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A MAXIMUM LIKELIHOOD METHOD FOR NONMETRIC
MULTIDIMENSIONAL SCALING: I. THE CASE IN
WHICH ALL EMPIRICAL PAIRWISE ORDERINGS

ARE INDEPENDENT—EVALUATIONS

YOSHIO TAKANE!
Department of Psychology, McGill University

A maximum likelihood estimation procedure for nonmetric multidimensional
scaling (MAXSCAL-1) described in the previous paper (Takane, 1978) is
evaluated using both Monte Carlo and real data. Two Monte Carlo studies
are designed each with specific objectives. In the first study various aspects
(numerical quality of estimates, robustness, etc.) of solutions are examined as
functions of the number of replications per tetrad, the number of observations
(the number of tetrads for which observations are made) and the magnitude of
discriminal dispersions. The results strongly suggest the importance of repli-
cated observations for obtaining solutions of ¢ good > qualities. In the second
Monte Carlo study the effects of a particular type of systematic violations of
distributional assumptions are inspected. The estimates of the location para-
meters (stimulus coordinates) are found to be less susceptible to the kind of
distributional violations examined here, while the goodness of fit statistics (the
chi-square, the AIC) tend to overestimate the correct dimensionality of the
representation space. Two sets of real data are analyzed to demonstrate the
advantages of the current procedure, namely the availability of confidence
regions, the availability of the goodness of fit statistics, and the constrained

optimization feature for testing hypotheses.

We present some empirical evidence in
support of the maximum likelihood non-
metric multidimensional scaling procedure
(MAXSCAL-1) described in the previous
paper (Takane, 1978). Small Monte
Carlo studies are conducted to investigate
various statistical and numerical properties
of the algorithm. We use sets of real data
to demonstrate ways in which a researcher
might go about in applying our procedure

1 The author wishes to express his appreciation
to Drs. Forrest W. Young and Elliot M. Cramer
of the University of North Carolina for their help-
ful comments. Portions of the work were done
while the author was at the University of Tokyo
and at the L. L. Thurstone Psychometric Labora-
tory, the University of North Carolina. Requests
for reprints should be addressed to Yoshio Takane,
Department of Psychology, McGill University, 1205
McGregor Avenue, Montreal, Quebec, Canada
H3A 1Bl.

to practical data analytic situations. In
particular we emphasize various advan-
tages of the statistical inferential features
of the present method in the analyses of
dissimilarity data.

MonTtE CARLO STUDIES

In Monte Carlo studies we hypothesize
“true” underlying structures (stimulus
configurations) from which we generate
sets of data under various assumptions
about the data generating processes.
Those generated data are then submitted
to the estimation procedure to see the
extent to which and under what conditions
it can recover the *‘true’ underlying
structures. The effects of various as-
sumptions about the data generating
processes on various aspects of the solu-
tions are to be examined.
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There are a variety of conditions which
are of potential import in affecting the
overall performance of the procedure.
However, for the purpose of this paper we
restrict our attention to only a limited
subset of all conceivable variables. First
of all we assume throughout that the dis-
tance function (the representation model)
is correct. That is, we generate sets of
data according to a specific distance
formula, and we analyze them under ap-
propriate model specifications.

We distinguish two situations, one in
which there are no violations of distribu-
tional assumptions, and another involving
substantial violations. Consequently, we
have designed two separate Monte Carlo
studies; one is designed to investigate the
effects of various conditions of data (other
than distributional assumptions on errors)
assuming that the error distribution is cor-
rectly specified, and the other to investigate
the effects of untenable distributional as-
sumptions on derived solutions.

In both studies we have hypothesized a
common ‘‘true’ underlying structure, a
stimulus configuration of nine stimuli in
two dimensions. Eighteen uniform ran-
dom numbers are generated for the stimu-
lus coordinates. They are then centered,
normalized, and rotated to principal axis
to meet the identification restrictions.
For the distance function we simply as-
sume the Euclidian distance.

