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An individual differences additive model is discussed which represents individual differences
in additivity by differential weighting of additive factors. A procedure for estimating the model
parameters for various data measurement characteristics is developed. The procedure is evaluated
using both Monte Carlo and real data. The method is found to be very useful in describing certain
types of developmental change in cognitive structure, as well as being numerically robust and effi-
cient.
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1. Introduction

The analysis of additivity centers on the conditions under which a dependent mea-
sure can be represented as an additive function of independent variables. Multi-
dimensional scaling is a common type of additivity analysis since the Minkowski distance
model is an additive conjoint model [Krantz, Luce, Suppes & Tversky, 1971]. Similarly,
the weighted distance model to represent individual differences [Carroll & Chang, 1970] is
a kind of weighted additive conjoint measurement whose axiomatic foundation has been
given by Sayeki [1972]. In the weighted additive conjoint model the individual differences
are represented by differential weighting of additive factors, while the additive factors
themselves are assumed to have identical forms across individuals. In this paper we de-
scribe an alternating least squares (ALS) procedure to fit a weighted additive model. Our
model is an extension of the simple additive model that is analogous to the individual dif-
ferences extension of the distance model. The fitting procedure, called WADDALS
(Weighted Additive Model by Alternating Least Squares), generalizes our previous devel-
opments on linear models, ADDALS [de Leeuw, Young & Takane, 1976] and MORALS
[Young, de Leeuw & Takane, 1976b] by estimating individual differences weights in a
fashion similar to that in ALSCAL [Takane, Young & de Leeuw, 1977].
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Perhaps an example would help clarify the situation for which the present model is
most suitable. The physical area of a rectangle, which is defined by

area = height x width,

is a simple example of additive conjoint measurement. This can be easily seen by apply-
ing the log transformation to both sides of the above equation. We then have

log(area) = log(height) + log(width)

which is a special case of

(1) f(area) =/~/(height) + f,,(width),

wheref, fn and fw are monotonically increasing functions of physical area, height and
width of a rectangle, respectively. This latter equation is a general expression of additive
conjoint measurement for two factors. An interesting question (in terms of multi-
dimensional psychophysics) is whether the subjective area of rectangles has an additive
representation implied by (1). We have previously developed a procedure called ADD-
ALS [de Leeuw, et al, 1976; see also Kruskal, 1965] which is specifically designed to deal
with this type of simple additivity problem.

Suppose that the additive representation (1) holds for the subjective area of rec-
tangles (within a reasonable amount of error) for each individual subject. The next ques-
tion to be posed might be how the individual’s perceptions are related to each other. It
might be that representations of the individual’s perceptions (albeit additive) are not re-
lated in a simple way. In this case (1) should be applied separately to each individual’s
judgments. That is,

(1’) fk(area) = fnk(height) + f~,(width),

wheref~, fnk and f,,k are unique for each individual (k), and no particular relationships
are assumed among f,~ or among fw~ over different individuals. Alternatively, we may
find a simple relationship among individuals’ perceptual structures of the largeness of rec-
tangles. For example, as is well-known, younger children tend to place more emphasis on
height than on width of rectangles when they make subjective largeness judgments of rec-
tangles. This observation tempts one to hypothesize that they put more weight on height
of rectangles than adults do when they combine height and width into a global largeness
judgment. This hypothesis can be written as

(2) fk(area) wn~fu(height)+ w,,~f~(width),

where w~,~ and w~k represent the weights attached to the height and width dimensions of
rectangles, respectively, by individual k. Model (2) assumes that the transformation proc-
esses (f,, and fw) of height and width remain the same for all individuals, but that they are
differentially weighted (wn~ and w~) to produce different area judgments (fx) by different
individuals. Whether this supposition is adequate or not is an empirical question, and
must be subjected to empirical testing. This can be done by comparing the goodness of fit
of (2) against that of (1’). In this paper we develop a fitting procedure for (2), which 
ables us to make such a comparison.

In the next section we discuss various characteristics of the weighted additive model
with emphasis on its geometric features and on its relation to the simple additive model.
The fitting procedure (the optimization criterion and an associated algorithm) will be pre-
sented in Section 3. The model and the performance of the estimation procedure will be
evaluated in Section 4 by Monte Carlo techniques. Finally an application of the proce-
dure to empirical data is described to demonstrate its use.
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2. The Model and Its Properties

For the purpose of data analysis it is convenient to have a collective expression for
model (2) for the entire set of stimuli employed in an experiment. To illustrate let us 
back for a moment to the example in which an investigator is interested in finding out
whether the individual differences in the perceived largeness of rectangles can be repre-
sented by the weighted additive model. In this case he might construct a set of rectangles
(stimuli) by factorially combining different height and width levels, and obtain a set 
largeness judgments over the set of stimuli from a sample of individuals. The set of obser-
vations obtained from an individual subject may be placed into a vector in a prescribed
order. This vector is denoted by ok for individual k. The set of rectangles, on the other
hand, may be characterized by several design matrices, one for the height and one for the
width factor. Each row of each design matrix has exactly one element equal to unity (and
zeroes elsewhere), where the unity indicates that the stimulus corresponding to the row is
associated with the level of the factor corresponding to the column. For example, if G,, is
the design matrix for the height factor, then a one in the i ,h row and j ’h column means
that the i ’~ rectangle has the j ,h height level.

Given an n stimuli by n, levels design matrix G, for factor s (s may be either the
height factor or the width factor in the above example), we can express the additive con-
tribution of the factor by

(3) xs = Gsa,

where a, is an n:element vector of additive effects of factor s. Each of the n elements of x,
represents an additive contribution from factor s for a stimulus associated with a certain
level of that factor.~Let W~k denote the weight attached to factor s by individual k. Then a
set of predictions from the weighted additive model can be written as

(4) ~k = x. wnk + xw wrvk

for individual k, where ~k is a vector of predicted largeness of rectangles.
The vector of observations ok is assumed to be related to the vector of model predic-

tions ~k through function ~k, though this relation is only approximate in the presence of
random error. That is,

"(5) ~k (ok) = y~* ~ ~k.

