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THE METHOD OF TRIADIC COMBINATIONS: -
A NEW TREATMENT AND ITS APPLICATION

3

Yoshio Takane*

BN

In the method of triadic combinations three entities (stimuli, dissimileities,
etc.) are rank ordered in a specific order. When those entities are stimuli themselves,
the subject is typically asked to choose, first, the most dominant stimulus among three
stimuli presented at a time according tc some prescribed criterion, and then the ‘least
dominant one among two remaining stimuli. If, on the other hand, those entities
represent dissimilarities defined on a triad of stimuli, the subject is instrugted to
choose, among the three stimuli, the most similar stimulus pair and then the most
dissimilar pair. In either case the procedure establishes an observed rank ‘order
among three entities. The rank order data collected by this method were convesition-
ally analyzed by Thurstone’s model of comparative judgments by reducing them to
pair comparison data. A new approach to the method of triadic combinations is
proposed in view of the fact that it is a special case of the directional ranking’ fhethod
(i.e., rank orderings are performed in a specific direction). A maximum likelihood
estimation procedure is developed and implemented in the form of a FORTRAN
program. An illustrative example is given to demonstrate the feasbility of the
procedure. -

1. Introduction

Richardson (1938) was the first to use the method of triadic combinatiggs. In this
method three stimuli are presented at a time to the subject. He is asked fisgt to choose
a stimulus which is most dominant according to some prescribed attribute of stimuli, and
then to choose the least dominant one among two remaining stimuli. The same pro-
cedure is repeatedly applied to other triads of stimuli. If the three stimuli;to be com-
pared are three dissimilarities defined on a triad of stimuli, we obtain the method of
tridiac combinations as it was originally used by Richardson (1938). In this case the
subject is to choose, first, the most similar stimulus pair and then the most. dissimilar
pair. The stimulus pair which is neither most similar nor most dissimilay, is deduced
from the previous two judgements. In either case rank orderings are: established
among three entities. In the former case the three ranked entities are sfipuli them-
selves, while in the latter they are (dis)similarities defined on a triad of stimuli.

Since Richardson, several researchers have used the method of triadjc combina-
tions (Vlek, 1969; Levelt, van de Geer & Plomp, 1966; Roskam, 1969). - However, it
has never won its popularity among psychometricians as a handy data collection
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method, and there seems to be a reason to it. Suppose three stimuli, S;, S; and S, are
presented, and S; is chosen to be the most dominant stimulus and S; to be the least
dominant stimulus. This establishes a rank order among the three stimuli, $;>S5;>5;,
where > indicates that the stimulus on the left of the symbol empirically dominates the
one on the right. However, due to the lack of a proper ranking model, the rank order
data obtained by the method of tridiac combinations have been analyzed via Thurstone’s
model of comparative judgments (Thurstone, 1927) by reducing them to pair com-
parison information. For example, the above rank order may be decomposed to three
binary relations, S;>S;, S$;>S; and S5;>S;.

However, three binary relations derived from a rank order are not completely
equivalent to three binary relations obtained from three independent pair comparison
judgments; a rank order imposes a rather stringent constraint on the set of:.derived
binary relations. For example, if S;>>S; and S;>S;, then it must be that §;3%S; (s.c.,
transitivity must always hold). This implies that the last relation (S,'>Sf;): is not
statistically independent of (in fact, completely dependent on) the previous two relations
(i.e., Si>S; and S;>S;). This, however, is not generally true in pair comparison judge-
ments, in which violations of transitivity may occur quite naturally. Even if S;>S;
and 5;>>S;, S;<S; can occur, and such a relation is perfectly legitimate.

In view of this fact Torgerson (1958) modified the basic constitution of the method
of triadic combinations into a new method called the method of triads. Thxs method
is more conformable to the requirements of pair comparison judgments, though it is
restricted to comparisons among dissimilarities rather than comparisons among stimuli
themselves. In the method of triads stimuli are presented in triads as in the method
of triadic combinations. The difference is in that one of the stimuli is designated as a
standard stimulus, and the subject is asked to choose a stimulus which he perceives to
be most similar to the standard among two comparison (=nonstandard) stimuli. Let
S;, Sj and S; be the three stimuli presented in a particular trial, and let §; be the
standard stimulus. Then this procedure obtains a pariwise ordinal relation on § (S,
S;) and § (S;, S;) where § indicates the dissimilarity between two stimuli. (5(S;, S;)<<
8 (S;, Sp), if S; is judged more similar to S; and 8 (S;, S;) > 8 (S;, Si), otherwise.) The
same set of three stimuli is presented three times, one stimulus serving as a standard
stimulus each time, and it is usually presented well apart in the sequence of: judgment
trials to ensure statistical independence of the three judgments.