Construction of Data

Monte Carlo data 1. A set of data is
generated under a particular combination
of assumptions about the error model.
The particular combination of assumptions
is that errors are additive, and are in-
dependently normally distributed with
zero mean and constant variances. Dis-
tances are calculated from the assumed
underlying structure. Independent nor-
mal random numbers are added to the
members of a pair of distances to generate
discriminal processes, on which com-
parisons are made to obtain ordinal judg-

ments. Independentrandom numbers are
used for each comparison. The frequen-
cies of judgment * larger >’ for one pair of
stimuli over the other are recorded for
prescribed numbers of replications, which
serve as input data to MAXSCAL-1.

We consider that (1) the number of
replications of ordinal judgments per
tetrad, (2) the number and the particular
subset of tetrads for which ordinal judg-
ments are obtained (sampling conditions),
and (3) the level (magnitude) of the dis-
criminal dispersions (sigmas), are three
particularly important determinants of the
performance of the procedure.

For the number of replications we use
equal numbers for all tetrads. Recall
that this is not a requirement of the proce-
dure. It is much simpler, however, to
discuss the effects of number of replica-
tions in terms of a single parameter. We
consider three cases: 1, 10, and 38 for
the number of replications. The single
replication case is interesting since it is
the minimal condition. The 38-replica-
tion case is chosen for the other extreme
to render a direct comparison with the
available real data and the 10-replication
case in-between.

Recall that MAXSCAL-1 does not
require ordinal relations to be observed for
all possible tetrads of stimuli. It is thus
interesting to compare solutions derived
from different sampling conditions of ob-
servations. We consider the following five
conditions: (1) Total tetrads; (2) proper
tetrads; (3) triads; (4) random 378; (5)
random 252. Proper tetrads condition
refers to a subset of total tetrads in which
all four stimuli are distinct. The number
of total tetrads is 630 for nine stimuli, of
which 378 are proper tetrads and 252 are
triads. In order to see the effects of the
particular patterns of tetrads for which
observations are made, the last two
conditions are set up; observations are
randomly sampled from a set of total
tetrads with numbers of observations
equal to the number of proper tetrads
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(378) and to the number of triads (252).
The magnitude of the discriminal dis-
persions is another important factor we
look into. We consider the following
three levels for the magnitude of the dis-
criminal dispersions: (1) ¢'V=.586; (2)
o®=1.172; (3) ¢®=2.344. The value
set for ¢ is the estimate of sigma ob-
tained from Torgerson’s data under the set
of assumptions equivalent to this Monte
Carlo study. It should be observed that
6@ =2¢D and ¢ =20 =4¢", Notealso
that a discriminal process corresponding to
the I'th level of discriminal dispersion for a
particular comparison t is generated by

(1:132$3)>

where e,~N(0, 1) independently of t.
However, the same e, is used to obtain
4% and 2,4 ({=!'), so that they are per-
fectly correlated with each other. This
is for strictly isolating the effect of the
magnitude of the discriminal dispersions.

Monte Carlo data 2. The second set of
Monte Carlo data are generated under
systematic violations of distributional as-
sumptions on errors. There are a virtually
infinite number of ways in which distri-
butional assumptions may be violated.
We examine but two likely situations. In
justifying the distributional assumptions in
MAXSCAL-1 we discussed an alternative
distributional assumption, namely the nor-
mality assumption on stimulus coordinates,
which may be intuitively more plausible
than the normality-on-distance assump-
tion, but is more difficult to realize in an
algorithmic form. We are interested in
seeing how various analysis options (repre-
senting different assumptions about the
model) available in the current MAX-
SCAL-1 react when in fact the normality
on-stimulus-coordinates is the true distri-
butional assumption.

