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OPTIMAL LINEAR AND QUADRATIC CLASSIFIERS :FOR
TWO-GROUP DISCRIMINANT ANALYSIS?

B

Yoshio Takane*

A simple algorithm was developed for estimating optimal lmear and quadratxc lasmﬁers
(OLC & 0OQC) for non-normal multivariate predictor variables in two-group ‘dfsétiiminant
analysis. The algorithm is based on the alternating least squares (ALS) principle. The optimal
classifiers compared favorably with the linear and quadratic discriminant function (LDF & QDF)
methods in true error rate. Possible generalizations of the optimal classifier approach (ridge -
regression, robust regression based on the weighted least squares, etc.) were discussed.

1. Introduction i&;:’ ,

Fisher’s (1936) linear discriminant function (LDF) method is well established for equal
covariance multivariate normal predictors (Anderson, 1958). Its optimality-gleteriolates,
however, as the assumption of multivariate normality gets unrealistic (Krzanowski, 1975).
In this paper we present an “optimal” linear classifier (OLC) method (along;aith a simple
algorithm to estimate the classifier), which is applicable to non-normal casedy;: In particu-
lar the method allows a mixture of continuous and discrete predictor variables and their
interactions.

In Section 2 we will present the basic method and the algorithm. The{ are general-
ized in various directions in Section 3. In Section 4 we compare the perforin#nce of OLC
(and its quadratic analogue) with that of the conventional LDF method (and i¥s quadratic
counterpart). Discussion follows in Section 5. el

it

2. Optimal linear classifier (OLC)

2.1 Optimization criterion and algorithm
It is well known that the sample analogue of Fisher’s linear discriminant function

(LDF) can be obtained by regression analysis by appropriately defining the dependent

variable (Cramer, 1967 ; Tatsuoka, 1971). Let #, and %, represent the saninple size of

criterion groups 1 and 2, respectively, and deﬁne the vector of the dependent variable,

';117'171'1
y=( 1 ) Y
——1 nz ’; .
where 1,, and 1,, are »,- and »z,-component vector of ones. Let X be th& matrix of
predictor variables, and define a supermatrix X* with a constant term appended to X ;

s
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ie., X*={1, X] (2)
where n=mn:+#n.. We apply regression analysis of y onto X*, and obtain {"<j{"
b=(X"X*)"' X"y, , (3)
the least squares (LS) estimate of regression coefficients, b, which minimizes
F(B)=(y—X*b)Y (y—X*b). 4)

The estimate of regression coefficients given in (3) is known to be proportlonal to sample
discriminant coefficients in LDF. (A more precise statement is given in the ap ix). An
observation x is assxgned to group 1 if é(x)>0, and to group 2 if 6(x)<0, whue

i

&(x)= b (x)‘—‘bo+ b/x (5)

with b —(bo, bl .

The dependent variable, y, has to be defined in the specific way as in (1) i%i’der for
b to have the direct relationship to the sample discriminant coefficients in LDF. ‘However,
in more general situations in which the assumption of normality is doubtful; @hére is no
reason why we should stick with this definition of y. We may even attempt to:optimally
scale y. That is, we seek to find both y and § which simultaneously minitiiise a LS
criterion analogous to (4). More specifically, define a normalized LS loss fumttion,

R EYeH

g (3,b)=(y—X*b) (y—X*b)/y'y " o (6

where y (as well as b) is considered a variable. The normalization factor (the denomina-
tor of (6)) is necessary, since the numerator of (6) can be made identically equal.to zero
by setting y to be a zero vector. -

The criterion (6) is to be minimized with respect to y and b under somqsalausmle
restriction on y. The restriction on y is necessary, since without it (6) can always attain
its minimum at y= X*b for arbitary . Let x.* be the column vector of the jwth'row of
X*. Since s

=8(x:*)=b'x.* v (7))

has to be (at least) non-negative for case i to be classified into group 1, and non-s:osntlve to
be classified into group 2, it seems natural to require :

oy
A

{y,> 0 if ; comes from group 1 8)

vy: <0 if i comes from group 2

for i=1, -, n.

Several algorithms have been suggested along this line (Duda & Hart, 1973; Ho &
Kashyap, 1965, 1966), mostly based on an iterative steepest descent method, to minimize (6)
with respect to y and b under restriction (8). We propose a simpler and meore:efficient
minimization algorithm based on the alternating least squares (ALS) method (de Leeuw,
Young & Takane, 1976). A possible failure of the steepest descent algorithm : Wﬁs indicat-
ed by Hand (1981), who, in one of his examples, had to stop the iteration preMwely due
to an excessive amount of computer time anticipated. The proposed ALS alﬁhhm, on
the other hand, took only a fraction of a second (on AMDAHL 5850) to obtain optimal
solution for the same problem. . NENSrI
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The ALS algorithm we propose proceeds as follows :

Step 1 Initialize y by (1).