Here y~* is the vector of transformed values of observations and is sometimes called the
vector of optimally scaled data. The symbol "~" indicates that quantities on both sides
are approximately equal. The transformation ~k is to allow for observations with various
measurement characteristics [Young, de Leeuw & Takane, 1979] such as scale levels of
measurement. The same model may be fit to observations with various measurement
characteristics by assuming various functional forms on ~k. For example, if observations
are ordinal then the transformation must be an order-preserving function. The type of a
transformation deemed appropriate under specific measurement characteristics is called
the admissible transformation, within which the specific form of the transformation is
sought based on some optimality consideration. That is, the functional form of ~k is deter-
mined in such a way that y~* in (5) agrees with ~k in (4) as much as possible (in the 
defined in Section 3) under the constraints (e.g., monotonicity) imposed by specific mea-
surement characteristics assumed of observations. Values of model parameters (an, aw,
w,k and w,:k), on the other hand, are determined so that ~k derived from the parameter
values is as close to y~* as possible (based on the same optimality consideration as above)
under the constraints imposed by the specific combination rule of those parameters.
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Formal Statement of the Model

Let us formalize the above discussion in more general terms. Suppose that there are
N individuals, each responding to a set of n stimuli with respect to some prescribed stimu-
lus attribute. The stimuli are constructed by factorially combining levels of two or more
externally identifiable stimulus attributes (called factors). Suppose we have ns levels 
factor s. The set of stimuli can be characterized by a set of n-by-ns design matrices Gs
where s extends over the set of factors (denoted by S) under study. We assume that mea-
surements taken on the stimulus attribute can be represented by an additive combination
of the effects due to factors (defining the set of stimuli). The effect due to factor s is de-
noted by an ns-component vector as (s e S). The additive effects are assumed common 
all individuals, while those additive effects are assumed differentially weighted by individ-
uals to give rise to different judgments over individuals. (Note that a, does not have an
index for an individual.) The differential weighting scheme of the additive effects is de-
noted by wsk (s e S; k = 1, ..., N), the weight attached to factor s by individual 

We then formally state the weighted additive model as

(6) ~k (ok) = y~* ~- ~k = ~ G,aswsk (k = 1, -.., N)

where ~k is a vector valued function defining the optimal scaling (transformation) of the
observed data under various measurement restrictions, ok is a vector of observed data, y~*
is a vector of optimally transformed data, and ~k is a vector of model predictions. (All the
vectors defined above have n components.) The index k designates the ’h i ndividual. The
word individual, however, may refer to various entities such as group, occasion, experi-
mental treatment, etc., so far as their effects can reasonably be presumed to be differential
weightings of additive factors (rather than additive).

We assume, for the moment, that the experimental design is balanced without miss-
ing data and completely factorial, so that there are N* = N × n observations in total
where n = H~,s ns. (The unbalanced case will be discussed in the next section.) We further
assume that the model predictions, ~, and consequently the optimally scaled data, y~*, are
centered within each individual. This assumption reduces the weighted additive model to
the simple additive model within each individual. More specifically, note that in the
weighted additive model affine transformations of additive effects (hs -- cas + d,l~, for
some constants c > 0 and d, for each s e S where 1,, is an ns-component vector of ones)
incur an affine transformation of model predictions for each individual. That is

~k (ft3 = C~k + dkl~ (k = 1, ..., N),

where ~ (hs) is a vector of model prediction derived from hs and where dk 
However, since d~ is specific to individual k, affme transformations of a~ incur a nonaffine
transformation for the set of ~k over different individuals. Conversely, an affme transfor-
mation of individual ~k preserves the set of a, for s e S. As in the simple additive model,
we may optionally impose order restrictions on the elements of

There are scale and sign indeterminacies inherent in the model (i.e., for an arbitrary
c ~ O, a~* = as/c and w~ = cwsk we have a~* w$ = a, wsk). In order to eliminate these in-
determinacies, we may impose, for identification purposes, the normalization restriction,

(7) a: G.Gsas_- --=as as 1,

for s e S, and the sign restriction,

(8) max (as,) > 
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for s ~ S where as, is the i th element of as. (If we explicitly constrain the individual differ-
ences weight Wsk to be nonnegative, the additional sign restriction is not necessary. Note,
however, that the nonnegativity constraints on all W,k’S are much stronger than (8).)

The weighted additive model defined above postulates additivity of the effects of the
independent variables, as (s e S), common to all individuals, but postulates that the differ-
ences among sets of data are due to different, but still additive, combinations of the com-
mon effects. Alternatively (though it amounts to the same thing) the model may be inter-
preted as postulating a multiplicative decomposition,

ask=a~Wsk (k= 1, "’" ,N)

for each s e S where ask is the vector of regression coefficients of Yk* onto G~.

Geometric Features of the Model

The weighted additive model has a straightforward geometric interpretation which is
illustrated in Figure 1. For explanatory convenience the simplest case in which there are
only two individuals and only two factors, is shown in the figure. The vectors y~* and y~*, of
optimally scaled data for individuals k and k’, are orthogonally projected onto the space
f~(GA, GB) jointly spanned by the column vectors of the design matrices, GA and GB, 
obtain the vectors of model predictions, ~k and ~,,, which are further decomposed into ad-
ditive combinations of the projections of the two vectors on f~(G~) along f~(Gn), and 
~2(G~) along ~2(G~), where f~(GA) and ~2(Gn) are the linear subspaces spanned by 
umn vectors of G~ and G,, respectively. The central characteristic of the model is that
these projections point to precisely the same (or exactly the opposite) directions on each
subspace, GAaA e ~2(GA) and G~aB e ~2(GB); only their lengths vary [proportionally 
W~k, for the two projections on ~2(GA) and W~k/W~k, for the two projections on ~(G~)]. 
course, with fallible data the orientations of the projection vectors may not exactly coin-
cide. However, if they are reasonably close, it will be meaningful to constrain them to
coincide and to estimate the model parameters while assuming that the model is correct.
This reduces the number of parameters to be estimated, and renders a more parsimonious
description of certain aspects of individual differences in additivity than analyzing each
individual’s data separately by the simple additive model.

Note that the weighted additive model imposes a rather stringent set of assumptions
upon the data structure. It should be clear from the preceding paragraph that perfect fit of
the simple additive model to each and every individual’s data set separately does not im-
ply that the weighted additive model will perfectly fit the data as a whole. This is because
the additive effects of each factor [the regression coefficients of yk* on ~2(Gs)] must be pro-
portional to each other across individuals.

The Relation to the Simple Additive Model

There is a simple relationship between the weighted additive model and the simple
additive model for fallible data. Figure 2 illustrates this relationship. If we orthogonally
project vectors of optimally scaled data, y~* and y~’,, onto the space spanned by Gs, we ob-
tain vectors of additive contributions from factor s, Gsas~ and G#~,, in the simple additive
model. If we further project these vectors onto vector G,a,, which is constrained to be
common to k and k’ by the weighted additive model, we obtain vectors of additive contri-
butions from factor s, G,asws~ and G,a,w,k,, in the weighted additive model. We have

, -i , ,= G~(G~G,) G~yk.

If we project this vector onto G#~, the regression coefficient w~k is given by
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FIGURE 1.

A geometric interpretation of the weighted additive model.

(9) Wsk = (a~’G~’G~as)-~a~’G~’Gs(G~’Gs)-~G~’y~*

= (a~’G~Gsa~) - ’ a~’G~’yk*,

which is equal to the regression coefficient obtained by directly projecting YK* onto G~a~.
Conversely, if Wsk is given by (9), Gsfl~W~k and Gsa~ - G~a~ w~ are shown to be orthog-

onal to each other:

W~ka’~G’~(Gsask -- G~a~W~k)

-- w~ka~G~G~(G~G~)-’G~y~ - ~ka]G;G~a~

= ~ka~G~G~a~ - ~ka~G~G~a~ = 0.