We limit our attention to the constant
variance case with triads sampling with 10
and 38 replications. Two ways of generat-
ing discriminal processes are considered.
The first case considers independent

Zt(h = d+g(l)e“

discriminal processes for common stimuli
in triads, while the second case considers
only one common process (or two processes
which are completely dependent with each
other) for common stimuli in triads. (In
fact the choice of triads situation is to
make this distinction clearer.) In the
independent case the discriminal processes
2;® and 25" at comparison t with
stimulus ¢ as the common stimulus are
generated by

2
Ay =1 Zl(xw+eiam,_xja__e]_am)z}1/2’
P
and

2
A ={ Zl(xia'l"eia(t)z—xka—eka(m)z}1/2:
a=

where e;;®: and e;,*: are independent
(and standard normal). This is the case
in which we can derive the noncentral
chi-square distribution for the squared
Euclidian distances. In the dependent
case we use a common e, for both
eVt and e, 2. Note that the noncen-
tral chi-square model is not tenable in this
situation. It seems interesting to examine
this case, since it may represent a Imore
likely state of nature than the independent
case.

Monte Carlo Results

We are interested in finding out the
effects of the independent variables (the
number of replications, the number of
observations, the magnitude of discriminal
dispersions and the dimensionality of
solutions) on various aspects of solutions
with particular attention to (1) the degree
of recovery of the *true’ underlying
structure, (2) the behavior of the chi-
square goodness of fit statistic and (3) the
behavior of the AIC statistic.

Data 1. Data 1 have been analyzed
under the Euclidian metric, and the con-
stant variance additive error assumption.
Solutions in one, two and three dimensions
have been derived. Initial estimates are
obtained by Torgerson’s procedure. For
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TABLE 1

The goodness of recoveries of the *true ” underlying structure

Configuration matching indices
Sampling Single replication 10-replication 38-replication

condition Discriminal dispersion Discriminal dispersion Discriminal dispersion
.586 1,172 2.344 .586 1.172 2.344 .586 1.172 2.344
t-tetrads L1241 216 .508 .034 .061 .134 .017 .033 .073
(.090) (.071) (.128) (.029) (.035) (.064)
p-tetrads 125 .216 411 .050 .071 .138 .022 .041 .078
(.11 (.088) (.148) (.040) (.037) (.069)
random 378 .138 .224 .519 .050 .082 .133 .017 .031 .053
(.139) (.176) (.208) (.031) (.046) (.056)
triads . 189 .382 .537 .051 111 .252 .022 .037 .106
(.128) (.119) (.246) (.040) (.048) (.079)
random 252 .210 .306 .571 .05¢4 .094 .224 .025 .075 .145
(.118) (.161) (.550) (—)tt (.058) (.148)

t The smaller value indicates the better matching.

t1 No solution is obtained.

the single replication cases the correspon-
ding initial estimates obtained from the
10-replication cases have been used. The
Euclidean elliptic norm of the gradient
with respect to the inverse of the informa-
tion matrix H, namely || g]||ly-=(gH™!
g)/2<0.01, is used for the termination
criterion. Derived stimulus coordinates
are normalized so that tr D?=2ntr(X'X)=
4n* where D is the matrix of (Euclidian)
distances.

In order to see the goodness of recoveries
of the “true” underlying structure as
functions of the three data conditions,
Schénemann and Carroll’s (1970) con-
figuration matching index has been cal-
culated for each solution and reported in
Table 1. For this we have assumed that
the “true” dimensionality is known.
The smaller value indicates the better
matching. It can be clearly seen that the
better recoveries are obtained when (1)
the number of replications is large, (2) the
number of observations is large, and (3)
the magnitude of the discriminal disper-
sions is small. Values in parentheses in-
dicate the goodness of recoveries by
Torgerson’s LS procedure for the same sets
of data. It is interesting to note that the

ML estimates are clearly better when the
discriminal dispersions are small, while
the superiority of the ML estimates di-
minishes as the dispersions get larger.
(Plots of estimated stimulus coordinates
against the ““ true ’ coordinate values may
be helpful to obtain the intuitive sense of
how good a recovery a particular value of
matching index indicates. They are not
reproduced here due to the space limita-
tion, but are contained in Takane (1977).)
We have failed to observe any systematic
differences between different sampling
schemes of observations (tetrads) with
equal numbers of observations.