Step 2 For given y obtain the LS estimate of b that minimizes the numerator of (6).
It is given by (3). :

Step 3 For a given estimate of b, obtain the LS estimate of y that minimizes the
numerator of (6) under restriction (8).
It is given by :
yi=¥, if i comes from group 1 and y,> 0, or if i comes from group 2 and y,
<0. '

=(, if 7 comes from group 1 and y, <0, or if ; comes from group 2 and y;

>0 ‘

Step 4 Normalize y so that y'y=1. g

Step 5 Convergence check. If the maximum change in b from the previous iteration
is less than 1078, stop. Otherwise, go to Step 2. .

i

The general convergence property of the ALS algorithm is discussed m de Leeuw,
Young and Takane (1976). A crucial element is that in Step 2 and Step 3 theiestimates of
b and y indeed minimize the unnormalized LS criterion (the numerator ofi(e)) in turn.
That Step 2 satisfies this condition is rather obvious. That Step 3 minimiz{p the numer-
ator of (6) with respect to y for fixed b follows from the separability of ' That is,

(P=X"6Y (y—X*5)=3 (ni—x/ b, BENCY

so that the whole criterion is minimized by minimizing each term in summation separately.
Hence we may set y; = x,’ b if the sign of x,” b agrees with case i’s group menibership, and
v:=0 if it does not. (When the unconstrained estimate y;=x. b does not satisfy the
constraint, y; is placed at the boundary of the feasible interval closest to #) That the
normlized loss fruction (6) is in effect minimized by Step 4 following the two 'ﬁ’gmormalized
minimization in Steps 2 and 3 has been discussed by de Leeuw (1977) and -#llustrated in
Takane (1980, pp. 240-243). '

The number of iterations to convergence may be significantly cut down by incorporat-
ing an acceleration technique (Ramsay. 1975) in updating . Let b and. $‘°"°’ be the
current estimate (by (3)) and the old estimate of § in the previous iteration,. respectlvely
Then the accelerated estimate $* in the current iteration is given by

b*=b6"xc+ bx(1—c) 0)

where ¢ is the acceleration parameter. When ¢ =0, there is no acceleratiof: When c<
0, there is an acceleration. (When ¢ >0, a deceleration occurs. Howevei'.',‘ due to the
monotonic convergence nature of the ALS algorithm, we never have to degelerate, and
consequently we may set ¢ €0). The value of ¢ is updated in every three itéﬂations based
on the behavior of b* in the previous three iterations. The exact updating fbrmula for ¢
is given in Ramsay (1975). s

When the iterations are accelerated (¢ <0), the monotonic convergencéi_property of
ALS no longer holds. To avoid divergence in practice we may set a minimaam value for
¢ somewhere between —2 and —5. In the first example below we set min ¢=—3. The
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Table 1
Users of the University of London Computer Center divided into non-
medical (1) and medical (2) users. The measurements are the loga-

g e
=

rithm of the numbers of units of computing under two different operating

systems. Samples having zero values on either type unit are excluded.

(Data from Hand, 1981, Table 2.1), ¢ 0

No. | Criterion Ln (Type I unit) | Ln (Type II unit) dis(c):?itrlnn;:;nt
group X X2 score
1 1 5.938 5.407 ' —0.070*

