the same level; any mixture will
do. Also, the process assumed to have generated the data may be either
discrete or continuous. As ~vill be explained, MORALS obtains an optimal
scaling for each variable within the restrictions imposed by the regression
model, the measurement level, and the generating process. The scaling is
optimal in the Fisher [1938] sense of optimal scaling: the multiple correlation
is maximized.

CORALS is very similar to MORALS, except that it optimizes the
canonical correlation between two sets of variables. Since 5~IORALS is a
special case of CORALS (where one of the sets of variables consists of 
single variable), we refer to the algorithm as the MORALS/CORALS
algorithm.

In the companion paper [de Leeuw, Young & Takane, 1976] we discussed
in detail the simple additive situation where one has obtained qualitative
data in a factorial design and is only interested in the main effects. The
previous work, then, was restricted to univariatc qualitative data obtained
in factorial experiments, and to the additive model with no interaction terms.
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In this paper we remove all of these limitations. We discuss the general
linear model as it applies to multivariate data where the variables may be
defined at any mixture of measurement levels.

As was discussed in the companion paper, the analysis of additivity
has usually been introduced in the context of a statistical model which places
very stringent and oftentimes unrealistic assumptions on the nature of the
data. As a result of these assumptions it is possible to develop inferential
procedures. Our purpose is not to develop an inferential procedure, but rather
to develop a descriptive procedure to provide the investigator with tools
for investigating the additive structure of his qualitative data. While it
would be desirable to develop an inferential procedure based on assumptions
commensurate with qualitative variables, such a development is not presented
in this paper.

1. Mathematical Developments

Notation

We use bold-face capital letters to represent matrices (i.e., X); bold-face
lower case letters for vectors (x); and regular lower case letters for scalars
(x). Note that all vectors are assumed to be column vectors, with a row
vector denoted as the transpose of a column vector (x’). We refer to a specific
column vector of a matrix as x~, a specific element of a matrix as x~, ; and a
specific element of a vector as x~. We further reserve Greek letters for param-
eters (i.e., ~ is a vector of parameters) and script letters for functions (i.e., 
is a transformation).

7’l~e problem

Let there be two matrices of observation variables X and Y, there being
n variables x~ and m variables y~, all having l¢ observations (we will consider
missing data later). We assume that each x~ and Yi is measured at some
known measurement level, with each element being subject to certain meas-
urement restrictions. There need be no particular relationship of measurement
levels between variables, although we assume that all observations on a
single variable are at the same measurement level (an a~sumption to be
relaxed later).

Let us further define two vectors of parameters a and ~, and two matrices
X* and Y*, where a has n elements a~, ~ has m elements ~, X* has n columns
and lc rows, and Y* has m columns and l~ rows. The columns x~* and y~*
correspond to the observation variables x, and y~. Furthermore, the columns
x;* and y~* have two important characteristics: a) all x~* and y~* are defined
at the interval level of measurement; and b) each x~* and y~* is related to
its observation variable x~ and y~ by a transformation which completely
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satisfies the measurement characteristics of the observation variable. That is,

(1)
x,* =

y~* = 51[y~],

where 5~ and 5; are called the measurement transformations, and are col-
lectively referred to as 5 when there is no resulting confusion. Of course,
the 5 are subject to restraints by the measurement level and process of their
variables. These restraints are discussed in the next section. We may cor-
rectly think of x~* and y~* as being the observation variables rescaled at
the interval level of measurement so that the correlation is optimized. Thus,
we will oftentimes refer to x~* and y~* as the optimally scaled observations.

The problem we wish to solve can now be stated. We wish to obtain
transformations 5 of each observation variables x, and y~-, as well as regres-
sion weights (~ and ~, so that the canonical correlation between X* and Y*
is as high as possible. Since maximizing the canonical correlation is equivalent
to minimizing the sums of squared differences between two composite vari-
ables (under suitable normalization assumptions), we defined composite
variables a and b such that

a = X*¢~,
(2)

b = Y*~,

and state our goal as the minimization of

~2 = (a - b)’(a - 
(3)

= (X*~ -- Y*~)’(X*~ - ¥*~),

where the normalization restrictions are

l’x~* = l’yi* = O, (i = 1, ... ,n;j = 1, ... ,m),

1 1 ,, ,
~xi*’x~* = ~y~ Yi = 1,

1(4)
(c) ~a’a = 

1
(d) ~b’b = 

Of course, x,* and y~-* are also subject to the measurement restrictions of
(1). Note that we minimize ~ and not ~ normalized by the variance 

a (or b). De Leeuw [Note 5] has shown that restriction (c) makes such 
normalization unnecessary. Note that the canonical correlation between the
two sets of variables is defined as

1
R = ~ a’b.

(a)

(b)
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Restrictions

In this section, we discuss the types of restrictions imposed on the rela-
tionship between the raw observations in matrices X and Y and the rescaled
observations represented by matrices X* and Y*; that is, we discuss restric-
tions of the transformations in (1). The restrictions are of three types; 
those concerned with identifying the parameters ~ and ~ (the normalization
restrictions); b) those concerned with the measurement level of the observa-
tion variables; and c) those concerned with the underlying process which
generated the observations on each variable.