The method of triads, as used by Torgerson (1958) and others (e.g., Krantz, 1967a,
b), has some advantage over the method of triadic combinations, so far as the data
arising from the latter method are reduced to pair comparison data and treated as
such. While it is possible, at least in principle, to obtain statistically independent
binary relations in the method of triads, it is not possible in the method of triadic
combinations. Perhaps for this reason the latter method is no longer very frequently
used in its original form.

A notable exception is the work by Roskam (1969); his procedure can: du'ectly
deal with the kind of rank order data arising from the method of triadic combihations.
Roskam invented a notion of data conditionalities (this terminology due to Takane,
Young & de Leeuw, 1977), subsets of data within which they can be meaningfully
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compared. Furthermore, he could successfully incorporate it into a stress function, a
least squares loss function typically employed in Kruskal (1964) type of nonmetric
multidimensional scaling. As is well known, Kruskal’s nonmetric MDS finds, based
exclusively on the ordinal information about dissimilarities, a configuration of stimulus
points in such a way that their mutual distances best agree with the observed ordinal
relations. Roskam separé.tely defined a stress function for each data conditionality
(i.e., for each triadic rank order), and combined it into a global stress function by
taking a root mean square. His procedure finds a stimulus conﬁguratlon which
minimizes this modified stress function. Otherwise it works in a similar way t6 Kruskal’s
procedure.

In this paper we discuss a new approach to the method of triadic combinations,
which, like Roskam’s, can handle the triadic combination data without reducing them
to pair comparison data. Unlike Roskam’s, however, it is based on the maximum
likelihood principle, which has some advantage over the least squares estimatlon in
terms of its statistical inference capability.

2. Basic Formulation

In developing a maximum likelihood estimation procedure for the: method of
triadic combinations the most crucial thing to realize is that the. ranking is
performed in a specific direction (Takane & Carroll, 1981). Let us for a moment restrict
our attention to the case in which stimuli, not dissimilarities, are ramnked. The
subject chooses the most dominant stimulus first. and then the least dominant stimulus,
but since choosing the least dominant stimulus among two remaining stimuli is equivalent
to choosing the stimulus, which is neither most dominant nor least dominant, as the
second most dominant stimulus, it amounts to rank ordering the three stimuli from the
most dominant one to the least dominant one. In this case a ranking may be viewed
as resulting from successive first choices. §

Let stimuli S;, S; and S; be rank ordered in a particular triadic’ companson
Suppose the rank order obtained is S;>>S;>S;. Let y;, uj, and represent stimulus
values (scale values) corresponding to these stimuli. We assume that ‘the stimulus
values are error-perturbed, and generate error-perturbed processes y;¢), y,") and v ®
(corresponding to u;, u; and py, respectively) at a particular first ch010e which is
designated by ¢ That is,

¥ = pit+e; ), (1)

(the same for j and k) where ¢;") is the error random variable, which may be further
assumed to follow a central normal distribution. It seems natural to assume that a
stimulus is chosen on the basis of y¢) at the #* successive first choice. The stimulus
having the largest value of y®) is chosen as the most dominant stimulus. Thus, S; is
judged to be the most dominant stimulus among the three stimuli, (S;, S; and S;) when
;M) exceeds both y;) and y;®). Then

pip® = Pr(S;>S; and S;>5»)

= Pr(y;® > y;® and ¥iD > 9, D), 5 2
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yv'jk(l) = yi(l) s Z‘”(l) == V(y‘ih(l)) ) /-‘Uk(l) ={u;l,

Y4 4
1 -1 0
A® =[ ]
d 0 —1
We may then rewrite (2) as

2ii® = Pr(4 My, @ > 0)

= J (i ©) dz;5 DV, (3)
<@

Define

and

where z;530=A® y;;,® ~ N (AD p;530, A 55,0 40)) and S® is a multidimen-
sional region such that z;;®>0 (0 is the zero vector). If the variance-covariance
matrix Z;4D of 9,4 can be expresssed in the form of