2 1 4.304 4.883 —0.032*

3 1 0.000 3.761 0.088

4 1 6.620 6.849 —0.000*

5 1 7.686 8.157 0.043

6 1 5.916 5.914 —0.034* b
7 1 6.986 9.264 - 0.153 Sa
8 1 7.098 8.268 0.078 o
9 1 8.581 8.447 0.022
10 1 7.473 8.520 0.078
11 1 4.754 8.591 0.209
12 1 6.812 9.392 . - 0.170 b
13 1 6.818 9.657. 0.188 N
14 1 5.513 6.782 0.046 .
15 1 4.220 5.347 ‘ 0.005 -« i°
16 1 4.595 8.454 0.206 -, : 4
17 1 3.932 8.168 0.217
18 1 4.143 9.207 0.280
19 1 4.554 7.653 0.152
20 1 5.118 8.703 0.200
21 1 5.717 8.178 0.135 -
22 1 5.652 8.127 0.134 o
23 1 4.533 5.112 —0.026* ]
24 1 4.407 8.960 0.251 M
25 1 1.386 8.019 0.324 e
26 1 3.555 6.537 0.119 .
27 1 1.099 3.258 0.002 "
28 1 6.805 ) 6.807 —0.012* L
29 2 4.898 4.522 —0.085 X
30 2 5.429 7.079 0.071¢ i
31 2 3.989 4.317 —0.057
32 2 5.624 6.234 0.002*
33 2 5.389 7.409 0.096* ‘1
34 2 3.526 3.989 —0.059 5
35 2 5.694 6.075 —0.012
36 2 6.001 6.144 —0.021
37 2 5.684 2.890 —0.236
38 2 6.323 4.443 —0.156 y ot
39 2 5.394 6.295 0.017* .
40 2 3.401 2.079 —0.188 “
41 2 3.434 4.820 0.004* i}
42 2 1.946 3.178 —0.043 0
43 2 5.878 6.568 0.014*
44 2 4.382 1.099 —0.302 fi
45 2 5.771 6.114 —0.013 ¢
46 2 1.099 2.197 —0.073 .
47 2 5.924 6.100 —0.021 "
48 2 6.669 4.956 —0.136 :
49 2 3.850 0.000 =0.355 .

*misclassified
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number of iteractions (19) was cut down to less than a half of what it took (43) without
acceleration. (It happened that in this particular case further reduction (15) in the number
of iterations was possible if no lower bound is imposed on ¢, but this practice may lead to
more frequent divergences, and cannot be recommended generally.) -

3Pl

2.2 An example .

The first example comes from Hand (1981, pp.22-23), who applied Ja variety of
discriminant analysis methods to the same set of data. Cases are users of the University
of London Computer Center divided into non-medical (Group 1) and medical users (Group
2). Predictor variables are the numbers of units of computing used under two different
operating systems (Type 1 units and 'Type 2 units). The measurements on the predictor
variables are logarithmically transformed before the analysis is performed. Those cases
with zero units on either of the two predictor variables are excluded from the analysis.
There are 49 cases (28 in Group 1 and 21 in Group 2) left to be analyzed., The log-
transformed data as well as group membership for the 49 cases are given in Table 1.

Table 2 presents the history of iterations, fairly typical of the OLC procedure. The
convergence is smooth, particularly after the first iteration, and it is quick. ! It converged
in 19 iterations with the acceleration technique described earlier. (It tends to take more
iterations as the number of predictor variables gets larger). In order to aveid possible
divergence the minimum of the ¢ value was set to —3.0. The last colum#-of Tablel
indicates the estimated y. This has to be non-negative for Group 1 to-ibe correctly
classified ; it has to be non-positive for Group 2. There are six misclassifications in each
of the two groups. (Apparent error rate is 6/28 for Group 1 and 6/21 for Group 2).

Fig. 1 displays the plot of the 49 cases in terms of the two predictor variables. Circles

Table 2
A typical iteration history with the OLC procedure. LAt
i (Data in Table 1). g
Iteration | Optimization | Acceleration b b by SIE
No. Criterion (vf)|Parameter (¢) 0 ! 2
1 0.184450 0.000 —.051}| —.006 | .013 .. :uxii.
2 0.173584 0.000 —.251 ] —.034 | .069
3 0.166406 0.000 —.241| —.035| .069  sie.n
4 0';161495‘ . 0.000. —.232 . —.036 | .069 i
5 0.158137 0.000 —.223| —.037 | .069
6 " 0.155841 0.000 -.216| —.038 | .069 ¢
7 0.151387 —3.000 —.192| —.042 | .069 o
8 0.150753 —3.000 —.181} —.043 | .068
9 0.150620 —3.000 —.181| —.045| .070
10 0.150596 —=2.722 | —.166 | —.042 | .065 - WV ..
11 0.150592 —2.722 | —.203| —.052| .080 . i
12 0.150590 -2.722 -.099| —.025| .039
13 0.150590 0.000 —.174 | —.045 | .069
14 0.150589 0.000 —.174 | —.045 | .069
15 0.150589 0.000 —.174| —.045| .069
16 0.150589 —3.000 —.174| —.045| .069
17 0.150588 —3.000 —.174 | —.045| .069
18 0.150588 -3.000 —.173| —.045| .069
19 0.150588 . —3.000 —.173 | —.045| .069
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Fig.1  Territorial maps for Hand’s data obtained by the OLC and the LDF proced%‘u L

. i . . AT
represent cases in Group 1 and squares in Group 2. - The boundary hyperplane obtained by
the OLC procedure is shown by the solid line. For comparison the boundary hyperplane
is also -depicited for LDF and is shown by the dotted line. (This was obtained by .Hand,
1981). This takes into account the observed sample sizes, », and »,. (That is;{(A).in the
appendix is used rather than (A2')). This actually worsens apparent error «rate (the
number of misclassifications in the current sample). - The apparent error rateéhis zero in
Group 1, while it is 13/21 in Group 2. However, the apparent error rate usually underesti-
mates true error rate (simply because in the former the number of misclassifications is
counted using the same sample used to estimate parameters in the discriminant function).
A more rigorous comparison of the two procedures (OLC & LDF) will be made in Section
4 in terms of the true error rate.