We thus have
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~(G,

FIGURE 2.
The relationship between the weighted additive model and the simple additive model.

SS(y*~ ) = SS(G~a~k) + SS(y~ Gsa~k)

= SS(Gsasw~k) + SS(Gsask Gsasw~k) + SS(y~ - Gsask)

= SS(Gsaswsk) + SS(yk* G,asw~k),

where SS(v) indicates the sum of squares due to vector v (i.e., SS(v) = v’v). The 
equation shows that the total sum of squares due to yk* can be decomposed in at least three
different ways: the SS due to the simple additive model, SS(Gsask), plus its residual,
SS(yk* - Gsask); the SS due to the weighted additive model, SS(Gsa, W,k), plus its residual,
SS(yk* -- Gsa~ w,k); and SS(Gsa~ W~k) plus SS(yk* - G~a~k) plus SS(G~a~k - G~a~ W~k). This last
SS represents the sum of squares which can be accounted for by the simple additive
model but not by the weighted additive model. That is, it represents the differential pre-
dictability between the two models.

In the special case of N = 1, the weighted additive model and the simple additive
model are equivalent in every respect.

3. Algorithm

Optimization Criterion

Given a set of observations Ok (k = 1, ..., N), and design matrices G, (s e S), we esti-
mate additive effects as (s e S), and individual differences weights wsk (s e S; k -- 1, .--, 
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subject to some optimality consideration. The optimally scaled data y~* (k = 1, .-., N)
must also be obtained under the same optimality consideration. The optimization crite-
don we choose to minimize is

(10)

where

(11) Qk~’) = ($’k -- Yk*)’(~’~ -- Yk*)-

However, Q<R) can be made identically zero by setting ~k = Y~* = 0, (the n-component zero
vector) when the data are nonmetric (i.e., either nominal or ordinal). In order to avoid this
meaningless solution, Q<R) should be minimized under an appropriate normalization re-
striction. The conventional optimization scheme (e.g., the method of steepest descent) typ-
ically requires the direct optimization of a normalized loss function corresponding to (10).
With an ALS procedure, however, it has been shown [de Leeuw, et al, 1976; de Leeuw,
Note 1] that a normalization restriction may be incorporated in the procedure by actually
performing the normalization on whatever arguments are involved in the normalization
restriction (optimally scaled data in the present case) at any step of each iteration. Other-
wise the optimization procedure can proceed just as if we were optimizing the unnorma-
lized loss function defined in (10). This property of ALS procedures is very convenient
since we do not have to work on the normalized loss function directly, and since the par-
tial derivatives of the normalized loss function are considerably more complicated than
those of the unnormalized function. (They are not easily solvable in an explicit form, even
for a subset of the parameters.) To be precise, we can optimize

where Qk~°~ = y~*’y~* by normalizing y~* so that QkW~ _- 1 for each k. It can be readily seen
that, under this normalization convention, Q~R~ = Q~. As noted earlier, in the weighted
additive model it is assumed that the model predictions and optimally scaled data consti-
tute individual-wise interval (affine-invariant) scales. Hence the data are comparable only
within each individual. That is, the data are considered matrix conditional in Takane,
Young and de Leeuw’s [1977] terminology. The normalization within each individual is
necessary to avoid a type of degeneracy in solutions discussed by Roskam [1968]. Since
the optimally scaled data are centered for each individual, the minimization of Q~m is
equivalent to that of

where Q~<O,) = (y~. _ ~.),(y~. _ ~.), and ~* --- 1/n(l’~y~*l,) (which is a zero vector 
present case).

General Algorithmic Flow

The general framework of the algorithm construction is based on the alternating least
squares principle, in which the unknown model parameters are partitioned into several
subsets, and are estimated separately for each subset while temporarily assuming that the
parameters in the other subsets have known values. The crucial point is that the estimates
in each subset must be least squares estimates derived from a single common least squares
optimization criterion. The estimation procedure is iterated until convergence is reached.

The WADDALS procedure consists of two major phases and two minor phases. The
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two major phases are the model estimation phase, which in turn consists of two sub-
phases, the estimation of additive effects and the estimation of individual differences
weights, and the optimal scaling phase. The two minor phases are the initialization phase
and the termination phase. The algorithm is similar to ADDALS for the simple additive
model except that in the present case we have to estimate individual differences weights as
well as effects of additive factors.

We first illustrate the general algorithmic flow of WADDALS, and then present a
slightly more involved account of each step in the next section.

(Step 1): Initialize optimally scaled data.
(Step 2): Obtain initial estimates of additive effects.
(Step 3): Estimate individual differences weights.
(Step 4): (Re-) estimate additive effects.
(Step 5): Calculate model predictions and obtain optimally scaled data.
(Step 6): Check convergence. If converged, stop, or else go to (Step 

Details of the Algorithm

For simplicity we describe the algorithm for the two-factor design. The algorithm can
be readily extended to higher-factor designs.

Let

and

Y*’ = (Y~ , Y2 *’.̄-,y~),

w~’ = (ws,, ws2, ..-, ws~), s ~ S = {~4,/~}.
Then the weighted additive model can be stated as

(6’) y* ~ ~ = (wA ® GA)a~ + (wB ® GB)a~,

for the two-factor design where ® indicates a Kronecker product Isee, for example, Gray-
bill, 1969, or Rao, 1973]. This form of the statement of the model will be useful in the fol-
lowing discussion.

(Step 1): As in all of our previous ALS procedures, we set yk* = Ok (k -- 1, ..., N) 
initialization. For categories of nominal variables, for which initial values are not ex-
ternally provided, we assign arbitrary numbers. These initial (optimally scaled) data are
then centered and normalized within individuals.

(Step 2): Initial estimates of additive effects may be obtained by temporarily regard-
ingws= l~forseS.

Define

G*=I~®G, where

G = [G~,G~], and

a’ = (a~, a~)

A least squares estimate of a [in the sense of (10)] is given 

£t = (G*’G*)-G*’y*,

where (G*’G*)- is a generalized inverse of G*’G*. In order to identify a unique solution,
it is convenient to impose the restriction that

Nn
(14) a~G~*’IN. = N a~’ G~IN = a~’ln, = 0

ns
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for s e S, where G~*= !~ ® Gs (s e S) and 1~. = !/~ ® in (i.e., N* = N X n). We then normal-
ize h, so that it satisfies the normalization restriction [Eq. (7)], and adjust the length of the
weight vector. The elements of ¢~s may be subjected to an order restriction, as given in
de Leeuw et al. [1976]. Note that under restriction (14) the least squares estimate of a can
be obtained by simply taking appropriate means of the elements of y* (i.e.,

with G~’Gs being diagonal).
(Step 3): Let

~ = ~ (G’sG3-I(G~ ~ l~v)y*

y* = [y~*, y~*, ..., y*~],

X = [xA, xB], where

xs=Gsas for seS, and

W’ = [wA, wB].
The estimate of W, for fixed Y* and a~ (s e S), is given 

05) ~¢ - (X’X)-’X’V*.