Zinp® = (0%/2) Iy + T35’ +agly’ )
for any arbitrary three-component vector a4z and the vector of ones, 75, the variance-
covariance matrix A MI;; M A®’ of 2,0 will have o? in the diagonals and ¢*2 in the
off-diagonals. In this case the bivariate normal integral in (3) can be aproxmated by
the bivariate logistic distribution (Bock, 1975), which is given by

Dinn®) = [1+exp{s(uj—u:)} + exp(s(us—pi)}]

_ exp (s R
exp (sp) + exp (suy) + exp (sps)

where s is a dispersion parameter and is approximately equal to %/ V3 0. (Note that
this s does not have to be explicitly estimated. Since u’s are only determined up to a
multiplicative constant plus an additive constant, we may let the scale factor of u's
take over the size of s.) The logistic distribution is much easier to evaluate than the
normal integral, and is more convenient to use for computational purposes.

The probability p;,® that S; is judged to be more dominant than S, after S;
~ is eliminated from the comparison set is similarly obtained. '

We have
P ® = Pr (A By > 0)
=[ oy $n®) dz® @
where zﬂ(i) ~N(4 (2)”].,.(3), AT, ®4@), i
Y = (i:i:) , B =V(yp®), pp® = (:i) s ’
A® = (1 ~1),

and S® is a region such that z;®>0. Since in the present case z;®=A®y,®=
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yi®—y;® and A ®uu®=pu;p, (6) can alternatively be written as
bik '
pu®=[" 4l dz : @
~00

where bj=(uj—ps)/o (?=ADI;®AD’) and z is univariate standard nortnal. It is
well known that the normal integral in (7) is closely approximated by the following
logistic distribution: -
pin® = [1+ exp (s(u—py)} 17
— €Xp (sl‘i) . Eo (8)
exp (spj) + eXp (sps)

Finélly, we may identically set p,®=1, since, after the two most dominant stimuli
are chosen, S; is the only one stimulus left, which is bound to be chosen .as. the least
dominant stimulus. e

The probability p;; of rank order, S;>>S;>5;, can now be stated, under the
independence assumption on Pip® and p; @, as o

piin = Pr(S:>Si>Si) = pip® - b ® . ’ 9)
The independence of p;;™ and p;@ can be obtained, even if y;4@ and yu® are not

completely independent. It suffices that the covariance between them ;;9»’) has the
following structure: .

T2 = Cov (5D, ya®) = T3by' +csly’ (10)

where b and ¢ are arbitrary vectors and 7 is the vector of ones. Subscripts on the
vectors indicate their dimensions. o

There are six possible rank orders among three stimuli. For example, for S S
and Sb we have (l) S,->S,'>S],, (2) S,'>S],>S,', (3) S,>S,->S,,, (4) S,>Sb>'s,, (5) S),>S,'
>S; and (6) $;>S;>S;. Only one of these occurs in a particular ranking.. Let p¢jm
denote the probability that one of them occurs in a particular trial. Define

1, if $;>>S;>S; is observed S

Zip = e
) 0, otherwise.

Then

bum = I (Duj)%isn (11)
where the product is taken over all permutations of ¢, j and % (i.e., ijk, ski, jik, jki, kij
and kji). Suppose N repeated trials are made, involving the same three stimuli and
a particular rank order, S;>>S;>>S;, is observed Z;;* times. The probability p(;»* that
possible rank orders are observed certain fixed numbers of times is given by

Plm® = _I}h(:biik)z*'i"* , | (12)
t,
where the product is again taken over all possible permutations of ¢, j and k. We
also have Ngm= Zi Z;3*. The likelihood of the total set of observed rank orders
3/

is in turn given by the product of p(;;)* over triads of stimuli, again assuming the
statistical independence of p(;jn* and p(uw*. The independence can be obtained
under a similar condition to (10).
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When the ranking is performed from the least dominant stimulus to the most
dominant (rather than in the other direction as has been assumed throughout), only a
minor modification is necessary in the above formulation. Only s in (5) and (8) need
be replaced by —s(s>0), provided that certain symbols are systematically redefined. The
Pipp® in (2) now indicates Pr(S;<S; and S,<S;) and 4®) has to be replaced by —~4®.
Similarly, $;® indicates Pr(S;<S;) and A® should be replaced by -4 ®@. Also,
in (9) now Indicates Pr(S;<<S;<S;). :