The chi-square goodness of fit statistic
seems to serve as a reasonable measure of
the general goodness of fit of a model in
all cases except for the single replication
cases. The statistic is more influenced
by the magnitude of the discriminal dis-
persions when the number of replications
is small, leading to an overly good fit for
the small dispersion, and to an overly poor
fit for the large dispersion. Note that the
statistic is derived from the likelihood ratio
criterion (Takane, 1978) so that the good-
ness of fit statistic should not be affected
by discriminal dispersions.
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TABLE 2

Mean standard errors of derived stimulus coordinates

Mean standard errors

Single replication

Sampling condition Discriminal dispersion

10-replication
Discriminal dispersion

38-replication
Discriminal dispersion

.586 1,172 2,344 .586 1,172 2.344 .586 1.172  2.344
t-tetrads .205 .285 .440 .070 . 108 .202 .036 .055 . 102
p-tetrads .246 .314 .520 .089 137 .251 .046 .069 .124
random 378 .271 .386 .610 .092 .140 .257 .047 071 131
triads .353 .448 .591 114 . 180 .332 .060 .094 .183
random 252 .321 .435 .556 .109 . 182 .344 .058 .091 . 169

The AIC statistic also seems useful for
the detection of ‘ true’ dimensionality.
It failed to predict the correct dimension-
ality in only two cases, which are both
unreplicated cases (¢=1.172 with the
triads sampling and ¢=2.344 with the
random 378 sampling). We can be fairly
confident about what the AIC predicts
when there are at least a moderate number
of replications, suggesting again the im-
portance of replicated observations.

The estimated standard errors of stimu-
lus coordinates generally increase as the
number of dimensions increases. In Table
2 the mean standard errors of estimated
parameters are shown for two dimensional
solutions as functions of the number of
replications, the sampling conditions, and
the level of the discriminal dispersions.
Three trends which are readily apparent
are that the standard errors are: (1) De-
creasing functions of the number of repli-
cations, (2) decreasing functions of the
number of observations, and (3) increas-
ing functions of the discriminal dispersions.

Data 2. We have analyzed Data 2
under various analysis specifications, in-
cluding the additive error model with
s=0 (constant variance), s=1 (variance
proportional to the mean), and the
multiplicative error model, each crossed
with varying dimensionalities (1, 2 and
3). As noted earlier, any of the distribu-
tional assumptions available in the cur-
rent MAXSCAL-1 does not match in

every respect the assumptions under which
the data are generated. However, it is
informative to see which of the available
assumptions are relatively robust (and to
what extent) against the kinds of distri-
butional violations under consideration.
Taken nominally, in all cases we have
attempted to analyze, the AIC has pre-
dicted that the additive error model with a
constant variance fits better than any other
error model irrespective of the replica-
tion conditions, and irrespective of the
dependency or independency of discriminal
processes. (In contrast, the multiplicative
model, the log-normal model, has been
found consistently the poorest among the
three.) However, the AIC has predicted
the correct dimensionality only in two
cases (the constant variance additive er-
ror model for the 10-replication data from
uncorrelated and correlated discriminal
processes). In all other cases the AIC
tends to overestimate the °‘ true >’ dimen-
sionality. This means that the AIC is not
entirely reliable in cases where there is
some doubt as to the plausibility of dis-
tributional assumptions under which a
particular solution is obtained. This is
probably also true for an inadequate
choice of representation models. The
AIC (and the chi-square goodness of fit
statistic) seems more susceptible to the
violations of various assumptions involved
in the analyses. This is despite the fact
that the recovery of the *“ true” stimulus
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configuration is remarkably good in all
data conditions when the mast robust as-
sumptions (i.e., additive errors with a con-
stant variance) are made. Estimates of
stimulus coordinates are relatively robust
against the violations of distributional
assumptions considered here, but not the
goodness of fit statistics.

We have failed to observe any systematic
effects of dependency in discriminal pro-
cesses. The subtle difference is probably
mixed up with the effects of inappropriate
distributional assumptions.

