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ANALYSIS OF CATEGORIZING BEHAVIOR
BY A QUANTIFICATION METHOD

Yoshio Takane*

413 |
A quantification method was developed for sorting data collected over a sampg oi
subjects. Given multiple sets of sorting data this method finds, in a multidimensional -
Euclidian space, a configuration of points in such a way that the sum of squiited
inter-cluster distances averaged over subjects is maximized under suitable normalise-
tion conditions. Examples were given to illustrate the use of the method a.m!”tt

relationship to other scaling methods was discussed. :

Ca g:’i”ﬁ
1. Wnction

Al e

The stimulus sorting method has been very popular among social sci as a
quick and easy data collection method for similarities (Clark, 1968; Miller, 1969;
Burton, 1972; Rapoport & Fillenbaum, 1972; Rosenberg & Sedlak, 1972; Steffire, 1972).
In its standard format the method requires subjects to sort a set of stimuli into’ss many
groups as they wish in terms of similarity between the stimuli. This sethod is
deemed particularly appealing, 1) when the subjects are naive (the sorting tasiiis very
easy to perform), 2) when the number of stimuli is very large (more than 20),"and 3)
when individual differences in the perceptual structure of stimuli are unimportsit, or at
least not the subject matter of research. © e

Sorting data collected over subjects are usually analyzed in an aggregated form.
They are first converted into a matrix of (dis) similarities, which are then subjected to
an analysis by (nonmetric) multidimensional scaling (Kruskal, 1964), by hierarchical
clustering schemes (Johnson, 1967) or by latent partition analysis (Wiley, 1967; Evans,
1970) to find out a structure underlying the similarity matrix. Numerous kinds of
similarity indices have been devised for this purpose. These range from simple
frequency counts to more sophisticated information theoretic measures of &nlmty
(Burton, 1972; see also Rapoport and Fillenbaum, 1972). Unfortuntely those indices
are all ad hoc in the sense that no explicit representation models of the data are taken
into account in their derivation. However, if the data are ultimately, to be
represented by some model (e.g., a distance model in multidimensional scalu{g), it is
certainly preferable that the initial data conversion porcess itself is in some sq;se con-
sistent with the representation model of the data (Takane, Young & de Leeyw, 1977;
Young, de Leeuw & Takane, 1980). In this paper we develop a multidimensional
quantification method which meets this basic requirement.

The method we develop in this paper simultaneously scales and repregsnts the
sorting data. It finds a configuration of stimulus points in such a way that the sum of

H

Key Words and Phrases; sorting method, quantification method, dual scaling, unfolding model
* Department of Psychology, McGill University, 1205 Avenue Docteur Penfield, Mgntreal,
Quebec H3A 1BI1, Canada. The research reported in this paper was supported Sy Grant
A6394 to the author by Natural Sciences and Engineering Research Council of Canadla.




76 Y. Takane Sy

squared inter-cluster distances averaged over subjects is a maximum given suitable
normalization restrictions on the configuration. The scaling aspect .of the method
permits a kind of individual differences analysis in categorizing behavior (Medin &
Schaffer, 1978) despite the fact that the sorting data have been conmsidered more
appropriate for non-individual-differences type of analysis. (We will get back to this
point later on.) ' .

The general approach we pursue in this paper is very much in the spirit of the
Guttman-Hayashi (Guttman, 1941; Hayashi, 1952) tradition of optimal scaling
in the sense that it seeks to find a quantification of stimuli based on sofhe optimality
considerations. In a later section of this paper we discuss a relationship ofithe proposed
method to a conventional method of optimal scaling (i.e., Quantificatiés ‘Method III
by Hayashi, 1952, or Dual Scaling, Nishisato, 1980) as well as a relations;bﬁ:tg one of the
most representative methods of psychological scaling (the unfolding model by Coombs,
1964). A weakness of the current method as a descriptive model will be. bgiely discussed
in the final section.