3. The Case of Dissimilarity Rankings

The method of triadic combinations has most often been used as a method to
collect dissimilarity data. In this case three stimuli are presented to the subject as
before, but instead of obtaining a rank order among them we obtain a ramk order
among dissimilarities between them. As noted earlier, this is done by asking the
subject to choose the most similar stimulus pair first and then the most dissimilar pair.
It is obvious that this procedure obtains a rank order among three dissimilarities
defined on three stimuli from the smallest to the largest. Again some modification is
necessary in the above formulation in order to deal with this situation.

When the data are ranked dissimilarities, we would usually like to not only scale
them, but also represent them by some distance model. Let us assume that the
distance model is euclidean; i.e., B

M

dij = { 35 (%a—%s)"}112, - (13)

1

where d;; is the euclidean distance between stimuli ¢ and 7, x;, is the coordinate of
stimulus ¢ on dimension a, and A is the dimensionality of the space. This d;; is analogous
to u’s in the pfecedjng discussion. We again assume that d;; is error-perturbed at each
particular first choice, and that the most similar stimulus pair is chosen on the ‘basis of
a particular value of error-perturbed d,; realized at that occasion. The rest of the
procedure then goes much the same way as in the previous development. Notice that
the likelihood in this case is maximized over the stimulus coordinates x;, rather than
d;j. Note also that this case can be construed as a special case of the previous formula-
tion in which u’s are constrained to have a special structure implied by (13).

When dissimilarities are rank ordered, it may also be useful to incorporate the
log normal assumption (multiplicative error model) on ¢ in (1) as well as thé normal
assumption (additive error model). In this case d;; and y;;*) have to be replaced
by In 4;; and In y;;®),) respectively. Defining 8;=8(S;, S;), we have ’

Dipn® = Pr(8,;<8;x and §;<8s)
= Pr(y;j<ya and y;<yi)
= [1+ exp {s(Ind;y—Ind;})} + exp {s(Ind;—Ind;;) }]
— 4y (@i + A+ dir?) (14

and
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Piin® = Pr(8;<<3u) = Pr(yin<yi)
=1+ exp {s(Ind—Indy)} 1
= dp’[(@s* +du’) (15)
where y;;")=d;;+e¢;() and s<O0. /
We may compare the goodness of fit of the two error models on an emplncal basis
and choose the one which fits to the data better. e

4
3

4. Numerical Method and Derivatives

The log likelihood can be maximized by various numerical methods. The
method we prefer to use is Fisher's scoring algorithm, which has proven to be very

efficient in similar situations (Takane, 1978, 1981, 1982; Takane & Carroll, 1981). It
is an iterative procedure, in which current parameter estimates are updated by

8E+) = 9@ 4 T (09))1n (0(4)) , (16)

where #(8)=(d In L/36) is the score vector (L is the likelihood), I(8)=E[ (3‘ln L[26) (3 In
L/36)] is Fisher’s information matrix and the parenthesized superscripts indicate itera-
tion numbers. When the regular inverse of the information matrix does not exist due
to singularity of the matrix, it can be replaced by the Moore-Penrose inverse (Ramsay,
1978). In the present case the singularity of the information matrix odcurs due to
nonuniqueness of parameters.

In order to apply the above algorithm we have to have explicit expressions for
w(@) and I(f). Let L=IIpn* be the likelihood. We then have InL=23Inpyn*,
where the summation extends over the triads of stimuli actually compared, We have

a2t

« OInPis
Ofim

=22 Zip (17)
ish

(the second summation denoted by #jk is over all permutations of 4, j and k), where

oln $ ol i3 oln s,
Pin _ . n Pija + S Pis
Ofim Ofhm

oIn p,; .
TR (18)
Ofhm Othm o

(5--- is a Kronecker delta). Note that only one of the three terms on the right hand
side of the above equation is nonzero, since 4, j and % are all distinct. We have
In pip=In p;jO+1In 5@, so that dIn p,ju/duw=01n P;js [dpm+31n pjs'» ok, and thus