Two propositions occur from the Monte
Carlo studies. It is apparent that the
more observations one obtains, the more
reliable estimates one can derive. It is
particularly important to obtain replicated
observations per tetrad when the dis-
criminal dispersion is large. This obser-
vation should be taken seriously because
we have a control over the number of
observations and replications to be made,
whereas it is relatively difficult (if not
totally impossible) to experimentally con-
trol the magnitude of the discriminal
dispersions.

It is found that the goodness of fit
statistics are not robust against violations
of distributional assumptions (at least
against the type of violations considered
here). The interpretation afforded by
these statistics may be misleading in such
situations. Hence it is always recom-
mended that the data be reanalyzed under
different distributional assumptions. At
the same time experiments should be care-
fully designed so that the assumptions on
which our ML estimation procedure is
based be met as much as possible.

ANALYSES OF REAL Data

In this section we report some empirical
results obtained with real sets of data.
The first data set has been extracted from
Saito (1974), and the second from Torger-
son (1958). They collected sets of dis-
similarity judgments between colors to

investigate the structure of psychological
distances between colors. Nine colors are
employed, all of which are red (7R in
Munsell designations) in hue but varying
in two dimensions, brightness and satura-
tion, which correspond to value and
chroma dimensions in the Munsell color
code system. The stimulus configuration
for the nine colors in terms of the Mun-
sell system is displayed in Fig. 1.

Multiple-judgment sampling was used
in both cases. However, the order of
stimulus presentation was randomized for
each subject. Analyses of the two sets of
data are found to be very instructive in
terms of what kinds of care should be ex-
tended for the design of experiments to
meet the assumptions under which the
present method is formulated.

Saito’s data. Saito (1974) collected pair-
wise dissimilarity judgments between the
nine colors for 35 tetrads with 60 replica-
tions each. His original purpose was to
demonstrate his ML, and LS methods for
the initial scaling of *‘ observed ** distances
based on the normality-on-coordinates as-
sumption. We use his data to demon-
strate our one-step ML procedure for
nonmetric MDS.

Since we were not sure about the true
distributional form of the error, we
analyzed the data under four different
distributional assumptions to see which
fit best. However, analyses were all per-
formed under the Euclidian assumption

Chroma
4 i D A
6 G B
E
8
10 H ¢
12 F
Valve

7 6 5 4 3

Fic. 1. Stimulus configuration of nine colors in
terms of the Munsell system.
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TABLE 3

A summary of results with Saito’s data

Additive model Multiplicative
Statistic . -
s=0 s=1 s=2 s=0
Dimensionality 3
Chi-square 15.355 16.989 17.610 17.816
Degrees of freedom 14 14 15 15
AIC+constant 2385.909 2387.542 2386. 164 2386.370
Estimate of sigma .583 .381
Number of iterations 10 18 22 31
Dimensionality 2
Chi-square 29.075 21.873 26.888 28.450
Degrees of freedom 20 20 21 21
AIC+constant . 2387.628 2380.426 2383.442 2385.004
Estimate of sigma .632 .439
Number of iterations 7 5 11 13
Dimensionality 1
Chi-square 235.280 223.999 222,911 235.717
Degrees of freedom 27 27 28 28
AIC +constant 2579,280 2568.553 2565.465 2578.271
Estimate of sigma 2.298 1.855
Number of iterations 12 7 9 14

for the representation model. Thestarting
configuration was obtained by Torgerson’s
procedure using the initial ‘‘ observed ”
distances scaled by Saito’s method (and
listed in his paper). Solutions were ob-
tained in one, two and three dimensions.
A summary of results is presented in
Table 3. The columns of this table
represent the different distributional as-
sumptions (the additive model with s=0,
1 and 2, and the multiplicative model),
and the rows different dimensionalities.