The minimal set of restrictions always involves the normalization restric-
tions imposed by (4). Though these restrictions are trivial and not very
interesting, they are of crucial importance since without them unique values
for ~ and ~ are undefinable. Of greater interest are the restrictions on the
transformations 3 (equation 1). These restrictions concern two different
aspects of the measurement situation: the level of measurement of the observa-
tion variable (i.e., nominal, ordinal or interval), and the nature of the process
which generated the observations (discrete or continuous). We do not 
into these restrictions in detail here since they have already been discussed
in detail in the companion papers [de Leeuw, Young & Takane, 1976; Takane,
Young & de Leeuw, in press]. We simply state that the measurement process
restrictions involve either the discrete restriction

(5) 3~ : (xo, -.~ xb~) ~ (xo,* = xb,*),

(where ~ indicates empirical equivalence, i.e., membership in the same obser-
vation category) or the continuous restriction

(6)

(where xo~- and xa~* are lower and upper bounds of an interval of real num-
bers). Note that the same types of restrictions apply to Y and Y*.

The measurement level restrictions involve a) no added restrictions for
nominal variables; b) order restrictions

(7) 50 : (Xo~ < xb,) -~ (xo,* <_ xb,*),

for the ordinal measurement level; and c) linear restrictions

or polynomial restrictions

for the interval level of measurement.
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Model subspace

The final notion to be introduced is that of the model subspace repre-
sented by the matrices ~ and ~, which are of the same order as the observa-
tion matrices X and Y. The model subspace notion is most easily introduced
by expanding (3) 

(10) h~ = [xt*a~ -- (b - a + x~*a~)]’[xz*a~ - (b - a + xz*at)].

If we define

(11)

then

~., = [b - (a- x,*.,)],

X~ = [x~*., - ~,.,]’[x,*.¢ - ~,,z](12)
= .?(x,* - ~,)’(x,* ~,).

Note that the model subspace vector ~ is proportional to the difference
between the two linear components a and b when the optimally scaled ob-
servations on variable 1 are removed from the equation:

(13) :~ = [b - (a- x,*a,)la,-’.

This explains the name of these variables. Of course, we may define ~ cor-
respondingly.

2. Algorithm

The MORALS/CORALS algorithm is an alternating least squares
(ALS) algorithm. A very closely related ALS algorithm which is appropriate
to the ANOVA situation (ADDALS) has been described in the companion
paper [de Leeuw, Young, & Takane, 1976]. An ALS algorithm for individual
differences multidimensional scaling (ALSCAL) has also been discussed 
Takane, Young, and de Leeuw [in press]. These same investigators are also
developing ALS algorithms for principal components analysis. All of these
algorithms have in common the fact that the data being analyzed may be
at a variety of measurement levels. The ALS approach is related to the
work of Wold and Lyttkens [1969], de Leeuw [Note 3] and Young [1972].

As is implied by the name, an ALS algorithm is an interative algorithm
which alternatives back and forth between two phases, each of which is a
least squares procedure. In one of the phases, least squares estimates for the
model parameters are obtained while the data transformations are held
constant, whereas in the other phase, least squares estimates of the transfor-
mations are obtained while the model parameters are held constant. It has
been shown by de Leeuw, Young and Takane [1976] that under the appro-
prmte conditions such an iterative process is convergent. "The MORALS/
CORALS algorithm is such an algorithm. In one of the phases the least
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squares estimates of the model parameters ~ and ~ are obtained while the
transformations 5 are held constant, while in the other phase the least squares
estimate of a single transformation 5i is obtained while a, ~, and the remaining
5 are fixed. Since both phases minimize (3), the algorithm is convergent.
Ia the next two sections we discuss the model estimation phase (which esti-
mates a and ~) and then the optimal scaling phase (which estimates 51).

We should point out that the model estimation phase is entirely super-
fluous. It is possible to recast our problem in the indicator matrix format
used in our work with the additive model [de Leeuw, Young & Takane, 1976]
and to avoid the transformations notation entirely. When viewed in this
light it is apparent that the regression weights are unnecessary, as they are
absorbed into the scaling of each variable. However, it is our opinion that
the presentation mode used here is more desirable pedagogically in the
present context.

Model Estimation Phase

In the model estimation phase we desire to obtain least squares estimates
(relative to ~2) of the model parameters a and ~ under the assumption that
all the optimally scaled variables X* and Y* are held constant. When it is
recalled that the X* and Y* represent the observations rescaled at the interval
level, we see that this phase is no different than the classical canonical cor-
relation situation [Hotelling, 1935], where the variables are the x~* and Yi*
(not the x~ and y~). If we define Rx~ to be the correlations among the vari-
ables in X*, and define R~ and R~, correspondingly, then the least squares
solution to the canonical correlation equation

(14) X*a ~ Y*~,

may be obtained by finding the square root of the largest latent root ~ of

(15) (R,~-’R,~xR~-IR~,, - ~I)~ = 

It is then the case that the vector of weights ~ is the characteristic vector
associated with the largest root of (15). The weight vector (~ is obtained
from

(16) ~ = (R~-~R~)-~ /2 .

In the multiple correlation situation where, for example, there is only one
variable x*, the least squares estimate of

(17) x* = Y*~,

for ~ reduces to

(18) ~ = (Y*’Y*)-~Y*’x*.
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Optimal scaling phase

We will not discuss the details of the optimal scaling phase as they are
the same as in the companion papers [de Leeuw, Young & Takane, 1976;
Takane, Young & de Leeuw, in press].