In b @ , . .
g (peplm) | dewiw) | der oy g
Ofhm Otim Ofim Ofhm "
"where
¢y = [exp (su;) +exp (spz)+exp (sus) 17,
and

oexp(sy;) .
omm = Sim S €XP (S4s) - N
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Similarly,

dln pj@® 9 exp(su;) | 9 exp(sus)
b,u:. - 8,-,..3—02( e LA e ) (20)
where c;=[exp (su;)-+exp (sus) 1% |

Derivatives can be obtained in an analogous manner when dissimilarities ‘are rank
ordered rather than stimuli themsevles. In this case u is replaced by 4 which is
further related to x by (13). Since x is the parameter to be estimated we need a
derivative of In L with respect to x. We have

dlnLl AL d;

= , © (21
ax,,., ad,-,‘ ax,“ . ( )
where 9 In L/od;; is analogous to 9 In L/3u,, and
od;; (¥is—%54)
— = (Sim—Ojm) — . 22
ax”. (8’” 8”") d;’j ( )
When the log normal assumption is made, we obtain
o1n pp® od;#  odyt  ody’ '
Ridual 4.2 LARSSSY Y — - (2
Uy 20 1S cl(ad,,,,, T e o) @)

where C= [ln (d,'j’+d,'ks +d,-k‘) ]-1 and ad,-,“/ad,',, = 8(,',') (mn) Sd,'js—l , and

.. (2) s o5
20pp® h;;:: = 8(ja) (mm) S/Bma— "s( ;Z: + %::) ) (24)
“where c,=[In (d;3°+d;°) 1L

Equations (23) and (24) follow from 31n f(x)/dx=(1/f(x)) (3 f(#)/ox).

It is not very easy to obtain an explicit expression of the information matrix
directly. However, it can be fairly easily obtained by noting the equivalence between
the Gauss-Newton method for the weighted least squares and the scoring algorithm for
maximum likelihood estimation when the assumed population distribution is one of
the exponential family of distributions (Jennrich & Moore, 1975). In the present case
we have the multinomial distribution (we see the kernel of multinomial distribution in
(12) ), which is a special case of the exponential family of distributions. The equivalent
least squares criterion in this case is written as

——— (ZippIN iy —Diin)? (25)

where the first summation is over the triads of stimuli actually compared and the
second summation over permutations of ¢, 7 and k It is well known that the
Hessian used in the Guass-Newton method to minimize 7 is given by

b am g () R () oo

where Ay, is the (m, m') element of the Hessian matrix H(6), 4,, the m** parameter and
the two summations extend over the same range as in (25). When the population
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distribution is one of the exponential family of distributions as in the present case, the
information matrix derived from the likelihood function is known to be proportional to
H(®) [t.e., I(0)=1/2 H(B)].

5. Example of Application

In this section we report some empirical results obtained by the procedure
described in the previous sections. The data to be analyzed are dissimilarity data
collected by the method of triadic combinations. Dissimilarity judgments were

obtained between nine colors originally employed by Torgerson (1958) in his study of
classical multidimensional scaling. He used the method of triads to obtain dissimilarity
judgments, employed Thurstone’s model of comparative judgments to scale them, and
applied Young and Householder’s (1938) method to the scaled dissimilarities to find a
spatial representation. In contrast we used the method of triadic combinations and
the analysis procedure specifically designed to deal with the kind of rank order data
obtained by this method.

Six complete replications were made on 84 triads of stimuli using a smgle subject
(male adult, normal vision). Several authors (Messick, 1956; Nakatani, ' 1972; Saito,

. 1977; Shepard, 1958, 1962; Takane, 1978) have reported stimulus conﬁgurahons on
the same set of stimuli. However, in all these cases replications were taken over different
subjects. This is the first time the data replicated within a single subject are analyzed.

One of the major advantages of the current procedure is that it allows various
model comparisons through a statistic called AIC (Akaike, 1974). The AIC of model
7 is defined by

AIC (%) = —2InL+2n, 27)

where L is the maximum likelihood and #, is the effective number of parameters in model
7. The model with the smallest value of AIC is considered the best fitting model.
(Relatively nontechnical discussion on, and the use of, AIC in maximum likelihood
MDS may be found in Takane (1981) ). One of the most fundamental model compar-
isons in the present case is the choice of an appropriate error model. Another is the
test of dimensionality. A third is the test of specific hypotheses about a stimulus
configuration. By use of the AIC statistic all these could be done in a relatively
straightforward manner.