Itis clear that the representation requires
more than one dimension (in terms of
both the chi-square goodness of fit statistic
and the AIC). We are somewhat unde-
cided as to the appropriate dimensionality
of the solution and as to the appropriate
error model. Note that the chi-square
statistics and the AIC’s are remarkably
“stable”” across different distributional

assumptions on errors. Except for the
constant variance normal additive error
case the minimum AIC predicts a dimen-
sionality of two. Among all solutions
obtained the minimum AIC resides in the

N/

10C

Fic. 2. Derived stimulus configuration for
Saito’s data: The unconstrained solution.
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two dimensional solution obtained under
s=1. This optimal solution is illustrated
in Fig. 2. The 959, confidence regions
are displayed around estimates of para-
meters along with equi-value and equi-
chroma contours in terms of the Munsell
system, These curves, however, should
not be taken too seriously, since they rely
too much on interpolations. That the
method permits us to draw confidence
regions is one of the favorable consequences
of our method. Note that there is no
confidence region for stimulus A and only a
one dimensional confidence region (inter-
val) for B. This reflects the fact that three
parameters had to be fixed to identify the
solution (two for translation and one for
rotation).

The stimulus configuration (Fig. 2)
derived from observed dissimilarity judg-
ments between the colors, which presum-
ably represents a cognitive map of colors
(at least for those included in the analysis),
looks very much like the Munsell con-
figuration (Fig. 1) despite the presence of
some topological distortion in the derived
configuration relative to the Munsell con-
figuration. How well then does the
Munsell system represent the psychological
distances between these colors? Our pro-
cedure permits a formal statement concern-
ing the degree to which the Munsell system
describes the cognitive map of colors.

Note first that multidimensional scaling
(or the Minkowski power metric distance)
is formally a special type of additive con-
joint measurement on dimensionwise dif-
ferences between stimuli; monotonically
transformed dimensionwise differences are
summed across dimensions to define over-
all distances, which are again mono-
tonically related to observed dissimilarities.
In view of this one aspect of what the
Munsell system advocates can be trans-
lated into a statistical hypothesis, which
is essentially a set of restrictions im-
posed on a model. We may then ex-
plicitly obtain a solution under this hy-
pothesis and compare the goodness of fit

statistic in this case against that obtained
from the unconstrained solution. If the
difference is significant, the hypothesis is
not accepted on the statistical grounds.
We use the constrained optimization
feature of the current procedure to impose
equality constraints to test the hypothesis
that the perceived psychological distances
between colors are in fact additive func-
tions of dimensionwise differences between
colors on the Munsell dimensjons. Figure
3 illustrates the stimulus configuration
obtained under the equality constraints.
Coordinates for stimuli D, E and F, B
and C, and G and H are assumed to take
equal values on dimension one (Value) as
required by Munsell system. Similarly
stimuli A, D and I, B and G, and C and
H are constrained to take equal coordinate
values on dimension two (Chroma). The
chi-square goodness of fit statistic for this
constrained solution is 161.363 with 27 df,
which is significantly worse than 21.873
with 20 df for the unconstrained solution.
Thus, the hypothesis that the Munsell
system describes the psychological distances
between the nine colors is rejected on
statistical grounds, suggesting the neces-
sity of some revision in the system. One
reservation against drawing any definite
conclusion would be the small number of
observations in Saito’s data. The chi-
square statistic is based on the asymptotic
property of the likelihood ratio criterion

Chroma

Value

Fic. 3. Derived stimulus configuration for
Saito’s data: The constrained solution.



Maximum Likelihood Method for NMS 113

and 35 observations may or may not be
sufficient to rely on this property.

Torgerson’s data. Torgerson (1958) em-
ployed the complete method of triads to
obtain a set of pairwise orderings of dis-
similarities for 252 tetrads with 38 replica-
tions for each tetrad. Thirty-seven obser-
vations (out of 252 observations) were
either 0 or 38 so that some ad hoc con-
vention had to be employed to obtain
corresponding normal deviates. The nor-
mal deviates were then used to obtain
initial ¢ observed >’ distances under Thur-
stone’s Case V assumptions. The current
procedure, of course, requires no such ad
hoc convention.