[Note that QtR) = tr(Y* - XW)’(Y* - XW).] Nonnegativity restrictions may be imposed
on the weight estimates. The treatment of the restrictions within the ALS framework will
be discussed in the next section. Again the inversion of X’X is trivial in (15), since it 
diagonal.

(Step 4): Define

G~* -- [G~*~, G~*,~],

where G~*,~ -- w~ ® G~ for s e S. The least squares estimate of a for fixed we (s e S) and y* 
given by

(16) ~ -- (Gw~G~*)-’G~y*.

Note that the regular inverse can be defined for G, G,, and that h is uniquely determined
without imposing any additional restriction [such as (14)] unless w, is a constant vector for
s e S. We normalize h, and adjust the length of ws accordingly. Again, order restrictions
may be imposed on the elements of a,. The way in which order restrictions are incorpo-
rated will be discussed in the next section. Under the separability conditions (see the next
section) (16) reduces to (18), and since G~*~’G~*~ (s t S) is diagonal, h in the above equation
can be obtained without explicit matrix inversions.

(Step 5): Model predictions are calculated through (6) using the current estimates 
the model parameters. We now wish to calculate the optimally scaled data (the least
squares estimates of the model predictions under the measurement restrictions which are
implied by the measurement characteristics of the observations). The specific optimal
scaling procedure depends on the assumed measurement level of the observations and the
assumed (discrete or continuous) measurement process. For example, if observations are
ordinal we apply Kruskal’s least squares monotonic transformation [Kruskal, 1964] with
either primary (in case of continuous process) or secondary (in case of discrete process)
approach to ties. Or if observed data are nominal, we apply the least squares nominal
transformation [de Leeuw et al, 1976]. Those concepts, the mathematical operations and
their justification, have been fully discussed elsewhere [see, in particular, Young, de
Leeuw and Takane, 1979], and therefore will not be repeated here.

Since observations are assumed comparable only within individuals, the optimal
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scaling is performed separately for each individual. Once the optimally scaled data are
obtained, they are then normalized. (If y~* is initially centered, it is kept centered through-
out all iterations.)

(Step 6): We evaluate the goodness of fit by (10). If the improvement of fit from 
previous iteration is smaller than a prescribed value, the procedure is terminated. Other-
wise, the next iteration is commenced. This termination criterion is justified by the mono-
tone convergence property of ALS procedures [Zangwill, 1969; de Leeuw, Young & Tak-
ane, 1976].

Principle of Separate Optimization

In this section we deal with a special problem related to the treatment of external
constraints on parameters within the ALS framework. Our exposition is terse. However,
the nonmathematical reader may skip the entire section without loss of continuity.

External constraints on parameters, such as the nonnegativity restriction on wsk or the
order restriction on a~, may sometimes be quite easily incorporated in the ALS opti-
mization framework. The ease with which they can be incorporated, however, critically
depends on the notion of the "separability" of parameters to be defined below.

Definition 1: Separability of parameters with respect to a specific optimization criterion~
Partitioned sets of parameters are said to be separable with respect to a specific opti-
mization criterion when a monotonically increasing function thereof can be decomposed
into additive components, each of which is a function of only a subset of the parameters.

The optimal set of parameter estimates in this case can be obtained by optimizing
each of the additive components separately with respect to its arguments (Principle of Sep-
arate Optimization).

Definition 2: Separability of constraints. Constraint sets are said to be separable if they
are expressible as a set of separate statements each of which involves only a subset of pa-
rameters. (We sometimes say that subsets of parameters are separable with respect to the
set of constraints.)

If parameters are separable in both senses, (Definitions 1 and 2) and the separable
subsets of parameters coincide, then the total set of the constrained parameter estimates
may be obtained by separately obtaining the constrained estimates, assuming that they
optimize each separable component of the global optimization criterion under the corre-
sponding constraints.

Proposition 1: The sets of (WAk, WB~}, or more generally (wsk, s e S}, k = 1, ..., N are
separable with respect to the loss function (10).

Assumption 1: The design in the model (6) is balanced.
That is,

(17) G~,G~ = 1 G~! nl~G~
n

holds for all A, B e S (A ~ B).
Assumption 2: The restriction (14) holds for s e 
Proposition 2: The sets of {w,~}, s e S for any k are separable under Assumptions 1

and 2. Note that X’X = D (diagonal) for X defined in Step 
Propositions 1 and 2 establish the separability of each w,~ under Assumptions 1 and

2. Since the nonnegativity restriction is imposed separately on ws~, the constrained esti-
mate can be obtained separately for each w,k by minimizing each component of the loss
function (10) related to w~. Furthermore, it can be shown that each separable component
of the loss function is a quadratic function of w,~.
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Proposition 3: Suppose Q(a) is a positive quadratic function in a single parameter a.
The minimum of Q, under the restriction that a- _< a _< a÷, is attained at

(i) a = a- if & < a-, (Case A)

(ii) a=& if a-<&<a ÷, (CaseB)

(iii) a=a ÷ if ~>a÷, (CaseC)

where ~ gives the unconstrained minimum of Q (See Figure 3).
Thus, the constrained estimate of w,k is given by w,k = ff,~ if ~,~, _> 0 where ff,k is the

unconstrained estimate and by w,k = 0 if ffa < 0.
Proposition 4: Under Assumptions l and 2 additive effects in the simple additive

model are separable with respect to the least squares criterion analogous to (10).
Proposition 5: Under the same assumptions additive effects in the weighted additive

model are separable with respect to (10). (Proof): We would like to prove Q~R~ = Y~,,sQ(as)
+ c for some constant c, and where Q(a,) = (y* - G~*wa,)’(y* - G~*wa,) for s e S. We 
establish a~,G~*’,G~*waB = 0 for A # B. (The desired results immediately follow from this.)
We have

GAwGaw - (w~ ® GA)’(w~ ® 

= (w~w~)G~G~

= l(w~ws)G~lJ’~Gs (by Assumption 
n

and a~G~*’~G~*~a~ = 0 by noting Assumption 2. Thus, (16) is equivalent 

Q(o.)

~ Feasible Intervals

FIGURE 3.

The constrained minima of a quadratic ftmetion in a single parameter.
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(18) hs = (Gs*~’G~*w)-L G~*~’y*, (s e S),

concluding the proof. Note that the hs defined above satisfies the condition implied by As-
sumption 2. This can be easily shown by

a~lns = y*’G~*~’(G~*~’G~*w)-Iln,

= cy *’G~*~’l,s

N

c ~ wskyk In -- 0,

since *’yk ln = O for k = I, "." , N.
We now know that each a~ is separable. Hence, if the monotonicity restriction is im-

posed separately on each as, the constrained estimate (denoted by a~ of a, which mini-
mizes Q~ is given by the constrained estimate which minimizes Q(a,) for each s e S. It 
well-known that the constrained estimate a,*, which minimizes Q(a,) under the monotonic-
ity restriction, is obtained by applying Kruskal’s [1964] least squares monotonic transfor-
mation to the elements of ~i~. Note that the a~* obtained this way also satisfies the relation
implied by Assumption 2. This can be shown by noting that a~* can be generally written as
a~* = fln~ hs where fln~ is an orthogonal projection operator with the property that fins ln~ ---

Ins. Thus, a~*~ln.~ = ~i~’fln.~l~, = h~’fln, = h~’ln~ = 0. That the estimates of a,(h, or a~*) satisfy (14)
is very crucial, since this is the necessary condition for the separability.