Major analysis results are summarized in Table 1. Three figures are reported in
each cell of the table. The top one is minus twice the log likelihood, the middle is
the effective number of parameters (%,) in the model and the bottom is the value of
the AIC statistic.

The data were analyzed under several assumptions; under two error models
(normal and log normal) and in three different dimensionalities (1, 2 & 3). We
see that in all dimensionalities the AIC values are smaller in the normal error model
than in the log normal error model, indicating that the former is the-‘better fitting
model. This finding is consistent with our previous findings (Takane, 1978; Takane &
Carroll, 1981) that the normal error model generally shows a better fit, when the data
are collected by the methods which involve direct comparison of dissimilarities (e.g.,
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Table 1

Summary of MAXSCAL—4 Analyses of the Color Data obtained
by the Method of Triadic Combinations

: : : Normal error model Log normal error model
Dimensionality (Additive error model) | (Multiplicative error model)
—2(LL) 498.8 515.2
3 ny 21 21
AIC : 540.8 5567.2
—2(LL) 521.5 528.5
2 ng 15 15
AIC 551.5 555. 5
—2(LL) 792.7 895.4
1 ny 8 8
AIC 808.7 911.4

pair comparisons and directional rankings). Assuming that the normal error model
is more appropriate, the next question to be posed is the appropriate number of dim-
ensions in the representation space. We see that the three dimensional solution has
the minimum AIC value, indicating that the dimensionality is at least three. (A four
dimensional solution was not attempted.) ‘

The set of stimuli employed has a spatial representation, like the one depicted in
Figure 1, in terms of the Munsell Value (brightness) and Chroma (saturation)
dimensions. '

Value

Vit 1

Vz‘ .2 03

i 4 °5 6

\Ag 7 *8

sk *9
| | | | , Chroma
C, C. Cs C, Cs

Fig. 1 The Munsell Configuration of the Nine Colors

The Munsell dimensions are presumed to represent psychological dimensions of
colors. The above results cast some doubt about the credibility of the Munsell system
as a psychological model. Takane (1978) also obtained some negative results against
the system from reanalyses of Saito’s (1974) data. His data were collected on the same
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set of stimuli by the method of tetrads. However, even in that case the dimension-
ality was found to be two, and the derived stimulus configuration was omly topologi-
cally, though significantly, distorted in the two dimensional space, whereas here the
configuration seems to require at least three dimensions. The three dimensional
solution which happens to be the minimum AIC solution is presented in Figure 2.

Fig. 2 Derived three-dimensional stimulus configuration

The configuration is not only distorted relative to the Munsell conﬁgﬁ_rat_ion, but
also curved in an interesting way in the three dimensional space. It looks like a valley
in the middle of mountains or ridge if seen upside down. The discrep"@cy between
Takane’s (1978) and the current results may be due to the difference ip the data
collection method. On the other hand, it may be due to the fact that:the present
data were obtained from a single subject, while Saito’s data were collet;t(gd over 60
different subjects. If the nature of individual differences is such that they( differ with
regard to the way the configuration is curved along the third dimensiom, the data
aggregated over different subjects will not yield a clear third dimension. “Torgerson’s
(1958) data analyzed by Takane’s (1978) procedure also reveals some mlkl degree of
curvedness along the third dimension, though this is not as distinct as in-the present
case. The curved configuration in the present case itself might be {”d,ue to the
noneuclidean nature of the perceptual space of colors, or to some peculiarity m Jjudgmental
processes involved in direct comparisons of stimuli or dissimilarities (Takane, 1980).
A further investigation is necessary on this point. o
6. Summary

In this paper we proposed a new approach to the method of triadic cembinations.
In this approach the method of triadic combinations is veiwed as a special instance
of the method of directional rank orders in which rankings are supposéaly obtained
in a specific order. A model of psychological processes is postulated wlnch transform
scale values of stimuli into observed rank orders. Through this model the likelihood
of the observed rank orders is related to the scale values of stimuli. A f'procedure to
estimate the scale values of stimuli by the maximum likelihood principle was developed.
Example data were analyzed to illustrate practical uses of the procedure; The data
analyzed were dissimilarity data between nine colors previously employed by Torgerson
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(1958) and by several others. Some interesting new evidence has been foumd about
the perceptual structure of the colors. ,
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