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MAXIMUM LIKELIHOOD ESTIMATION IN THE
GENERALIZED CASE OF THURSTONE’S MODEL
OF COMPARATIVE JUDGMENT‘

YOSHIO TAKANE?
McGill University

In light of the empirical evidence against simple scalability a generalized
case of Thurstone’s model of comparative judgment was proposed, in which
covariance terms in discriminal processes are not necessarily assumed zero or

constant.

In order to avoid the indéterminacy (over-parametrization) problem

of the model, the covariance matrix was assumed to have a prescribed rank.

A parameter estimation procedure based on the maximum likelihood principle

was developed and implemented in the form of 4 FORTRAN program. An '’
example was given to illusttate the empirical relevance of the proposal.

A bulk of recent literature on human
choice behavior concerned the role of
similarity among choice alternatives in
judgmental processes.  Similar stimuli are
more comparable than dissimilar stimuli,
so ~that choice probabilities: involving
similar pairs tend to be more extreme than
those involving dissimilar pairs.

Two of the most representative models
of choice behavior, Case V of Thurstone’s
model of comparative Judgment (T hurs-
tone, 1927) and Luce’s chpice model
(Luce, 1959), rest.on the premise that all
aspects of a stimulus pertinent to choeice
probabilities are representable by a single
number which is valid no matter with
which stimuli that particular stimulus is
compared. This is the notion which
Krantz (1967) called * simple scalability .
Many counter examples, however, have
been noted against simple scalability
(Debreu, 1960; Krantz, 1967; Tversky &
Russo, 1969; Rumelhart & Greeno, 1971).
Specifically it has been shown by these
authors that similarity among stimuli
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plays an 1mpértant role in choice proccsses
Similar stxmull (those having many fea-
tures in common or those varying along
a single dimension) are easier to compare,
and consequently more discriminable than
dissimilar stimuli (those having little in
camnion or those differing simultaneously
on: more than. one dimension). Thus,
when stimuli with varying -degrees ' of
similarity are included in an éxperiment
bmary choice probabxhtles predicted from
models of snnple scalability are typically
less extreme than the observed for similar
pairs, while the reverse is true for dis-
simflar pairs.

Restle’s (1961) choice model, wh1ch in-
corporates similarity among choice alter-
natives, has been formulated as a generali-
zation to Luce’s choice model to cope with
the above situation. His model has been
further generalized to non-binary situa-
tions by ‘Tversky (1972a, b). Curiously,
however, an analogous extension has not
been realized in the conventional Thurs-
tonian framework. Or to be more precise
Thurstone’s original formulation was suf-
ficiently general, but the parameter
estimation problem associated with it has
been long neglected. In fact the model
is too general in the sense that the effective
number of parameters [(n+4)(n—1)/2]
exceeds the number of observed choice
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frequencies [n(n—1)/2]. Although a gen-
eral parameter estimation procedure has
been developed for Thurstone’s unres-
tricted case of the model (Arbuckle &
Nugent, 1973), the problem of overpara-
metrization has not been faced squarely.

In this paper we discuss one plausible
way to constrain parameters in Thurstone’s
model along with a maximum likelihood
estimation procedure for this proposed
model.

PRELIMINARY ANALYSIS

Let X;~N(u;, 0.2) denote the discriminal
process corresponding to stimulus i
Thurstone’s general model of comparative
judgment postulates that

pi; = Pr(X;>X,) = Pr(X;— X, >0)
=F(&L> o0

O

where p,, is the probability that stimulus ¢
is chosen over stimulus j, F is the standard
normal cumulative distribution function,
and

By = Pe—ty )
Ui-jz = 012+Uj2_20ij = V(Xt"‘XJ) (3)
with O'ij'—_-COV(Xi, X]) and O'tz:tfi,;.

The fact that the comparatal dispersion,
o;_j, 18 closely related to similarity between
stimuli ¢ and j has been pointed out by
Sjoberg (1975), who obtained both direct
rating judgments of the difference in dis-
criminal processes, X;—X};, and similarity
ratings between the two stimuli, and con-
firmed that the variance of X;—X; closely
agreed with average similarity rating be-
tween the two stimuli (Sjoberg, 1968;
Sjéberg & Capozza, 1975). Indeed, if
similarity—hence, covariance—increases,
the comparatal dispersion should decrease.
That o¢;_; has distance properties (i.e.,
¢;,_;20and ¢, ;=0 if and only if i=j, o,
=0,_4, and 6,_;+0,_>0;_1) has been noted
by Halff (1976).