RIS

2. The method “

-

Let us assume that each of N individuals has sorted a set of » stimalisnto N, (k=
1, ..+, N) clusters (groups) in terms of similarity among the stimuli. /Mitst often the
number of groups into which stimuli are classified is left to each subject’s own discretion,
though it is quite sensible to avoid Ny=1 or Ny=#. For each subject {imdexed by k),
define an # by N, matrix G, of dummy variables indicating a group to whith each of the
n stimuli belongs. That is, CRE TS
Gk“[girh]p(i=1,"':”;'=l."'»Nh;k“‘l,"',N): Ji’;;;»' (l)
where v
1, if stimulus { is calssified into cluster » by subject ¥

&t =10, otherwise. ne

We assume that matrix G, is complete in the sense that every stimulus belongs to one
and only one cluster; s.e., ‘ ey
Gy =1l,, (k=1,.-.,N), 2)

where Iy, and I, are, respectively, N;- and n-component vectors of ones. I.et X denote
an n by 4 matrix of stimulus coordinates common to all individuals, where A is the
dimensionality of the representation space. Without loss of genemlit{j"vwe assume
that X is columnwise centered. That is, L

' X=0,, e (3)

(where O, is the A-component zero vector), or more indirectly,
X=X, - 4)

where II; is the contering matrix of order » (i.e., My=I,—11, where I, isﬁihe identity
matrix of order # and II,=l,l,’5). et
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We then define an #(n-1)/2 by » matrix A, which defines every possible pairwise
difference between stimulus coordinates. Let D be the matrix of Euclidian distances
between stimuli.

We have

Z‘ d;f = % DR = tr(AXX'A") = ntr(XI13X) = ntr( X' X) (5)

i, §<

(Takane, 1977). Note that A’A=nll,. Similarly, the sum of squared g.t;:glidian
distances between cluster centroids for subject % is given by

Z n, Op, 0N ¢ = tr(Allc XX 11, A') - T
r.8<r
= 4r(X' g, T: MG, X)) |
=ntr(X'lg,X), ,  (6

where n,® and 7,® are the numbers of stimuli put in clusters r and s, respectwely, by

subject, %, 4,,® is the Euclidian distance between centroids of clusters » and s, and
where

g, = Gi(Gi/'Gi) Gy . ’ 1 @

Notice that 4,, is weighed by the product of %, and n,® before it is summed over
pairs of clusters in order to reflect the size of clusters in the summation. Note also
that ITg, is a similarity matrix whose elements are positive when a stimplus cor-
responding to a row and a stimulus corresponding to a column are classified into, a same
group, and are zero otherwise. The (i, ) element of G;G,’ is one when stimuli + and j
are put into a same group by subject %, and is zero otherwise. The (G,'G.)~! between
G; and G,’ has the effect of scaling nonzero elements of GG, by the size of groups.
That is, if the (¢, j) element of G4G,’ is one, and the number of stimuli in .,tl;‘gk,group
to which both ¢ and j belong is #,, then the (i, j) element of g, is 1/n,; the similarity
between two stimuli which are classified into a same group is inversely related to the
number of stimuli in that group. This makes intuitive sense, since, for example, two
stimuli are considered more similar to each other when they are put in a gresp con-
sisting of those two stimuli alone than when they are put in a group of a thousand
others.

We have an identity. -

% D =ntr(X'X) = n[tr(X' N, X)+itr(X' 115, X)], g (8)
where II§,=~I,—I1;, for each . The second term on the right hand sxd;of the
above identity, #(X'II{, X), represents the sum of squared Euclidiag distances
between stimulus points and their corresponding cluster centroids. Thus, Eq.¢8) states
the basic decomposition of the total sum of squared Euclidian distances into.two com-
ponents, one related to inter-cluster distances and the other related to mm-cluster
distances (Takeuchi & Yanai, 1972).