Initial values

As with any iterative algorithm, we must ’supply the procedure with
values to initiate the process, but with MORALS, unlike some algorithms;
there is a particularly compelling initialization procedure. We simply assume
that the matrices X and Y (the raw data) are actually the matrices X* and Y*.
This is equivalent to assuming, for the initialization process, that the raw
data are measured on an interval scale. (We must assign arbitrary values to
the observation categories when a variable is nominal.) We then enter the
model estimation phase and solve for u and ~ by (15) and (16) (or (18), 
the case may be). We then use these estimates of the model parameters
to begin the iterative procedure whose flow is discussed in the next section.
Note that the initialization procedure is simply the classical canonical or
multiple regression procedure. Thus, the very first step of the procedure
corresponds to the analysis the researcher would have obtained had he
decided that his variables were all quantitatively measured. By comparing
the results of the entire iterative process with the results of the very first step
of the pro~ess, the user can determine what he has gained by the use of his
measurement assumptions (except for nominal variables). If, for example,
he assumed that his variables were ordinal and discovers that the canonical
correlation is essentially the same after the iterative process as it was before,
and he also discovers that his monotonic transformations are all essentially
linear, then he could safely conclude that he has gained nothing by the
assumptions of ordinality, and that it would have been proper to assume that
his variables are measured at the interval level. Thus, we see that by using
the classical procedure as the initialization process the user can easily investi-
gate whether his assumptions concerning measurement levels are correct
(see Takane, Young & de Leeuw, in press, for a discussion of this point).

Algorithm Flow

As described thus far, the MORALS/CORALS procedure consists of
two phases, one to estimate the model parameters ~ and 9, and the other to
estimate the data transformation 5~ . The obvious ALS procedure would
involve alternating these two phases until convergence is obtained. A careful
reader, however, will have by now detected a subtle imbalance between the
two phases. Whereas the model estimation phase obtains estimators of the
weights a and ~ for all variables, the optimal scaling phase obtains estimates
of the transformation one variable at a time. Thus, the obvious ALS procedure
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must be modified somewhat. Several of the alternatives that we might choose
ace discussed in the remainder of this section.

One alternative is an iterative procedure where a single iteration is
defined as follows. First select a particular variable and optimize ),~ relative
to that variable (as expressed by (13)) by repetitively alternating the 
phases until convergence is obtained. Then repeat this procedure for another
variable and another, etc., until all variables have been subjected to this
procedure. This completes a single iteration, with the iterations being re-
peated until convergence is obtained. We have not investigated this procedure
as it appears to us to be computationally inefficient relative to some of the
procedures discussed below.

Another alternative would define an iteration as follows: obtain the
transformation ~ which yields the optimal xj*. Then replace the previous
x~* with the new one, and repeat this process for x~*, x3*, etc., until all the
variables in both sets have been optimally scaled. There is now an entirely
new set of X* and Y*, for which the transformation process is repeated.
We repeat the transformation estimation until convergence is obtained at
which point we have already obtained estimates of a and ~ as a by-product
of the procedure. We have investigated this algorithm and have found it to
be very slow. Thus, we do not pursue it further, although it can be shown to
converge on the desired X* and Y* and on the appropriate weights ~ and ~.

The two algorithms that we have investigated most thoroughly are each
rather similar to the one just discussed. The iterative structure for the first

of these two procedures is as follows. First obtain the transformation 5 which
yields the optimal x~*, and then replace the previous x~* with the new one.
Repeat this process for ea’ch of the other x~* (i = 1, 2, 3 ... n); and solve
for weights a~ and ~. Follow this with estimation and replacement of each
y~* (j = 1, 2, ¯ ¯ ¯ m) and another estimation of ~, and ~. The other algorithm
that we have investigated is exactly the same except that the weights ~ and
~ are estimated only once on each iteration. Thus, the structure of an iteration
for this procedure is to estimate and replace each x~* (i = 1, 2, ... n), and
then each y~* (j = 1, 2, ... m), and then to estimate the ~ and ~. Both 
these algorithms entail an iteration which is much quicker than the first
possibility discussed in the previous paragraphs and slightly slower than the
second possibility. Many fewer iterations are required with these algorithms
than with the second alternative. More important, however, is the fact that
these two algorithms place more nearly equal emphasis on the two phases
than the former two algorithms. We have been unable to determine any
characteristics of the latter two algorithms which would allow us to select
one over the other except for the fact that the one involving only one model
estimation is slightly more efficient. Thus, we have chosen it to define the
iterative flow of MORALS/CORALS.
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Missing data

Missing data. are allowed for in a manner which does not destroy the
ALS property of the MORALS/CORALS algorithm. If some observation
x~t (or, implicitly, ya~) is missing, then the computation of the initial weights
at and ~i is changed in a minor manner: we simply estimate each missing
xa~* as being the mean of the nonmissing observations in the vector xt .
The computation of initial at and ~ then proceeds as stated.