Furthermore, let the squared distance

between two random variables be defined
by the expected squared difference between
them. Then

d; 2 = E[(X,— X)*]
= E[(ps— p) H( X — pt) — (X;— p )
= (prs— p )+ BUX s — 1) — (X — )PP
= (ti—pf +(olP+ 0,5 —201)
= (ﬂi—#j)2+01—12 . 4

That is, ¢,_ ;% corresponds to that portion of
the squared distance between two random
variables (as defined above) that cannot
be accounted for by the difference in their
expected values.

Thurstone’s Case V is obtained by
setting o,_;=1 for all pairs of stimuli.
Now if stimuli differ among themselves in
their degree of similarity, this assumption
cannot be justified. For example, when
two stimuli are similar, o,_; is expected to
be less than unity. Then setting o;_;=1
would underestimate g,_,/0;_;, consequent-
ly p.; is predicted to be less extreme than
its observed counterpart. If, on the other
hand, two stimuli are dissimilar, just the
opposite will occur.

It is possible to indirectly estimate o;_;
by measuring a discrepancy between ob-
served and predicted p;; after applying
Case V. Let p;; and p;; denote the ob-
served and the predicted choice probabili-
ties from Thurstone’s Case V, respectively.
Then

Doy =F(i—4j),
or 2uy=F"YPy) = fa—py» (%)
where f; is the estimated scale value of
stimulus i, Suppose that Case V is sub-
stantially incorrect, and that bi; has to be

predicted by Thurstone’s general model,
namely

ﬁ,,:F( m—#;)’
Oi_jg
or

Zy=FXpy,) = ﬂ:r:_fj ) (6)
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TABLE 1

Observed and predicted z;; (above diagonal), and estimates
of ¢;.; through Equation (7) (below diagonal)

Estimated
p values
L] HW CD Ju cy AF BB ET SL from
Thurstone’s
Case V
L] 466 515 668 779 723 641 478 271 505
(290)  (442)  (698)  (989) (679)  (808) (420) (216)
HW 62 227 527 628 478 431 054 054 215
S (152)  (409)  (699) (389)  (518) (130)  (—174)
CcD 86 67 305 443 227 249 054 031 063
(257)  (547) (237)  (366) (—022) (—225)
Ju 105 77 84 681 —021 075 —338 —641 —194
TN (290)  (—020)  (109) (—279) (—482)
cy 127 111 124 43 —443  —238 —502 —641 —484
(—~310) (—181) (—569) (—772)
AF 94 81 105 93 70 . 183 —271 —515 —~174
(129)  (—259) (—462)
BB 126 120 147 146 76 71 — 564 —824 —303
) T (—388)  (—591)
ET 88 | 241  —4l] 82 113 95 69 —327 085
SL 80 {—137 —731 75 120 90 72

The unit of measurement is .001.

. 24y
Legend: - \(zij)

(Note that we are using # obtained from
Case V in the above equation, which,
strictly speaking, is not quite right. If
Case V is not correct, the estimate of
should also be modified. This is one of
the reasons why this is an approximate
method.) Then

. =0a;_; (7)

should give an estimate of o;_;.

This method of estimating o, ; was
applied to the data collected by Rumelhart
and Greeno (1971). The data pertain
to pairwise preference judgments on nine
stimuli obtained from 234 subjects. The
stimuli consist of three groups of people,
three politicians (Lyndon Johnson (LJ),
Harold Wilson (HW) and Charles de-
Gaulle (CD)), three atheletes (Johnny
Unitas (JU), Carl Yastzremski (CY) and
A.J. Foyt (AF)), and three actresses

(—203)
62\ 288

(Brigitte Bardot (BB), Elizabeth Taylor
(ET) and Sophia Loren (SL)). The
stimuli were deliberately chosen in such
a way that they differ in their degree of
similarity. People in a same professional
group are expected to be more similar to
each other than those in different groups.

Table 1 shows the observed £;; (obtained
by applying F-! to the observed $;;) and
the predicted 2;; (obtained by applying
Thurstone’s Case V) in parenthesis in the
upper diagonal portion of the table. (The
scale values from Thurstone’s Case V are
listed in the right margin of the table.)
Entries below the main diagonal are the
estimates of o,_; obtained by Equation (7).
It can be observed that the estimates of
o;-; are generally smaller for pairs whose
members belong to a same group than
those for pairs whose members come from
different professional groups.