If we divide both sides of (8) by # and take an average over subjects, weﬂbtam




78 . Y. Takane

#(X'X) = % é (X', X) +&(X T4, X)) ,
=tr[I'( N h-lﬂc") ]+tr[X'( N n-1 )l’]
= t+(X'BX) +tr(X'B*X), A, ©)

N N g, -
where B =% £ M, and B = —;,— $ m:,. Matrix B is an averbge similarity
- I'T N g e,

matrix. We might determine X so that # (X’'BX) is maximized for : fixed value of
tr(X'X), say ¢(X'X)=1. This is quite sensible, because #(X'BX) represents the
portion of ¢ (X'X) which is strictly related to inter-cluster distances. However, when
A>1 (the multidimensional case), the normalization restriction on X (# X’'X=1) alone
is not sufficient; some kind of linear independence restriction is necessary on the
column vectors of X. It is convenient to require X to be columnwise osghonormal; s.e.,

XX=1,. S ek (10)

It is well known that the maximum of ¢ (X'BX) under this restriction is given by the
matrix of normalzied eigenvectors of B corresponding to its 4 dominant eigenvalues.
However, X should also satisfy the centering restriction (3). Fortunstely, this can
be handled rather trivially, since B has an eigenvector proportional to #{Bl,=1[,) and
all other eigenvectors are orthogonal to this vector. We should simply avoid the
constant eigenvector to be included in X. This amounts to defining ~ - 9§ ..

by 2
B*=B—ll|n .

. (11)
and obtaining 4 eigenvectors of B* (corresponding to its A domin¥t eigenvalues)
instead of B, assuming that B* has at least 4 nonzero eigenvalues. - "

Once X is obtained, the cluster centroids for each subject can be ocb¥&ined by
= (G/G)G'X, (k=1,---,N). 4 (12)
This ¥, provides information concerning individual differences in sortéflg- behavior.

3. Illustrative examples

In this section we present some results of analysis performed by the proposed method.
Two sets of stimuli were used in this study; both of them were extracted from Rapoport
and Fillenbaum (1972). The first set of stimuli consisted of 24 color names and the
second set of 29 HAVE words. (See Tables 2 and 4 for specific stimuli employed.)
Stimuli were each printed on IBM cards, and given to the subjects il two separate
decks. Ten university students (psychology majors at McGill) partidipated in the
experiment. For each stimulus set the subject was asked to sort theistifnuli into as
many groups (clusters) as they wanted. An average subject took ﬁft&u minutes in
total to complete the task. wi

The data were analyzed by the method discussed in the pvdvibus section.
Appropriate dimensionalities of solutions may be determined by Bartlett's .chi square
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correction formula (Nishisato, 1975, p. 183) for the test of significant eigenvalues. This
formula can be written, under the present notation, as

N
n+ z N.—N

7= -—[Nn—l— __"_.lf___] In(1=2p)

where A; is the j-th largest eigenvalue of B*. The degree of freedom associated with the

above chi square is # + ﬁ Ny—N-—-2j. A large value of the chi square indicates a
=}

significant departure of A; from zero.

Table 1

Eigenvalues (A), chi squares (B), and the associated d.f. (C)
for the color data

(A) (B) €

1 0.834 235.573 80

2 0.813 213.775 78

3 0.724 147. 284 76

4 0.602 89. 287 74

5 0.557 73.394 72

6 0.451 44.917 70

7 0.357 26. 933 68

8 0.242 11.972 66

9 0.224 10.191 64

10 0.186 6. 969 62

u 0.151 4.562 60
12 0.142 4.046 58
13 0.123 3.011 56 v
14 0.104 2.133 54 Y
15 0.090 1.623 52 '
16 0.064 0.823 50

17 0.043 0.373 48 :
18 0.036 0.255 46

19 0.034 0.226 44
20 0.016 0.050 42
21 0.007 0.011 40 o
22 0.000 0.0 38 .
23 0. 000 0.0 36 |
24 0.000 0.0 34

Eigenvalues, chi squares and associated d.f. are shown in Table 1 for the color data.
The 5%, significance level leads to three significant elgenva.lues Stimulus cod!dlnates
corresponding to the significant eigenvalues are given in Table 2. o