The computation of the subspace vector ~t is as stated above except
for the element 2or corresponding to the missing observation. The value
of this subspace element is determined by either a) setting it equal to the mean
of xt*; or b) setting it equal to the element xa,*. The choice of method is
left to the user and corresponds to whether he views his missing observations
as having been caused by a discrete or continuous process, respectively.
If the discrete assumption seems appropriate, then all missing observations
on a given variable are assumed to have been caused by the same (discrete)
set of events, and are all assigned the mean of the nonmissing values (the
least squares discrete estimate). If the continuous assumption is appropriate,
then all missing observations on a given variable are assumed to have bc6n
caused by different (continuous) sets of events and are all set equal to their
corresponding optimally scaled observation (the least squares continuous
estimate). Alternatively, we may view the choice as concerning whether
all missing observations represent a single category (form means) or separate
categories (don’t form means).

Parlit.ions

It may sometimes be the case that not all of the observations made on a
single variable are comparable. For example, it may be that some of the obser-
vations of a variable were made at a different time or under somewhat dif-
ferent conditions than some of the other observations. The result is that a
specific observation made at one time (or place) cannot be said to be larger
or smaller than one made at the other time (or place), even though the obser-
vations have the same measurement characteristics. Or, as another example,
the measuring device may have broken during the observation process and
been repaired in such a_way that the measurements before and after the
break-down are no longer directly comparable. If it is the case that not all
observations on a specific variable are directly comparable, then we wish
to partition the observations into mutually exclusive and exhaustive subsets,
and permit separate transformations within each partition.

The partition notion is also useful in precisely the opposite situation.
It may be that we have two (or more) variables which are measured on the
same scale and that we wish to obtain identical optimal transformations of
both variables. In this case we wish to collect the observations on the two
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variables into a single superset of observations and obtain a single transfor-
mation for the superset.

It should be apparent that defining partitions as either subsets of the
observations on a variable or as supersets of observations creates no particular
problem. We need only to substitute the desired partitioning of X and Y for
the partitioning which has been implicit in our previous developments (i.e.,
partitioning by variables).

3. Evaluation

In this section we present three evaluations of the MORALS/CORALS
algorithm. The first evaluation involves a Monte Carlo study in which we
find that the algorithm can recover known information in the face of
systematic and random error. In the second evaluation we obtain useful
and interpretable results when the algorithm is applied to a set of real survey
data. In the third and final evaluation we obtain a meaningful interpretation
of a multidimensional scaling solution in a special case of MORALS/CORALS
which corresponds to a previously proposed procedure for interpreting such
solutions.

Monte Carlo study

A small Monte Carlo study designed to investigate the robustness of
MORALS/CORALS in the face of both systematic and random error is
presented in this section. We do not claim that this is a complete or definitive
study of the algorithm’s behavior in situations likely to be encountered by
the typical investigator. Rather, it is simply a small study designed to dem-
onstrate the algorithm’s behavior in one common situation, that in which
there is a single dependent variable and two independent variables, all of
which are ordinal. The design of the study is as follows.

Two "true" independent variables were generated, each with 64 observa-
tions. Each observation was sampled from a random uniform distribution
on the interval (0-1). A "true" dependent variable was then generated 
simply adding together corresponding elements of the independent variables.

Five degrees of nonlinear monotonic distortion and three levels of random
error were then defined. The nonlinear distortion involved the three transfor-
mations:

y~ = y~ ,

where k varies from 1 to 5, a "bar" indicates "true" values, and x.~ indicates
the mean of the true values. Thus when ]~ = 1, all variables remain undis-
torted, and when ]c varies up to 5, the variables become increasingly more



516 PSYCHO~IETRIKA

nonlinear, with each variable being distorted in its own unique manner.
Note, however, that all distorted variables are equivalent to the undistorted
variables at the ordinal level, since each transformation is strictly monotonic.
Random error, was introduced by adding a random normal deviate to each
element of each of the three distorted variables, where the standard deviation
of the deviate is proportional to the standard deviation of the undistorted
variable. The proportionality constant defined the three levels of random
error, and was equal to zero for the lowest level (no random error), .10 for
the intermediate level, and .50 for the highest level. These systematically
distorted and randomly perturbed variables were then input to MORALS/
CORALS, under the assumption that each variable was ordinal. The results
are summarized in Table 1 and Figure 1. The table presents the classical
multiple correlation coefficient Rc (which is the one obtained under the
interval measurement level assumptions made in the standard multiple
correlation analysis, and which is also the initial correlation obtained by
MORALS/CORALS), the optimal multiple correlation coefficient R0 (ob-
tained under ordinal measurement level assumptions), the simple correlation
of each optimally scaled variable with its corresponding "true" variable
(r~ , r~ , and r~), and the number of iterations required for convergence 
the algorithm. The figure presents the optimal transformations obtained for
each variable for the fourth degree of systematic distortion and for all three
levels of random perturbation. The horizontal axes are the distorted and
perturbed Values being analyzed, and the vertical axes are the optimally
transformed values. Ideally, the optimal transformations presented in Figure
1 should be the inverse of the transformations used to define the systematic
distortion.

We observe that for all levels of systematic distortion the algorithm
can perfectly recover the underlying true structure when there is no random
error (all optimal multiple correlation are 1.0 and all simple correlations
are at least .976). This implies that the algorithm is able to obtain the desired
inverse of each transformation defined above, as otherwise the simple cor-
relations would be lower. Note also that in these cases with no random error
the classical multiple correlation progressively decreases from 1.0 in the
no-distortion case to .626 in the case of most distortion, as is expected.