Note that the elements of a, in each s are also separable, since G~*~’G~*w = diagonal.
However, external constraints on the element of a~, say a nonnegativity restriction of a,,,
cannot be handled in the same way as the nonnegativity restriction on individual differ-
ences weight is handled. Setting a~ = 0 for which 6,, < 0 would destroy the relation (14) 
a~*. [Note that (14) is a nonseparable constraint on the element of a,.]

Proposition 6: The optimally scaled data y~* (k = 1), ..., N) are separable under 
circumstance.

This last proposition is rather obvious from the definition of (10). Its importance,
however, should not be overlooked since it provides a basic rationale for applying the op-
timal data transformation method separately to each individual’s data.

The notion of separability plays an important role in the construction of the current
algorithm. Thus, experiments should be designed in such a way that the conditions for
separability may be satisfied as much as possible. The only serious problem in this regard
seems to be Assumption 1 (the assumption that the design is balanced). As we have seen,
Propositions 2, 3 and 4 (the separability of w,~ for s e S and the separability of additive
effects in the simple and the weighted additive models) are critically dependent on this as-
sumption.

There are basically two ways to deal with the problem of unbalanced designs. One is
simply to give up all of the convenient properties which follow from separability. The
ALS procedure is flexible enough to do the estimation without relying on the separability
properties; we can use the MORALS [Young et al, 1976] type of sequential estimation
procedure, although the estimation procedure itself as well as the incorporation of ex-
ternal constraints would no longer be as simple as before. Lawson and Hanson [1974] also
discuss the general problem of least squares under arbitrary linear equality and inequality
constraints.

The other way to deal with unbalanced designs, which is more in tune with the above
discussion on separability, is to force the design to be balanced by treating missing cells
(cells which are not included in the design) as if they are missing observations (i.e., ceils
were actually included in the design, but no observations were made for the cells for some



196 PSYCHOMETRIKA

incidental reasons). In this case we simply set optimally scaled data corresponding to
missing observations equal to their model predictions. In other words we regard missing
observations as having no constraining power on the solution. Since the design is consid-
ered balanced, the separability properties hold just as when there are no missing observa-
tions.

Note that in either case the stress (the square root of Q<m defined in (12) at an opti-
mal point) would tend to show a spuriously improving fit as the number of missing obser-
vations increases. This, though it may seem strange at first glance, is quite natural when
we realize that missing observations convey no information about the model, and con-
sequently can always be perfectly fitted by the model (or for that matter by any model). It
is also consistent with the behavior of stress in general that it tends to take a smaller value
for a smaller design (i.e., when the effective number of observations/the effective number
of parameters to be estimated is smaller). Of course, this behavior of stress is an undesir-
able property of a goodness of fit index. We have not investigated the effect of missing
data on stress systematically. The WADDALS program, however, has been written in
such a way that Monte Carlo experiments can be readily run to investigate this problem
by just specifying the assumed proportions of missing data elements. (See the discussion
by Nishisato [1979] for the same problem in a somewhat different context.)

4. Evaluations

In this section we present some empirical evidence in support of the theoretical de-
velopment of the WADDALS procedure outlined in the preceding sections. We first eval-
uate the performance of the procedure using Monte Carlo data focusing on its ability to
recover "true" underlying structures and on its monotone-invariance property (when the
data are assumed ordinal). We then describe a practical data analytic situation to demon-
strate the use of the current procedure.

Goodness of Recovery of the Original Information

Preliminary considerations. For practical applications of nonmetric procedures it is
important to set rough guidelines as to their limitations. For example, a reasonably large
number of observations are necessary to obtain reasonably accurate estimates of parame-
ters. But specifically how many observations do we need? This is the basic question we
attempt to answer in this section in reference to the WADDALS procedure.

We explore the problem using a Monte Carlo technique. We first generate a set of
"true" underlying structures (populations), calculate model predictions, and add random
errors to obtain a set of "observed" data. The "observed" data are then submitted to the
WADDALS procedure to see how well it can recover the original information. The good-
ness of recovery is measured in terms of some agreement measure between "true" popu-
lations (parameters) and estimated values. (The agreement measure we use depends 
the scale properties of the model parameters.)

There are two distinct kinds of parameters in the weighted additive model. Whereas
the individual differences weights are determined up to a ratio scale, the additive effects
are only determined up to a joint interval scale. For ratio measurement we may simply
take the normalized sum of cross products as an agreement measure. Let Wk and ~k be
vectors of "true" and estimated weights for individual k. Then the agreement between w~
and #~ can be measured by

rk<w) -- w£~/llw~ll °
where [Iwkll -- (w£w~)~- The r~~w) defined above corresponds to the cosine of the angle be-
tween the two vectors. The smaller the discrepancy between two vectors, the larger the
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value of rk(w). We may take a root mean square of r~(’~) to define the overall measure of
agreement across individuals; i.e.,

For interval scale measurement the usual product moment correlation coefficient serves as
a natural measure of agreement between two sets of numbers. Again we may use the root
mean square correlation to indicate overall agreement. This overall agreement between
"true" and estimated additive effects is denoted by rta~. Since there is no simple relation-
ship between r~w~ and rta~, the goodness of recovery will be treated separately for the indi-
vidual differences weights and for the effects of additive factors.

We investigate the goodness of recovery of the original information as a function of
both the number of observations and the magnitude of random errors. The number of ob-
servations in the present case, however, is directly related to such design constraints as the
number of factors, the number of levels in each factor and the number of individuals. In
this study we limit our attention to the two-factor case in which the number of levels in
each factor is varied in three steps: 4, 6 and 10. The number of individuals is also varied in
three steps: 1, 4 and 10. Then, na + ns + 2N uniform random numbers are generated for
each data set (n~ for aA, ns for as and 2N for Wsk, where s = A, B and k = 1, ..., N). These
"true" parameter values are then subjected to suitable normalizations. In particular, the
individual differences weights are required to be Ilwkll -- 1 for each individual. Model pre-
dictions are calculated according to the model. Then independent normal errors are
added to the predictions to obtain the "observed" data. Three levels of random error (o,)
are considered: 0.25, 0.5 and 1.0. We thus have a 3 x 3 × 3 x 3 (3 levels of na, 3 levels of
n~ 3 levels of N and 3 levels of o,) design for this study. Finally, ten independent replica-
tions are obtained under each condition, giving a total of 810 data sets to be analyzed by
WADDALS.