In order to highlight the above ob-
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servation metric multidimensional scaling
(Takane, Young, & de Leeuw, 1977) was
applied to the estimated ¢;_;. In this
analysis four entries in Table 1 (enclosed
by a dotted line) were treated as missing
data. For these estimates £;’s were so
close to zero (p;;~1/2) that they were
deemed unreliable. Note that in three
cases estimates are negative. While this
should not happen theoretically, it hap-
pens in practice. Figure 1 shows a two-
dimensional stimulus configuration ob-
tained from the MDS analysis of 0,_;. It
can be clearly seen that the three groups
of people form three distinct clusters in
the multidimensional space, indicating
that o,_; is indeed a measure of dissimilarity
between stimuli.

MaxiMuM LikeLiHooD ESTIMATION

Motivation

We have seen that ¢, ; serves as a
measure of dissimilarity between ¢ and j.
Being a measure of dissimilarity it also
serves as a measure of comparability be-
tween the two stimuli. Thus, there seems
enough justification to estimate o,_; in
Thurstone’s model.

The method of estimating o,_; given in
the previous section is a quick and dirty
method. It has several undersirable pro-
perties. First, the estimated o¢,_; is un-
stable for values of p;; near 1/2. The
corresponding 2;; is close to zero in this
case, so that a small change in £; may

cy
*-48
Wose
¥, D o6
WY 21
BB
L]
-.30 L ;J-
Tos oo 0
Fie. 1. Multidimensional stimulus configuration

derived from estimated o;_; as defined in (7).

change o, ; drastically. Secondly, no
estimate of ¢;,_; can be obtained when p;;
is exactly one-half. In this case £;=0
and o,_; in (7) is not definable (i.e., o;_;
is infinitely unstable in this limiting situa-
tion). Thirdly, the estimate of ¢,_; may
be negative. As we have seen in Rumel-
hart and Greeno’s example, negative es-
timates of ¢,_; can be obtained when the
signs of Z;; and Z;; are opposite. Since
o,_; is by definition non-negative, this is
not a desirable outcome. (A negative
estimate of o¢,.; may occur frequently
when p,; is close to 1/2.) Finally, and
most importantly, we have to assume that
the estimates of yx’s obtained from Case
V remain intact to be used in (6) for
deriving (7). This is obviously not strictly
true. Furthermore, the estimates of p’s
from Case V are likely to be distorted to
start with due to the violation of Case V
assumptions. In Fig. 1 the estimates of
scale values derived under Case V are
shown alongside the stimulus points. It
may be readily seen that a certain direction
(from upper left to lower right) in this two-
dimensional stimulus configuration is high-
ly correlated with the estimated p’s.

This may be an artifact caused as a
consequence of using distorted ¢’s in both
(5) and (6). That is, some bit of informa-
tion which should be captured in g’s might
have been mixed up in the estimates of
o;_;, making a direction in the multidi-
mensional space highly correlated with
preference values of stimuli.

It seems necessary to develop an es-
timation procedure which is free from all
of the above inconveniences. It is not
too difficult to construct a maximum like-
lihood estimation procedure. However,
the problem is how to reduce the number
of parameters in the general case of
Thurstone’s model (Takane, 1975). The
n(n—1)/2 observed choice probabilities are
the minimum sufficient statistics (Wilks,
1962) for p;; and consequently no model
with a larger number of parameters can
possibly do better than this model.
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We propose the following model to
avoid the over-parametrization of Thurs-
tone’s general model:

A
Ut_jz = 0‘;2-}-0'/2—2 ‘v_,;btabja N
a=

(i,j:l,...,n) (8)

ol=%but, (i=1,...,m. (9

That is, the covariance matrix between
discriminal processes is assumed to have
a prescribed rank (=4). The constraint
on the covariance matrix expressed in (8)
is also convenient to ensure the non-
negative definiteness of a covariance ma-
trix. We call this proposed model the
““ factorial model .

There is an interesting correspondence
between the above proposal and the
analysis we had undertaken in the previous
section. Let X, ; be the nXxn matrix of
0. Tt was tacitly assumed in the pre-
vious section that the set of estimated a,_,;
had a two-dimensional representation in
the Euclidian space. This is equivalent
to saying that matrix S obtained by
applying the Young-Householder (1938)
transformation to 3;,_; hasrank 2. Thatis,

1

S:——2~]2.'i_j]=XX’, (10)
where J is a centering matrix of order n
and X is an nX2 matrix of stimulus con-
figuration (whose origin is set at its cen-
troid). Let &,_; be the nXn matrix of g2
having the structure defined in (8). If
we apply the same transformation to §,_,
we obtain

§= g JE.,=JCT=BBv, (1)

where C is the matrix of ¢;; and B*=JB
(B is a matrix of 4;,). If the double-
centered covariance matrix (JCJ) has rank
2, then B*B*' is equivalent to XX’ in
(10), and X=B*T for some orthogonal
transformation matrix T. The fact that
JCJ is as good as C (and consequently,

that B* is as good as B) may be readily
seen by pointing out that ¥,;_; (and fi_,-)
is invariant over the transformation of C
of the form:

C= C+la’+al’

where a is an arbitrary n-component vec-
tor and ! a vector of ones. That is, the
rows and columns of C are determined
only up to an additive constant.