We also observe that when random error is present, the degree to which
the true information is recovered deteriorates, as is expected. For the inter-
mediate level of random error the amount of deterioration, does not seem to
be affected much by the amount of systematic distortion. However, there
appears to be some effect of systematic error for the greatest degree of random
error, with the overall poorest recovery occurring when there is a large amount
of randomerror and severe non-linearities in the data. In particular we
note that for high random error and for systematic error levels 3 and 5 (but
not 4) the solution obtained by MORALS/CORALS is degenerate. The
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Table 1
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Random Error

Level

Monte Carlo Study

Systematic Distortion Level

1 2 3 4 5.00 Rc

1.0000 .9213 .8081 .7079 .6255R°

1.0000 1.0000 1.0000 .9999 .9999

r 1.0000 .9917 .9861 .9833 .9831
Y

rxl
1.0000 .9869 .9792 .9761 .9763

rx2 1.0000 .9943 .9918 .9904 .9898

iter 1 5 7 8 9.10 Rc

.9882 .9069 .7832 .6939 .5921

Ro .9995 .9999 .999h .9996 .9998

r .9942 .9867 .9810 .9517 .9869Y
rxl .9931 .9820 .9796 .9139 .9800

rx2 .9906 .9851 .9814 .9748 .9864

iter 5 6 13 ll 12

.50 Rc
.8486 .7043 .5944 .6498 .5228

R .9544 .9269 .9998 9545 .9997o "

ry .9177 .8753 .3339 .9214 .2721

rxl
.8801 .8709 .8927 .8805 .8126

rx2 .8849 .9058 .2785 .9099 .2380

iter 6 5 21 6 23

optimal transformations obtained for the dependent variable and for the
second independent variable consist, essentially, of two values, ~vith the
largest value on each vector being transformed into a very large value, and
all the remaihing values being tied together at a very small value. The four
corresponding simple correlations are much lower than any others. It is not
clear to us why such a degeneracy should occur for these two particular levels
of systematic distortion and not for the intervening level (see Figure 1).
However, these results should serve as a w.arning that in cases of extreme
nonlinearities and high amounts of error the MORALS/CORALS algorithm
may yield degenerate results. In our experience with real data, however,
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FIGURE 1

Recovered t, ra~sformations for three levels of random error at, the fourth level of systematlc

distortiom

we have never obtained such degeneracies, suggesting that these extreme
Monte Carlo conditions may be uncommon empirically.

Survey dala

The application process for prospective graduate students to a quanti-
tative psychology program can be summarized, from ghe faculty’s point of
view, by the variables presented in Table 2. Of the 12 variables presented
in this table, eight are obtained from the 33 graduate student applications
and four are derived by the faculty. Thus the eight applicant variables may

varmbles, and the four evaluationbe naturally thought of as independent " *:+’
variables as dependent variables. The eight independent variables concern
the degree obtained by the applicant (bachelor’s or master’s), the applicant’s
major as an undergraduate (either psychology, mathematics including
statistics, or a double math-psych major), the applicant’s grade point average,
his verbal and mathematical score on the Graduate Record Examination,
his score on the Miller Analogies examination, his strongest interest (quanti-
tative psychology or statistics), and his average recommendation rating.
The four dependent variables indicate the tentative accept-reject decision
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Table 2

Correlation and Regression Weights for Survey Data

Canonical Multiple
i 2 i 2 3 4

Regression Weights
Dependent variables

Tentative decision .212
Final decision .091
Suitability order .970 .996 1.000 1.000
Applicant action -.081 -.086 1.000 1.000

Independent variables
Degree .137 .204 .214 -.065
Major -.136 -.184 -.166 .192
GPA .192 .276 .260 -.173
GRE verbal -.204 -.295 -.272 1.296
GRE math -.281 -.409 -.410 -.957 -.745 .420
Millers Analogies -.164 -.235 -.232 .187
Interest .108 .126 .065 -.348
Recommendation -.443 -.636 -.574 .238 -.528 .296

Correlations
Classical .925 .923 .921 .593 .842 .297
Optimal 1.000 1.000 1.000 .961 .997 .543

Number of cases removed 7 7 7 7 2 2

Number of iterations i 2 2 13 15 2
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made by the faculty at the beginning of the evaluation (including a "defer"
decision), the corresponding decision made at the conclusion of the evaluation,
the faculty’s rank order of all applicants’ suitability to the graduate program,
and the action taken by the applicants. Note that three of the four dependent
variables are weakly equivalent at the ordinal level. The 13 students who
ranked most suitable were accepted, and of these the nine highest were
tentatively accepted and the remaining four were tentatively deferred.
Note also that eight of those students who were initially deferred were later
rejected, and that all of these students were ranked lower than those who were
finally accepted.

We performed two canonical regressions on these data, one using all
four dependent variables, and one using only suitability and action (due to
the relationship between suitability and the other two dependent variables
noted above). For each analysis we assumed that all variables except suitability
were discrete, and that the degree, major and interest variables were nominal,
while all others were ordinal. For each analysis we removed all of those
students who had missing data (the analyses were also performed with these
students left in and with their missing data estimated as stated above, with
little difference in results).