Individual differences weights. Only four of the 810 rtw~ were lower than .900. All four
occurred in the single individual cases (N = 1). A vast majority of tw) were higher t han
.950. We do not present a complete table of mean stress values here. Instead, a regression
equation has been developed which can predict the expected rt’~) given n~, ns, N and oe
[Spence, 1979]:

(19) ~) -- . 947 -.218 X 10-1X oe+ . 656 X 10-~ X n~+s - . 177 X 10-~ X n~a+s,

where nA+s = n~ + ns. (The standard error for this regression was .017.) Note that N, the
number of individuals, has little effect on r<~), and consequently is not included in the
above formula, although the smaller N, as indicated by several instances of exceptionally
low r~’) (< .900), increases the probability of degenerate solutions. This is because larger
N does not necessarily increase the number of observations/number of parameters ratio
for the weight estimates.

Additive effects. There were 12 cases in which r t~) was lower than .700, 11 of which
occurred when N = 1. In all of the 12 cases the cause for the exceptionally low r~°> was
rather trivial; the generated individual differences weights were disproportionately large
on one factor and disproportionately small on the other. The additive effects of a factor to
which disproportionately small weights were attached were very poorly recovered. Of
course, as N increases the chances will be less that large weights are consistently given to
one of the factors for all N individuals. In fact, for N = 10, r~’) were all above .900. The
prediction formula for rt*) analogous to (19) is given 

(20) ~) =.986 - .155 X o~+ . 125 X 10-1X (ln N)~ + . 829 X 10-’ × o ~ X ( INN)~,
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with the standard error of .056. As can be seen, there is an interaction between o~ and N.
Note that neither nA nor n,, enter into the above equation.

Discussion. A general conclusion we may draw from the above analysis is that the
WADDALS procedure is capable of obtaining reasonably accurate estimates (r ~w) > .950
and r~"~ > .900) of model parameters, provided that the situation is not exceedingly unfa-
vorable. We should certainly avoid the case in which one or more factors receive near
zero weights for all individuals since the estimates of additive effects for the factors with
(near) zero weights are extremely unreliable. Yet the overall predictability of the model 
relatively unimpaired, simply because those unreliable estimates receive near zero weights
in deriving model predictions, and the additive effects are still accurately estimated for the
other factors (which receive relatively large weights).

One major diflficulty in the practical use of formulae (19) and (20) is that oe is usually
not available. We will discuss how we can cope with this problem in a later section.

Monotone-Invariance Property

Data generation. One of the critical features of nonmetdc procedures is that they are
able to obtain invariant results over the transformations of the data which are admissible
for a particular set of measurement characteristics. For example, if the procedure is or-
dinal, it should obtain invariant results over any monotonic transformations of the origi-
nal data. The purpose of the second Monte Carlo study is to demonstrate this monotone-
invariance property with the WADDALS procedure. Note that in the Monte Carlo study
reported in the previous section no monotonic distortions were applied, though the data
were assumed to be ordinal. Thus, the results obtained in the previous section might have
been unduly favorable because of the favorable initializations. (Our initialization method
is most appropriate when there is no monotonic distortion.) However, if we can show the
monotone-invadance property of the WADDALS procedure, then we are indeed demon-
strating the ability of WADDALS to recover the original information under the general
circumstance.

For this study we hypothesize a two-factor structure with nA = 5, nB = 6 and N -- 10,
which are fixed throughout the experiment. From the result in the previous section we are
reasonably confident that this design would lead to fairly accurate estimates of model pa-
rameters, when no monotonic distortions are applied to the data. We have chosen this
case because it would be meaningless to discuss the monotone-invariance property when
the original information is not appropriately recovered even in nondistorted situations.

The data without monotonic distortions are generated by

~)= a~, w~k + aB~ wnk 

where Ai indicates the i th level of factor A, Bj the j,h level of factor B, and <") represents
the m’h level of random error, and where eo~ ~ N(0, 1). We consider three levels of random
error: (R1) <~) = 0.0 (error-free ease), (R2) ~:) = 0.1 (small error), and (R3) 
(moderate error). Parameter values (a~, a. and w~) are generated by uniform random
numbers. Note that the same set of parameter values and the same set of random errors
(eu~) are used for all error levels so that (R1), (R2) and (R3) only differ with regard 
magnitude of random error (~m)), and are equivalent in all other respects.

These three sets of data are then monotonically distorted in the following manner:

(SI)

(s2)
(s3)

~’~’~,.,.~ = ~ (squaring),
3,~r~) = ~,,~,~> -- )~,))~ signum (y}~7)- .~m)) (inverse 
O/jk
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for m = 1, 2 and 3, where ~’~) - Y,, Y, jy~)/nAnB (the average of~) within individuals). The
(S1) corresponds to the nondistorted case. A total of nine sets of data are generated 
combining three levels of random error and three types of monotonic distortion.

Results and discussion. The nine sets of data were analyzed by WADDALS under the
ordinal measurement assumption. As anticipated, the recovered optimal data transforma-
tions were very much like the original transformations. As an example, the plot of non-
linear fit (observed data on x-axis vs model predictions on y-axis) and the recovered mon-
tonic transformation (observed data on x-axis vs optimally scaled data on y-axis) are
shown in Figures 4 and 5 for (R1, $3) and (R3, $3), respectively. The nonlinear fit 
shown by circular dots with larger dots indicating more observation points falling on the
spot, while the recovered transformation is indicated by connected line segments. It can
be observed that the anticipated data transformations have been recovered very well (al-
though they naturally deteriorate somewhat as the amount of random error increases),
and that the goodness of fit gets worse as random error gets larger (as indicated by larger
overall departures of dots in Figure 5 from the recovered transformation).

Table 1 summarizes the stress values (the square root of Qt~)) at convergence (con-
vergence is assumed to have been reached when the improvement in fit from the previous
iteration is less than .0005). It can be observed that stress gets larger as the amount of ran-
dom error increases (which is expected from our previous inspection of the plots of non-
linear fit). However, the fit is remarkably stable across different types of monotonic dis-
tortions, indicating that the WADDALS procedure gives monotone-invariant results.

The monotone-invariance property of the procedure has been further confirmed by

FIGURE 4.

The nonlinear fit and the recovered transformation (RI, $3).
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¯ o ¯ oO

FIGURE 5.
The nonlinear fit and the recovered transformation (R3, $3).

the fact that the estimates of model parameters were virtually indistinguishable across dif-
ferent types of monotonic distortions. In Figures 6, 7 and 8 we present the plots of the re-
covered individual differences weights and the recovered additive effects. Although the re-
covered parameter values deteriorate as the amount of random error increases (R1, R2
and R3; almost perfect recoveries were obtained in R1), they were nearly identical for 
given level of random error. So much so that the estimates obtained under different types
of monotonic distortion (S 1, $2 and $3) are not explicitly distinguished in these figures.

Analysis of Kempler’s Data

In this section we report an analysis of actual data. In this report a special attention
will be drawn to various tests of hypotheses (model evaluations) with the WADDALS
procedure. Those hypotheses include random ranking, individual-wise additivity, three-
way additivity, the simple additivity and the weighted additivity vs interactions. Speciti-
tally we would like to demonstrate how Monte Carlo experiments should be set up and
their results can be used for testing these hypotheses.