Evidently dimension 1 represents a contrast between brownish colors and ‘others
(red and blue) which are, in turn, distinguished on dimension 2, and dirfension 3
represents a red-green contrast. While not statistically significant, a few subsequent
dimensions are also interpretable: Dimension 4 (yellow vs others), dimension § (ivory,
silver vs brown) and dimension 6 (purple vs blue). The general tendency i#'that, as
we move from more dominant dimensions to less dominant ones, a fewer stithuli are
apt to dominate the whole dimension. i
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Table 2 vin
Derived stimulus configuration for the color data ‘
dim 1 dim 2 dim 8
1 Beige 0.221 -0.011 -0.178
2 Blue —0.251 0.416 =0.212
3 Bronze 0. 250 —0.064 -0.188
4 Brown 0. 262 -—0.061 -0.199
5 Chartreuse 0. 097 0. 149 0. 9.
6 Crimson =0. 250 —0.222 0.066
7 Gold 0. 202 —0. 066 "'0-_&5\
8 Green : 0.081 0. 259 0.
9 Ivory 0.180 —-0.021 =0 g
10 Khaki 0. 152 0.175 0.
11 Magenta -0.238 -0.273 0. 066
12 Mustard 0.101 =0.080 0. 109
13 Olive 0.120 0.213 0.387
14 _Orange 0.003 —=0.142 0.081
15 Pink ~0.223 —0.269 0.070
16 Purple —-0.284 0.133 -0.181
17 Red -0.258 -0. 269 0.081
18 Rust 0. 120 —0.118 —-0.098
19 Scarlet —0. 258 -0. 269 0. 081
20 Silver 0.118 —0.028 —0.229
21 Tan 0. 262 =0.044 -0.174
22 Turquoise —0.230 0.421 -0.199
23 Violet =0.279 0.252 —=0.194
24 Yellow 0.101 -0.080 0. 109

The same chi square criterion indicates two significant dimensions for the HAVE
words. (See Table 3.) Stimulus coordinates for the two signiﬁcant'dimensions are
displayed in Table 4.

It is clear that dimension 1 represents a contrast between the steady state of
possession (e.g., have) and the state of possession which is about to be lost (e.g.,
give). Dimension 2, on the other hand, represents a distinction between the state of
nonpossession which may not change for the time being (lack, need and want) and the
state of nonpossession which is about to change (e.g., receive). Figure 1 shows the
plot of stimulus coordinates given in Table 4 along with sorting clusters (encircled) by
one of the subjects. This subject sorted the 29 stimuli into four clusters. Those four
clusters roughly correspond with the four states of possession mentioned above. It is
interesting to note that for the stimuli in clusters 1 and 3 (two states of nonpossession),
dimension 2 seems to represent the shades of sureness of change in the. states. For
example, “‘receive” is right at the bottom indicating that the state of monpossession
is most likely to change; “lack” is located at the top, which bears ng;information
about the possibility of change in the state, “beg” is located in the.middle, which
indicates that an action is taken to change the state (the change is prébpblc, but not
certain). PP

In Figure 1 cluster centroids for the one subject are indicated .y stars. By
allowing to draw in sorting clusters and their centroids by different subjects on the
plot of stimulus configuration, the present method may lead to importamg;insight into
the nature of individual differences in the sorting task. e
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Table 3

Eigenvalues (A), chi squares (B}, and the associated d.f. (C)
for the HAVE data

(A) (B) ©

1 0.732 187. 146 89
2 0.684 153. 747 87
3 0.596 106. 884 85
4 0.544 85.473 83
5 0.468 60. 186 .8
6 0.418 46.737 79
7 0.357 33.151 77
8 0.208 22.612 75
9 0.276 19.352 73
10 0.255 16.362 7
1 0.233 13.650 69
12 0.203 10. 256 67
13 0184 8.384 65
u 0. 146 5.216 63
15 0.137 4.587 61
.16 0.115 3.267 59
17 0.100 2.459 57
18 0091 2.026 85
19 0.075 1.389 53
20 0.066 1.047 51
21 0.057 0.786 49
22 0.050 0.607 47
23 0-043 0444 45
%4 0.026 0. 167 43
25 0.022 0.117 41
-2 0.012 0.037 39
1) 0.008 0.015 37
28 0.003 0.003 35
29 0.000 0.0 33

4. Relation to other methods

The proposed method has a rather straightforward relationship to two of the most
representative scaling methods to date. '
Let