The results of each analysis are presented in Table 2. For both analyses
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the optimal canonical correlation was 1.0, obtained in either 1 or 2 iterations.
Thus it is possible to transform the dependent and independent variables
in a manner which allows a linear combination of one set to be perfectly
linearly related to a linear combination of the other set. The pattern of weights
is very informative. Among the dependent variables suitability is very heavily
weighted, and the remaining receive almost no weight. This is true for both
analyses and suggests that a very strong multiple correlation based only on
suitability exists (a suggestion which will prove to be correct). The pattern
of dependent variable weights is easily interpreted. We should expect the
suitability weight to be very high because the suitability rank order is devel-
oped by the faculty from the applications summarized by the independent
variables. So, if the independent variables summarize all of the information
in the application, and if the rank order is consistent ~vith that information,
then the regression weight should be very high. The weights on the tentative
and final decision variables should be low because their information is already
contained in the suitability rank order, as noted above. Finally, the action
variable should have a low weight because if reflects many variables not
included in the analysis, such as ~vhether or not the applicant was accepted
by other graduate programs, how strongly he desired to be in each program,
etc. Turning now to the independent variable weights, we see that the pattern
of weights is the same for the two analyses, with the GRE-math and recom-
mendation variables receiving the heaviest weight. It is reassuring that the
pattern of Weights is stable between the two analyses.

Due to the perfect relationship derived in both canonical analyses,
we decided to perform several multiple regression analyses, using either
suitability or action as the dependent variable. The results of these analyses
are also presented in Table 2. (The same measurement assumptions and
initial category values "were used in these analyses as in the canonical
analyses.)

We first note that the optimal multiple correlation is still perfect for
the analysis using suitability as the dependent variable, but is somewhat
lower for the action analysis, a result which is consonant with the dependent
variable weights in the canonical analyses above. It is also interesting to
note that the classical multiple correlation is initially quite strong for suit-
ability but rather weak for action. We next note that the regression weights
for the suitability analysis display the same pattern as the weights in the
canonical analyses, but that the weight pattern for the action analysis has
changed. This should be expected due to the very large weight for suitability
and the low weight for action in the canonical analyses.

Finally, we performed one more pair of multiple correlation analyses, each
involving only the two independent variables receiving the most weight in
the three analyses in which suitability was a dependent variable. This new
pair of analyses differed according to whether the dependent variable was
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suitability or action. The results are also presented in Table 2, and are as
anticipated. The optimal multiple correlation for the suitability analysis is
no longer perfect, but is nearly so (.997), and the optimal multiple correlation
for the action analysis is very low (.5427). Furthermore, the regression weights
for the suitability analysis are essentially the same as those in the previous
analyses with this dependent variable.

The final aspect of these analyses to be emphasized is the set of optimal
scale values assigned to each nominal variable (see Table 3). (We do 
present the scale values for binary variables since they are arbitrarily set
to one and zero.) The first point to be made is that the scale values are rather
stable for all analyses except the multiple correlation analysis of action.
This result is in line with previous results. We next note that these variables
do not receive very heavy regression weights in any of the analyses, so any
interpretation of the variables by themselves does not add much to our
understanding of the total process. However, for the three analyses in which
suitability was a dependent variable, major received a negative weight,
indicating that larger (optimally scaled) major values are associated with
smaller (optimally scaled) suitability values. When we note that smaller
suitability values indicate greater suitability (the highest rank is 1), we see
that applicants with mathematics backgrounds tend to be rated as most
suitable, and those with psychology backgrounds as least suitable, while
those having double majors are in between. In a corresponding fashion we
can interpret the optimal scale values for interest (which has a positive regres-
sion weight in the three analyses in which suitability is involved) as showing
that applicants who are most interested in quantitative psychology tend
to be judged as most suitable, cognitive psychology as next most suitable,
and statistics as least suitable. Finally, the positive regression weight for
the binary degree.variable, and the coding of this variable (1 for Bachelors,
2 for Masters) indicates that applicants with Bachelors degrees are more
suitable.

Thus, from all of these analyses taken together, we conclude that it
is possible to describe the faculty’s judgments of the suitability of a prospec-

Variable Category

Major Psychology
Math/Psych
Mathematics

Interest Quantitative
Cognitive
Statistics

Table 3

Optimal Scale Values

Canonical Multiple Initial
1 2 1 2 Values

1.023 1.016 1.008 1.333 1
1.803 1.856 1.921 2.133 2
3.169 3.129 3.075 -0.554 3

1.007 .996 .998 .892 1
1.984 2.010 2.005 2.531 2
3.012 2.992 2.996 2.400 3
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rive graduate student on the basis of only that student’s score on the quanti-
tative section of the Graduate Record Examination, and on his strength
of ~ecommendation. In addition we conclude that it is not possible to ade-
quately describe the characteristics of those applicants who are to become
members of the graduate training problem on the basis of the variables
summarizing their applications. Furthermore, the faculty tend to prefer
students interested in quantitative psychology over those interested in
cognitive psychology (and least like those interested in statistics), tend 
judge those with a mathematical background as more suitable than those
without, and tend to prefer students without masters degrees.