Estimation Procedure

Let Y;; denote the observed frequency
with which stimulus ¢ is chosen over
stimulus j. Then the probability of that
event occurring Y;; times out of Ny; repli-
cated observations follows a binomial
distribution,

Pr(Yi; | puj)oc pufes(l — pigy¥es~¥us,

where p,; is given in (1). The likelihood
function for the total set of observations
can be stated as

Loc/ = 1] ps¥es(1 — peg)¥es7 % (12)

where the product may be taken over the
pairs of 7 and j for which Y;/’s are actually
observed. Note that in defining (12) we
have assumed that the difference processes,
X,—X;, at two distinct occasions are
statistically independent. Note also that
we are assuming that two discriminal pro-
cesses involved in a single judgment have
a non-zero covariance. A minimal condi-
tion for the independence of the difference
processes involved in two distinct judg-
ments has been given in Takane (1978).
Taking the log of L’ in (12) we have

In L= 3[¥;;Inp;;
+Ni=Yi) In(1—p;)]. (13)

We wish to determine g’s and b;,’s in such
a way that this quantity is maximized.
Fisher’s scoring algorithm seems useful
to solve a set of likelihood equations derived
by differentiating In L’ with respect to
the model parameters. This method has
been successfully used in many situations
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(see Takane, 1978, 1979, 1980, for exam-
ple) similar to the present case. Fisher’s
scoring algorithm is an iterative procedure,
which updates the parameter values by

@) = @ La @ [(§@)1s(g@) (14)

where the parenthesized superscript indi-
cates an iteration number, # is a vector
of parameters, s is Fisher’s scoring vector,
I is Fisher’s information matrix, and «
is a step size. The updating formula (14)
is iteratively applied until all parameter
values are stabilized.

Fisher’s scoring vector is the vector of
first derivatives of In L’ with respect to
6, namely

_dlnlL
$(0)= %4
Y, —Nypy, )( aﬁu)
- , (15
Z( pu(l—pi5) J\ 00 (13)
where the elements of dp,;/d6 are given by
a
41— = 00) [y (16)
a[lk
Py (3t 2, (17
90, et 05) f(zi)zugonfo- 25 (17)
and

d
3‘11:“ = 0u [ (2i)21(bja—bia)l0s-
ka
+85 (2021 bia—bsa) e . (18)

In the above formulae §.. is a Kronecker
delta, fis the density function of the stand-
ard normal distribution, and z;;=pg,_;/0:_;.
Fisher’s information matrix is the covari-
ance of s(8), and takes the following form
under the present circumstance:

w03 0, ) - 0

When the information matrix is singular,
we may use the Moore-Penrose inverse of
I(6) in (14) (Ramsay, 1978).

REsuLTs AND Discussion

A computer program has been written

TABLE 2

The hierarchy of fitted models and a summary
of goodness of fit statistics

Null Model
—309.8
691.5
(36)
|
l [
Case II1 Factorial Model (4=2)
—326.7 —313.2
685.4 670.5
( 1'6) (22)
Case V Legend: Log-likelihood
—350.6 (+const.)
717.2 AIC (+const.)
® (d.f. of the model)

which incorporates the model proposed
in the previous section as well as Thurs-
tone’s conventional cases (Case V and
Case III). In this section we report some
of the results we have obtained with
Rumelhart and Greeno’s (1971) data we
used previously.

For the purpose of choosing the best
fitting model, four different models have
been fitted to the same set of data, and the
results are reported in Table 2.

In the table the null model refers to
a model in which no further structural
assumptions (like the one in (1)) are im-
posed on the choice probabilities. It is
well known that observed choice pro-
babilities (p;;=Y;;/N;;) are the maximum
likelihood estimates of population choice
probabilities (p;;) when no specific sub-
structures are assumed of p,;. Further-
more, as noted earlier, p,; is the minimum
sufficient statistic for p;;, Hence, this
model represents the most unrestrictive
model conceivable.