G=[Gy, -, Gx]. : (13)

Dual scaling (Nishisato, 1980; Hayashi, 1952) of this binary matrix obtains a matrix X
of row quantifications as eigenvectors of matrix

H= Dg-"’(GDc-lG'— _,iz.*:l!_p") D12 o z* (14)

where Dy and D¢ are diagonal matrices of row and column totals of G, Ilp :i;jft?he R-
component vector of ones (where R is the number of rows in &, which is equal to » in
the present case), and M =Ig'Dglp.
Since for & defined in (13) we have
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Table 4
Derived stimulus configuration for the HAVE data
dim 1 dim 2
1 Accept 0.078 -0.186
2 Beg 0.094 0.099"
3 Belong -0.302 0.105
4 Borrow 0.053 —0.029
5 Bring 0.110 -0.114
6 Buy 0.028 —0.096
7 Earn -0.099 -0.197
8 Find 0.064 —0.199
9 Gain =0.123 —0.167
10 Get 0.015 -0. 206
1 Get rid of 0.247 0.122
12 . Give 0.253 -=0.018
13 Have ~0.347 0.042
73 Hold —0.270 -=0. 060
15 Keep =0.296 -0.039
16 Lack 0.083 0.479
17 Lend 0. 192 0. 024
18 Lose 0.242 0.058
19 Need -0. 056 0.470
20 Offer 0.212 —0.002
21 Own —0.333 0.064
22 Receive 0.084 —0.223
23 Return 0.188 -0.115
A4 Save —0.249 —0.986
25 Sell 0.253 0. 002
26 Steal 0.001 -0.081
27 Take 0. 002 —0.087
28 Use ~0. 118 -0.015
29 Want -~0. 005 0.457
Dr=NI,,
D = diag (G'G),
and
M =Nl/l,= Nn, LBy
(14) reduces to P
l N ’ ’ ¢‘
H = Gldiag (€' G)]-'6'— L1, n
1 N )
= Z Gg(Gb'G.)'IG"—l.l,. ln
N =) g
=B—Ll/[n=B* (15)

Although the proposed method was derived from an entirely different principle, (15)
shows that it is a special case of dual scaling. In dual scaling approach column
quantification matrix ¥ is obtained by

Y, \ ”
Y=D-6X=| : |, G
YN b -




ANALYSIS OF CATEGORIZING BEHAVIOR 83

i
Fig. 1 Plot of stimulus configuration for the HAVE data, and clusters and clugter
centroids for subject 6

HE

which also agrees with ¥, (k=1, -+, N), the matrix of cluster centroids for subject %,
given in (12). e

The unfolding model (Coombs, 1964) postulates ideal points for cluste"fs:' Let Y,
denote the matrix of coordinates of ideal points for clusters by subject 4. Define

z x R ¢
where !m
Y =¥, -, ¥¥]. N
76y 0] L
De=| -, | )
L0 Gy
and
- I, 1
E=|:|-Dg|. o (19)
| I' i J.A\)g«

Then diag (EZZ'E’) is a diagonal matrix of squared distances between stimulus points
and ideal points of clusters to which they belong. We wish to find X and ¥-such that
they minimize ér (diag (EZZ E’)] under suitable normalization conditions on X' Define
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g =tr{diag (EZZE’)]
=ty (ZE'EZ)
= Ntr (X' X)—2tr (X'GY)+tr (Y' D' DY) (20)
Differentiating g with respect to ¥ and setting the result to zero gives

~ 5% —@x-D;DI =0,
which leads to
Y = (Dg'Dg)-16' X = [diag (6'G)]-'G'X . 1)
Define g* to be the minimum of g over Y; i.c., _
g* = ming = N (X' X)—{X'G(D;' Do) G’ X] . (22)

Minimizing g* over normalized X (10) is equivalent to maximizing the second term on
the right hand side under the same normalization restriction on X, since i (X'X) is
constant in this case. Note that G(D'cDg)-16'=NB. Thus, the proposed method can
also be considered a special type of the unfolding model.