M DS interpretation

One of the special uses of the MORALS/CORALS approach is to in-
terpret multidimensional scaling (~DS) configurations by projecting external
information into the MDS space. Cliff and Young [1968] suggested that
multiple correlation techniques could be used to project information into
the MDS space in the form of a vector in the space which correlated most
highly with the external information. Carroll [1972] suggested that multiple
correlation techniques could also project information into an MDS space
in the form of a point such that the distances between the projected point
and the .~DS points correlated most highly with the external information.
Both of these suggestions assumed that the external variable is measured at
the interval level of measurement, an assumption which is usually untenable,
but generally ignored. Carroll and Chang [1970], however, have recently
extended their proposal to cover variables defined at the ordinal level by a
procedure precisely equivalent to the special case of MORALS to be dis-
cussed [Note 2].

Hoadley [Note 6] has obtained a MDS solution for 100 U.S. Senators
based on their voting records in the Senate. He also obtained a variety of
additional information including ratings of each Senator by liberal, conserva-
tive and special interest groups, proportion of votes ~vhich supported the
Senator’s party position on various issues, specific votes on certain key issues,
etc. He also computed Guttman scales on several different topics of national
concern.

MORALS/CORALS was used with these data in the following manner.
Several multiple regressions ~vere performed, all of which assumed that the
two dimensions of the MDS space were defined at the interval level of meas-
urement, and that the vector of information being regressed into the 5(DS
space was qualitative. The results of these analyses are presented in Table 4,
along with the measurement characteristics of each dependent variable.
A geometric representation of one of these analyses is presented in Figure 2.
This is a representation of both the MDS space and the regression of the
Guttman scale concerning the degree to which each Senator voted in support



Variable

War Powers
Agricultural Subs
Party
G Agri. Scale
G Civil Liberty
G Gvt. Reg. Business

Table 4

Correlations and Regression Weights for MDS Interpretation

Measurement Correlation Weights
Level Process Initial Final Initial

dimension
i 2

binary d
binary d
binary c
ordinal d
ordinal d
ordinal d

Final

dimension
i 2

Number of
Iterations

4819 .6003 -.476 .086 -.599 .051
4426 .5922 -.341 .291 -.456 .389 i

9121 1.0000 .549 .716 .549 .716 (0)

7900 .8416 .708 -.367 .779 -.338 2

9255 .9333 -.764 +.541 -.765 .552 1

8812 .8918 -.879 -.049 -.889 -.056 i
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FIGURE 2
Configuration of U. S. Senators with the optimally regressed agriculture support vector.

of agricultural issues. The vector through the space is the direction deter-
mined by 5{ORALS/CORALS such that when the points in the space are
projected onto the vector, the resulting projections are as strongly correlated
with the optimally scaled units as possible. Note that we have presented
the optimally scaled units along one side of the vector, and the raw Guttman
scale units along the other. The relationship between each of these sets of
units is the optimal transformation 5d°. The interpretation of this figure
is straight forward: the conservatives (who are in the lower right part of the
space) support agricultural issues most strongly, and the liberals least strongly.
The strength of support is mostly a function of the liberal-conservative
dimension (the horizontal direction) and only a weak function of the party
split (the vertical direction). This interpretation corresponds to the weighting
scheme presented in Table 4 (Dimension 1 is horizontal, Dimension 2 vertical).

~. Discussion

The results just presented lead us to conclude that the MORALS/
CORALS approach to multiple/canonical correlation with a mixture of
qualitative and quantitative data is capable of obtaining meaningful results
in a variety of situations. Thus our approach not only extends correlation
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analysis to commonly occurring situations which were not previously covered,
but also appears to do so in an efficacious manner.

Reliability and Validity

Due to the great flexibility of the MORALS/CORALS procedure,
one may question whether the optimal transformations and linear combina-
tions obtained for a particular set of observations will be replicated by a
new set of observations in an otherwise identical empirical situation. That
is, does the procedure provide reliable estimates of the optimal transfor-
mations and of the linear combinations, or will these estimates fluctuate
wildly from sample to sample?

Certainly, in some situations the procedure will yield unreliable esti-
mates, and in others it will yield reliable estimates. The issue centers around
the ratio of the number of parameters being estimated to the number of
observations, with this ratio being most favorable in the classical regression
situation (i.e., when all variables are at the interval level of measurement),
and least favorable when all variables are nominal, especially when there are
relatively few observations in each category. As has been noted in the com-
panion paper [de Leeuw, Young & Takane, 1976, section 4], a necessary
condition for a unique solution is that there be at least two observations
in at least one category. For the present situation this concept applies to
every nominal variable. If. at least one nominal variable consists entirel~
of unique categories (i.e., there is only one obserCation in each category),
then the solution is not uniquely determined; a very large number of arbitrary
quantifications of the categories yield correlation coefficients of 1.0. Since
the solution is not unique, it is unreliable. Thus, one should avoid nominal
variables which have observation categories represented by only one observa-
tion. There are other types of situations which also do not yield unique
solutions, some of which are discussed in the companion paper.