Data. The development of the WADDALS procedure is closely linked with an em-
pirical observation known as the conservation of quantity in Piagetian psychology. Acqui-
sition of the conservation of quantity may be viewed as change in children’s perceptual
structures. For example, younger children tend to put more emphasis on height than
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TABLE 1
Stress as a function of random error levels

Monotone distortions

Random Errors S 1 $2 $3

RI .000" .009 .004
R2 .025 .026 .025
R3 .197 .197 .197

* The values reported are the square root of QtR).

width when judging the largeness of rectangles, leading to a failure in conservation. They
are so impressed (centrated) by the height of rectangles that they are apt to overlook other
relevant aspects of stimuli. As they get older they are gradually decentrated [Liebert,
Poulos & Strauss, 1974] and become able to recognize multidimensional characteristics of
the stimuli.

The above contention can be paraphrased as follows. Whether the perceived area of
rectangles has an additive conjoint structure (whether it is describable by the simple addi-
tive model) is a basic question in psychology. Supposing it is true, is it possible to repre-
sent developmental changes in children’s perceptual structure of rectangle area judgments
by the weighted additive model? Do individual differences weights attached to height de-
crease and those attached to width increase as the children get older?. We have already
discussed these problems in the introduction. We are now in the position to answer these
questions on an empirical basis.

Kempler [1971] constructed a set of 100 rectangles by factorially combining 10 height
levels and 10 width levels each ranging from 10 inches to 14.5 inches in half-inch inter-
vals. Sixteen to 25 children in each of four different age groups (1s’, 3’~, 5th and 7th graders)
judged each of the 100 stimuli as to whether it looked "large" or "small". (This particu-
larly simple experimental procedure to obtain judgments was dictated by the age of the
subjects.) The number of children who judged a rectangle as large was calculated for each
stimulus, and used as a dependent measure indicating the largeness of the rectangle. The
same experiment was repeated twice on the same sample of subjects. The aggregated data
over the replicated experiments were used throughout the analysis. Whenever the reliabil-
ity of the results was in question, separate analyses were performed on the two sets of data
obtained in the two experiments to assess the degree of agreement between them.

Basic results. Since the weighted additive representation of the total data set pre-
supposes the simple additive representation of each individual data set, each age group’s
data were first analyzed by the simple additive model. The stress values for the groups
were. 186,. 186, . 188 and. 122 for the 1", 3~, 5’h and 7~h graders, respectively. The charac-
teristic pattern in the stress values over different age groups (i.e., that the stress values are
about equal for the first three age groups and a bit (but discernibly) smaller for the ’h

graders) was stable across the replicated experiments. Thus, the observation that the ’h

graders’ responses were more consistent with the additive model than the other age groups
can be considered fairly reliable (at least for the sample of subjects examined). We may
reserve a complete generalization, however, since the replications were obtained from the
same sample of subjects, and consequently they were not independent of each other. The
joint stress value for fitting the simple additive model to the individual data set (which is
equal to the root mean square of the individual stresses) was. 172. The estimated additive
effects were nearly linear with respect to the physical length for both height and width
across all age groups. This implies that for the range of height and width levels employed
in the experiments fnk and fw, in (1’) can be well approximated by wn~f~ and ws, ffw in (2)
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Factor A
FIGURE 6.

Estimated individual differences as a function of random error levels.

respectively, for all age groups with f,, and f,, being approximately linear. Thus, there
seems to be enough justification to perform the weighted additivity analysis of the total
data set.

Figure 9 illustrates the estimated individual differences weights as a function of age
groups. As hypothesized, the weights attached to the height of rectangles consistently de-
crease with age (except ’h graders), and the reverse is t rue for t he weights attached to the
width. [We note, however, that, since Kempler’s data are group data (individual differ-
ences are group differences), the gradual change in the weights does not necessarily imply
that the transition is gradual for each individual. The transition from the height-dominant
state to the even state may be sudden for each individual, even though the proportions
may change only gradually. In order to isolate the two possible interpretations, we need to
obtain longitudinal data.] The estimates of additive effects were both found to be nearly
linear with respect to the physical length (as expected from the above observation). The
optimal transformation of the dependent variable obtained under the ordinal assumption
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FIGURE 7.

Estimated additive effects of Factor A as a function of random error levels.

looked very much like an inverse sigmoid curve (with data on x-axis vs optimally scaled
data on y-axis), a transformation typically associated with the influence of floor and ceil-
ing effects.

In order to assess the reliability of the above results, two sets of data obtained from
the two experiments were analyzed separately. The estimates of model parameters were
remarkably stable over the two replications. The agreements were .99992 for r~w~ (almost
perfect agreement) and .99409 for ~a~.
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FIGURE 8.

Estimated additive effects of Factor B as a function of random error levels.

Model evaluations. The goodness of fit of the overall WADDALS analysis was, 190 in
the stress value (.204 for replication 1 and .173 for replication 2). Given that our results
are stable we may compare this value with a variety of criteria to evaluate the goodness of
fit of the model. One obvious criterion is that the observed data are completely random.
We are typically interested in comparing the observed stress value with the expected stress
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FIGURE 9.

Kempler data: Changes in weights attached to height and width of rectangles in area judgments as a function of
age groups.

value from completely random data to make sure that we are not fitting the model to ran-

dom data. An extensive random ranking study has been conducted to tabulate the ex-
pected stress values under various conditions. We have so far examined the two-factor
case in which the numbers of levels in the two factors and the number of individuals were
systematically varied (nA, nB = 4, 5, 6, 8 and 10, and N = 1, 2, 4, 6 and 10). The nA x nB 
N uniform random numbers were generated for each data set. Ten independent data sets
were sampled in each condition.
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The following formula has been derived from the empirical stress values obtained
from the WADDALS analysis of these data:

(21) s = .900 + .851 × {(In nA)~ + (In nB)~}

+ .895 x 10-’ x (In N)~ - .387 X (In nA x In nB)~,

where s denotes a predicted stress value from random data as a function of na, nn and N.
The standard error of this regression was .045. According to this formula we expect to ob-
serve s = .904 under the condition equivalent to Kempler’s data (i.e., when na -- n~ -- 10
and N = 4) if they were in fact completely random. (The observed value of expected s was
.909 with the standard deviation of .006.) The stress value of .190 is significantly Smaller
than this value.

The next interesting criterion would be the assumption of individual-wise additivity.
That is, each individual’s data set is assumed to have a perfect simple additive representa-
tion, though the total data set may not have a weighted additive representation, This is
clearly not the case with Kempler’s data. (The stress values were substantially larger than
zero when the simple additive model was separately fit to individual data sets.) Nonethe-
less, it is interesting to know what stress value is likely to come up when the perfect addi-
tivity assumption holds for each individual data set. We have not investigated this prob-
lem systematically, but have only obtained the mean stress value under the equivalent
condition to Kempler’s data. Twenty uniform random numbers were generated for
and a~k from which data were calculated according to the simple additive model for each
individual. The mean stress value (obtained from ten replications) was .668 with the stan-
dard deviation of .034. Although this stress value is much smaller than that from com-
pletely random data, it is still substantially larger than the stress value found in Kempler’s
data, which supposedly contain a sizable amount of random errors (in addition to devia-
tions from the weighted additive model).