A less directly related method is the latent partition analysis by Wiley (1967;
Evans, 1970). Although the latent partition analysis is designed for the same kind
of sorting data as the present method is designed for, it assumes a discrete structure (a
modal partition of stimuli) underlying the manifest sorting data as opposed to a
continuous Euclidian space in the present method. It is interesting, "however, to
compare the usefulness of the two methods in the analysis of categoriiing behavior.

5. Discussion and a prospect 38

We have seen a couple of examples of analysis by the proposed - method. This
method is simple (solutions can be obtained analytically), and has a spegial advantage
when one wishes to obtain a quick multidimensional scaling solution from sorting data.
The straightforward relationship of the method to other well-established scaling
methods adds further credibility to the method. (At the same time the proposed method
demonstrates yet another approach to the conventional scaling methods.)

Perhaps one of the major drawbacks of the present method is some arbitrariness
in the choice of an optimization criterion. Although the criterion of maximizing the
average sum of squared inter-cluster distances makes some intuitivie sense, its logical
foundation, particularly as it pertains to descriptive relevance of the criterion, is not
firmly established. We initially set out our discussion by stating that the scaling of
original data should in some sense be consistent with the representation model of the
data. This desideratum is met by the proposed method. However, our optimization
criterion is still arbitrary in the sense that it has nothing to do with the way in which
the subjects perform the sorting task. It is doubtful that the subjects actually con-
ceptualize a set of stimuli in such a way that the sum of inter-cluster Jistances is a
maximum. Preferably an optimization criterion is so constructed that-it takes into
account the actual (psychological) processes involved in a specific task situation
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(Takane, 1980; Young, de Leeuw & Takane, 1980). The model of how tha:subjects
perform the sorting task has to be an essential ingredient of the optimizatioy criterion.
We plan to develop such a procedure in the near future. The method propéiﬂ:ip this
paper can be used as an initialization method to such a procedure. '
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ERRATA for Takane (Analysis of categorizing behavior by a quantification method.
Behaviormetxtika, 1980, 8, 75-9%§.) G

The »W in the chi square formula on the 3rd line of page 79 should be

read as »u (without square). The squaring of »u

chi square value. Tables 1 and 3 should be replaced. (See the reverse side.)

has the effect of deflating the

The model and the analytical method presented in the paper remain valid.




Eigenvalues (A), chl squares (B), and the associated d.f. (C)

Table 1

for the color data

Eigenvalues (A), chi squares (B), and the assoclated d.f. (C)

Table 3

for the HAVE data

(A) (B) ©) (A) (3) (©)

1 0.834 355.669 80 1 0.732 320.942 89
2 0.813 331.536 78 2 0.684 280.683 87
3 0.724 255.167 76 3 0.596 220.864 85
4 0.602 182.654 74 4 0.544 191.257 83
5 0.557 161.001 72 5 0.468 153.660 81
6 0.451 118.557 70 6 0.418 131.762 79
7 0.357 87.323 68 7. 0.357 107.443 77
8 0.242 54.920 66 8 0.298 86.084 75
9 0.224 50.208 64 9 0.276 718.777 73
10 0.186 40.740 62 10 0.255 71.655 71
1 0.151 32.394 60 11 0.233 64.747 69
12 0.142 30.375 58 12 0.203 55.278 67
13 0.123 25.952 56 13 0.184 49.505 65
14 0.104 21.633 54 14 0.146 38.312 63
15 0.090 18.752 52 15 - 0.137 35.765 61
16 0.064 13.182 50 16 0.115 29.871 59
17 0.043 8.788 48 17 0.100 25.721 57
18 0.036 7.240 46 18 0.091 23.238 55
19 0.034 6.802 44 19 0.075 19.097 53
20 0.016 3.179 42 20 0.066 16.498 51
21 0.007 1.464 40 21 0.057 14.234 49
22 0.000 0.0 38 22 0.050 12.468 47
23 0.000 0.0 36 23 0.043 10.622 45
24 0.000 0.0 34 24 0.026 6.461 43
25 0.022 5.389 41

26 0.012 3.027 39

27 0.008 - 1.901 37

28 0.003 0.814 35

29 0.0 33