Generally, one should suspect the reliability of his results in the same
situations in which he suspects the reliability of the results of a classical
multiple or canonical regression, except that the problems are compounded
when the measurement levels of the variables are weakened. Thus, if one
has a small number of observations, and a relatively large number of variables
of which several are qualitative, then he should suspect the reliability of the
results. The survey example given above (Section 3) is an example in which
the reliability of the results are suspect. In this example there are a total
of four dependent variables and eight independent variables. All of these
variables are qualitative, nine being ordinal and three nominal. Note that
there are only 33 cases, seven of which are removed from most of the analyses.
Thus, the first canonical analysis involved 12 variables and 26 cases; the
second, ten variables and 26 cases. The first two multiple correlation analyses
each involved nine variables and 26 cases, and the last two, three variables
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and 31 cases. It is not surprising that essentially perfect multiple and canonical
correlation coefficients are obtained in four of the six analyses. Due to the
variable/case ratio one might even suspect the results if all of the variables
were quantitative. We do note, however, that the transformation and the
weight patterns were interpretable, although the interpretation process was
was highly subjective.

The MDS example, involving 99 "cases" (Senators) and only three
variables, would seem to be reliable. Only one of the variables was qualitative;
it was also ordinal. Thus it would appear to be the case that this analysis
should be nearly as reliable as its classical counterpart. The ease of inter-
pretation in this example, and the congruence of the interpretation with
the investigators’ expectations also attest to the reliability of this example.
(Naturally, if reliability is of paramount importance, then any of the standard
procedures for empirically determining reliability can be used, including
such procedures as split-half analyses and repeated observation designs.)

Three schools o] thought about additivity

There have been three essentially separate traditions centered around
the additive model. The oldest and most widely known tradition falls under
the rubric analysis of variance, with the central focus being on the develop-
ment of inferential tests of the significance of the model’s components. Nearly
as old, but much less widely known, is the optimal scaling tradition, with
the central focus being on the quantification of qualitative variables within
the context of the additive model. The most recent tradition is conjoint meas-
urement, which focuses on the axiom systems underlying the additive model.
Our work is clearly within the optimal scaling tradition, and makes no pre-
tenses about the development of inferential tests or axiomatic systems.
We are simply interested in scaling qualitative variables so that they will
be as linearly related as possible.

In the analysis of variance tradition, the additive model is associated
with assumptions about the distributional properties of the observations
and/or the errors, additional assumptions about null and alternative hypo-
theses, and formal procedures for accepting or rejecting the null hypotheses.
In terms of the assumptions which must be satisfied for the significance
tests to be valid, the analysis of variance tradition requires that the error
components be independently normally distributed, generally with zero
means and equal variances. The formal theory of parametric statistics (and
thus of the analysis of variance) does not concern either the scale level of
the variables or the axiomatic system underlying the model. The only critical
~spect is the distributional assumption. Moreover, when the null hypotheses
are invariant over monotonic transformations of the dependent variable
(as is usually the case), the tests can be easily generalized to any other de-
pendent variable which is monotonically equivalent, if the distributional
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assumptions of the tests are met. Thus there is a tradition within the analysis
of variance literature of monotonically transforming variables so that the
distributional assumptions will be met.

In the conjoint measurement tradition, the additive model is concept-
ualized as representing the "true" nature of the process which generated
the dependent measures. Measurement theory is concerned with a) specifying
the exact nature of the conditions under which the dependent measures will
be precisely representable by the model, and b) identifying the types of
transformation of the dependent variables which are allowed within the
previously identified conditions. In the case of the additive model, conjoint
measurement has postulated a set of axioms concerning the structure of
the data which are the necessary and sufficient conditions for the additive
model to precisely describe the data. Not all of the axioms are empirically
testable, but if those that can be tested are satisfied, then there is a monotonic
transformation of the dependent variable which allows the variable to be
precisely described by the additive model. Thus the central focus of the
conjoint measurement tradition is specifying conditions under which mono-
tonic transformations of the dependent variable permit an additive description
of the variable.

In the optimal scaling tradition, the basic goal is to obtain a transfor-
mation of the dependent (and independent) variables so that the additive
model fits as well as possible, as should be obvious from the body of this
paper. This focus is similar to one of the conjoint measurement goals, but the
difference is that those working in the conjoint measurement tradition are
interested in specifying the condition under which the simple additive model
will describe the data perfectly, whereas the optimal scaling tradition centers
on actually providing the best description.

Note that the conjoint measurement and optimal scaling traditions
are similar in that they are both descriptive. Each is concerned with describing
the structure of the data with the additive model, one centering on whether
a perfect description is possible, and the other one providing the best possible
description. The analysis of variance tradition, on the other hand, is inferen-
tial: it is concerned with making inferences beyond the data on the basis of
the additive model. All three traditions are concerned with data transfor-
mations, but the essential difference between the analysis of variance tradi-
tion and the other two is that in the former a transformation is desired to
improve the adequacy of the inferential process, whereas in the latter a trans-
formation is desired to improve the adequacy of the descriptive process.

Perhaps it should be emphasized that a useful function is performed
within each of the traditional approaches to additivity, and that perhaps
the best approach is a combination of all three. It seems to the present authors
that each approach by itself gives an incomplete picture of the data being
analyzed, and that the most complete picture is derived when all three ap-
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proaches are used. Surely we best understand a particular set of data when
we know the degree to which it satisfies the axioms underlying the additive
model, the transformations which make the data most additive, and the
significance of the components of the additive model.
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