Like Saito’s data we have analyzed
Torgerson’s data under the four different
distributional assumptions. However, we
have obtained quite contrasting results to
what we have observed in Saito’s data;
in all cases the goodness of fit is found to be
extremely poor. For example, the chi-
square goodness of fit statistic is 730.20
with 231 df in the three dimensional
solution under the constant variance ad-
ditive error model (which gives the mini-
mum AIC estimates). This finding is
somewhat puzzling since we have observed
a moderately good fit with Saito’s tetrad
data employing the same set of stimuli.

In order to detect the possible sources
of the poor fit we have reanalyzed Torger-
son’s triad data by the Thurstonian uni-
dimensional scaling method under the Case
V assumptions. We have treated the
perfect discrimination data as missing
observations and applied Gulliksen’s in-
version method (Torgerson, 1958) for in-
complete pair comparison desings (which
is the LS solution on normal deviates).
A chi-square goodness of fit statistic based
on the arcsine transformation of propor-
tions (Mosteller, 1951) is found to be
585.407 with 179 df, which still indicates a
poor fit. Note that for this procedure no
explicit structures are assumed of distances
(i.e., that the set of distances has a dimen-
sional representation, etc.). It seems that

the data radically violate the Case V as-
sumptions. The fact that the fit has been
found equally poor under the other dis-
tributional assumptions currently avail-
able in MAXSCAL-1, suggests that the
problem is not only the constant variance
assumption in Case V.

It should also be noted that we have
never observed such a poor fit in any
equivalent condition (triads, 38-replica-
tion) in either Monte Carlo study. Even
when the distributional assumptions were
systematically violated, the constant vari-
ance additive error model revealed some
degree of robustness. We suspect that the
observed poor fit in the present case may
be due to the joint effects of multiple-judg-
ment sampling and the method of triads.
The independence of observations may
have been difficult to attain in the multiple-
judgment sampling situation in conjunc-
tion with the use of the method of triads
in which pairs of dissimilarities being
compared always have common stimuli.

The correlations among the discriminal
processes are not necessarily damaging if
they are all of the same magnitude (which
is likely if the source of correlations is the
common stimuli) and if the discriminal
dispersions are also of the same magnitude.
The Case V assumptions still hold in this
case (Mosteller, 1951). If, however, dis-
criminal dispersions are not constant over a
set of dissimilarities, they will give rise to
nonhomogeneous covariances which violate
the Case V assumptions.

Another possible interpretation of the
poor fit of Torgerson’s data would be that
the * comparability >’ (Tversky & Russo,
1969) of dissimilarities are more hetero-
geneous in Torgerson’s case than in Saito’s
data. Dissimilarity pairs are more easily
discriminated if they are defined on one
common dimension, and are even more so
if one is subsumed under the other. These
situations may cause discriminal processses
to covary to different extents.

Whatever the interpretation may be,
however, more serious attempts should be
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extended to recover possibly nonzero cor-
relational terms in the law of comparative
judgment. Takane (1975) proposes sev-
eral plausible ways of restricting correla-
tional terms to avoid underdetermined
models, which reduce to either one of
structural assumptions on the parameters
or of equality constraints.

CoNcLUDING REMARKS

As we have seen in the previous sections,
our ML estimation procedure for non-
metric MDS (and its Fortran implementa-
tion, MAXSCAL-1) seems to work reason-
ably well in both Monte Carlo and prac-
tical situations. It can recover the true
underlying structure in the Monte Carlo
situation, at least when the observed set
of data conveys enough information to uni-
quely determine the set of points in a space
of prescribed geometric features and di-
mensionality. Furthermore, it can pro-
vide additional information as to the
statistical behavior of estimates as well as
various statistical criteria for the appro-
priateness of the representation.

Note, however, that at present our ML
pocedure is relatively expensive (as is
usually the case for an ML procedure);
the better statistical properties are not
bought without cost. Furthermore, a
highly specific algorithm must be con-
structed for each specific type of experi-
mental operation for obtaining ordinal dis-
similarities. We justify our procedure by

emphasizing its qualification as the first
statistical method for nonmetric MDS.
The work is in process which extends the
current procedure to other experimental
procedures as well as to other representa-
tion models.
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