Another interesting criterion is that the effect of age groups is not multiplicative, but
rather additive. In order to test this hypothesis Kempler’s data were analyzed by the
three-factor (height, width and age-group) simple additive model. The obtained stress
value was .269. By the procedure to be described below the standard error of the stress
value around .190 from the weighted additive model is estimated to be about .025 under
the equivalent condition. The difference of .079 is more than three times as large as this
estimated standard error. Thus, it seems that the weighted additive model with the multi-
plicative age-group effect provides a better account of Kempler’s data than the three-fac-
tor simple additive model.

On the basis of the same reasoning we may compare the joint stress value obtained
from applying the simple additive model to individual data sets with that obtained from
the weighted additive model. The difference of .018 (= .190 - .172) is well within the
range of what can be expected by chance. Furthermore, the simple additive model sepa-
rately fitted to individual data sets uses distinctly more parameters than the weighted ad-
ditive model to describe the same set of data.

Our final concern relates to whether the weighted additive model is the best model
conceivable for Kempler’s data. Isn’t there any interaction between height and width?
How should we specifically interpret the stress value of. 190? In an attempt to attack these
problems we first tried to assess the magnitude of error variance relative to the magnitude
of systematic variation (which is fixed at unity). Ten sets of data were generated for each
value of ~ = .01, .025, .05, .1, .25, .5 and 1.0 in the same way as in the first Monte Carlo
study (see section of the "goodness of recovery of the original information") under condi-
tions equivalent to Kempler’s. The mean stress value and the standard deviation were cal-
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culated for each C. In order to develop a formula which relates a stress value to ~, In ~ is
fitted to In s, the log stress value. The following regression equation was obtained:

(22) In s = - .389 + .498 In ~.

The standard error in this regression problem is about .009 which compares favor-
ably with the standard error of .007 for the mean stress values. From this equation it is
found that the stress value of. 190 corresponds to ~ = .078. That is, systematic variation
(the joint effect of height and width on the judgment of rectangle area) is about 14 times
as large as C. However, what proportion of ~ is due to the interaction is yet to be investi-
gated.

For this purpose the data from two replicated experiments were separately analyzed
by WADDALS. Following the functional measurement methodology [Anderson, 1977]
the optimally scaled data obtained from WADDALS analyses were reanalyzed by
ANOVA, separately for each age group. For these analyses two replicated experiments
were treated as if they were independent samples. In all four age groups the interaction
mean squares were 1.7 to 2.8 times as large as the lumped error mean squares. Taken
nominally they indicate significant interaction effects.

The above result should be taken with some caution, however. (This, however,
should not be taken as caution against the functional measurement methodology in gen-
eral.) First, observations from the two replicated experiments were assumed to be inde-
pendent, which was obviously not strictly true. It is likely that the error variance is drasti-
cally underestimated because of the correlated observations. Second, the optimally scaled
data obtained from the same WADDALS analysis are also correlated, and possibly the
degree of correlation is not homogeneous. The F-tests associated with the repeated-mea-
sures ANOVA tend to be too liberal in such situations. Third, we failed to observe any
characteristic patterns of interaction effects both within and over different age groups.
Thus, the best we could conclude at this point seems that the interaction effect is at most
marginal, and its nature is yet to be investigated.

Discussion. The importance of a formula like (22) from a methodological point 
view should not be overlooked. It tells us the variance component of the error term rela-
tive to the systematic variation, which in turn can be used in (19) and (20) to predict 
goodness of recovery of the original information. Although (22) is restricted to the case 
which we have nA = nB = 10 and N = 4, we should be able to derive similar equations
under different conditions, and ultimately to combine them into a single equation. In gen-
eral the variance component of the error term has some methodological advantage over
stress, which is a function of many variables (such as the number of factors, the number of
levels in each factor, and the number of individuals) which are irrelevant for the purpose
of model evaluation. The error variance, on the other hand, can be determined, using the
above techniques, independently of such irrelevant factors. We contend that, unless we
are comparing the stress values obtained under equivalent conditions, the stress informa-
tion should always be converted into the variance component term.

The above result obtained from Kempler’s data (that the developmental change in
children’s perceptual structures of rectangle areas can be described reasonably well by the
weighted additive model) apparently contradicts two recent findings on the same topic.
Anderson and Cuneo [1978] and Wilkening [1979] argue that combination rules govern-
ing children’s and adults’ perceptual structures are entirely different; whereas adults judge
the area of rectangles by the height × width rule, younger children typically judge the
area by the height + width rule. Although both of these rules are subsumed under the ad-
ditive conjoint measurement, they are not amenable to the weighted additive model when
combined.
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There are several conceivable reasons for this apparent discrepancy. First, the log
transformation is so nearly linear within the range of height and width levels (10 inches to
14.5 inches) employed in Kempler’s study that clear distinctions between the additive and
multiplicative rules do not emerge. Estimated additive effects were in all cases roughly lin-
ear with respect to the physical length in Kempler’s data. On the other hand our result
might be due to some peculiarity of the judgment employed in Kempler’s study. The
simple two-category judgments have some advantage over rating judgments to ensure that
the measuring device is used in exactly the same way across different age groups. None-
theless the nature of the task, or more precisely the psychological processes mediating
two-category judgments might be quite distinct from those involved in rating judgments.
Still, a puzzling thing is why we rather consistently find larger weights attached to height
(e.g., for Stimuli 1 and 2 with heightl = width2 > widtht = height2, we find area, > area2 in
Kempler’s data), whereas the other investigators find approximately equal weights (e.g.,
for the same two stimuli given above, they find areal = area2). Again this might be due to
the difference in the judgmental tasks, although nothing definite can be said until Kem-
pler’s result is replicated using independent samples.

Conclusion

We have examined various aspects of the performance of the WADDALS procedure
(the weighted additive model and the associated parameter estimation procedure based on
the alternating least squares principle) through the analyses of empirical data. We con-
clude that it provides a useful approach to certain types of additivity problems in psychol-
ogy. Note, however, that for model evaluation we still largely have to rely on Monte Carlo
techniques (as in all other nonmetric procedures within Kruskal’s transformational ap-
proach [Kruskal, 1964]), which sometimes makes rigorous hypothesis testing rather in-
volved, even after discounting the fact that the WADDALS program has been written in
such a way that the kinds of Monte Carlo experiments reported in this paper can be read-
ily conducted by specifying just a few relevant parameters. One promising way to get out
of this difficulty is to apply the maximum likelihood method for nonmetric multi-
dimensional scaling suggested by Takane [1978, Note 2] to the present case, although cur-
rently this procedure imposes rather stringent restrictions on the type of data to be ana-
lyzed.
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