The other three models assume some
specific structures under p;; as given in (1).
Case V further assumes that ¢, ;=1 for
all pairs of ¢ and j. Case III assumes
ay;=0 (txj). Finally, the factorial model
assumes
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A
aij = Z biabja .
a=1

All these three models are special cases of
the null model. Case V in turn is a
special case of Case III. Note that the
factorial model is not a proper generaliza-
tion of either Case III or Case V, because
with the restriction stated in (9) condi-
tions for Case IIT or Case V cannot be
generated.

The likelihood of the most unrestrictive
null model is naturally the highest among
the fitted models. (See the top figure
under each model, which gives the log-
likelihood (plus constant) of the model).
However, it uses 36 parameters (=9x8/2)
to achieve this. Quite naturally a larger
likelihood can be attained if a larger
number of parameters are used to de-
scribe the data. Thus, in order to evalu-
ate the performance of a model in relation
to other models, a goodness of fit statistic,
which explicitly takes into account the
number of parameters in the model, is
called for. The AIC statistic, proposed
by Akaike (1974), satisfies this need. The
AIC of model =z is defined by

AIC(z) = —21In L+2n, (20)

where In L is the log-likelihood of model
7= maximized over its parameters and 7,
is the number of parameters in model =.
The model which gives the minimum
value of the AIC is considered the best
fitting model.

The AIC values associated with the four
fitted models are given as the second entries
in the table (right below the log-like-
lihoods). The factorial model with two
factors has the minimum AIC value of
670.5. Thus, according to the AIC cri-
terion the factorial model is deemed the
best fitting model.

The log likelihood of the factorial model
(=—313.2) is slightly smaller than that
of the null model (=—309.8). However,
the former uses only 22 parameters while
the latter uses 36 parameters. The 14

additional parameters in the null model
do not significantly improve the goodness
of fit of the model.

The 22 degrees of freedom for the fac-
torial model are calculated as follows.
There are 27 parameters estimated (9 ¢’s
and 9X2 b;,’s) of which five parameters
may be arbitrarily chosen, one for the
origin of p’s, two for the origins of b,
(2=1,2) and one for rotation, and the
remaining one for the scale of g’s and
bi’s. Note that there is one common
scale factor for both z’s and b;,’s. Thus,
the degrees of freedom for the factorial
model is, in general, given by nA—A(4+1)/
2—1 where 7 is the number of stimuli and
A is the assumed rank of the covariance
matrix between discriminal processes.

The estimated b;,’s are plotted in Fig.
2. The three groups of people again
form three clusters, though they are not
as distinct as in Fig. 1. However, unlike
Fig. 1, no direction in the space seems to
be confounded with preference values of
stimuli (which are given alongside the
stimulus points in the configuration). It
may be pointed out that less preferred
stimuli tend to be in the center of the con-
figuration, while more preferred stimuli
tend to be located outside. This means
that more preferred stimuli tend to have
larger discriminal dispersions. Whether
this is mere coincidence or reflects some
important psychological truth is, however,
yet to be investigated.

In certain cases the restriction implied

D
c’ o7
HW
* 14
-.23
U 30
ET *cY
o1 . L)
BB CAF (]
- =21 .70
L .25
09

Fic. 2. The plot of an estimated square-root
factor of the covariance matrix between dis-
criminal process.
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by (9) may be too strict, and we may wish
to replace it by a somewhat weaker re-
striction that
A

02> az_lbiaz, (i:l,...,ﬂ). (21)
This is equivalent to hypothesizing a com-
mon factor analysis type of structures on
the covariance between discriminal pro-
cesses as opposed to a component analysis
type of structures implied by (9). This
restriction has a desirable property that
both Thurstone’s Case IIT and Case V
can be subsumed under the factorial model.
In the present case, however, the log like-
lihood of the factorial model with restric-
tion (9) is already so close to that of the
null model (the difference is only 3.4) that
it is not likely that the factorial hypothesis
with this weaker restriction can substan-
tially improve the goodness of fit of the
model. The restriction given in (21) may
still have some general appeal.

One of the major implications of the
present study relates to Takane’s (1977,
1978) work on a maximum likelihood
estimation procedure for nonmetric mul-
tidimensional scaling when dissimilarity
measures are taken by pair comparisons
of dissimilarities. A difficulty which has
been encountered was the differential
degree of comparability between dissimi-
larities. For example, dissimilarities are
more easily discriminable when they are
defined on a single common dimension
than when they are defined on two or
more different dimensions. Since the
degree of comparability is related to
:_;, and now that the procedure is found
feasible, which incorporates different o;_;’s
in Thurstone’s model, this feature may be
incorporated into the above multidimen-
sional scaling procedure.
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