3. Generalizations

The basic approach to OLC presented in the previous section may be genéralized in
various directions. In particular, since the discrimination problem has been formulated in
terms of regression analysis, a variety of extensions which took place in regression analysis
can be readily utilized.

3.1 Ridge regression and biased discrimination
The ridge regression estimate of § is obtained by

b=(X*X*+D*) ' X%y (11)

s 0
z:
b [ 0 tzl] ’

where
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and s? and #? are some (non-negative) constant. (Comparability of measurement unit across
predictor variables is assumed). Although this estimate of b is no longer unbiased (Where-
as b obtained by (3) is), it is often associated with a smaller mean square error (e.g.,
Marquardt & Snee, 1975). In the Bayesian framework the smaller mean square error is
understood as the Stein effect (Berger, 1982), which shrinks estimators toward zgro. In the
context of discriminant analysis ridge regression leads to so called biased dl&:rxmmatlon
(DiPillo, 1976).

The ridge estimator of b given by (11) may be used in connection w1§h our OLC
procedure. One potential problem is that it destroys the LS property of Step 8. Inorder
for (11) to be consistent with the ALS procedure the optimization criterion, (6) has to be
modified. The Bayesian framework is again helpful in this regard. Let the prior density
of b multivariate normal with mean ¢ and covariance D?. Then minus twice the log of the
posterior density of & is given by

g%y, b)=(y—X*b) (y—X*b)+ b D?*b (12)

except for a constant term which does not involve b (Beck & Arnold, 1977). The MAP
(Maximum Aposteriori) estimate of b, which minimizes (12), is given by (11). Note that
(12) is unnormalized ; the normalization factor shpﬁld be incorporated in the :same way as
in (6). The choice of s? and #? should be made taking this normalization factor into
account. The optimal scaling of y is obtained in exactly the same way as before.
3.2 Optimal quadratic classifier ‘ SRS

. When the equal covariance assumption in multivariate normality is violated, quadratxc
discrimination (rather than the linear one) may be in order. This case can be easily
accommodated into the regression framework by including quadratic terms sugh as x,2, x.2,
and x,x; in the set of predictor variables. Once the regression coefficients ane estimated
for the enlarged predictor set they are manipulated in a specific way to arrive-at discrimina-
tion boundaries. Smith (1947) describes this process in detail. The derivation is partic-
ularly simple, when there are only two predictor variables and when they,are mutually
orthogonal. When they are orthogonal, we will not need cross-product terms guch as x.x..
Consequently it may be wise to orthogonalize the predictor variables apriori, whenever the
quadratic discrimination is required Alternate applications of the quadratic 1.S regres-
sion and the optimal scaling of y lead to the optimal quadratic classifier (which is
abbreviated as 0QC).

Both OLC and OQC are applied to Laurie’s data (given in Hand, 1981, p. 30). The data
are concerned with estimated numbers of casualties caused by a nuclear str(){ke on fifteen
largest British cities (excluding London). The fifteen cities are dlvxded mtq two groups,
high casualty and low casualty cities, which are used as criterion groups. The high
casualty cities (Group 1) are: 1. Birmingham, 2. Manchester, 3. Sheffield, 4. Liverpool,
5. Hull, 6. Nottingham, 7. New Castle (upon Tyne. and Gateshead), anki8 Glasgow.
The low casualty cities (Group 2) are: 9. Leeds, 10. Leicester, 11. Coventry; 12. Stoke-
on-Trent and New Castle under Lyme, 13. Bristol, 14. Cardiff, and 15. Edimburgh. Pre:
dictor variables are population and area of the cities. ARSE

Fig. 2 depicts the territorial map obtained by OLC and OQC.. While OLC mhisclassifies
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Fig.2 Territorial maps obtained by OLC and OQC for Laurie’s data (Hand, 1981, p.x;i()).

two cities (3 & 6) in Group 1 and three cities (9, 13 & 15) in Group 2, OQC perfectly
discriminates the two groups. The superiority of OQC over OLC in this example is also
confirmed by true error rate we will look at in Section 4. Note that the OQC beundaries
happen to be a hyperbola in this example, although we cannot attach any meaning to the
extreme right region that belongs to Group 2. There are no actual cities located in-this
region. Hand (1981, p. 29) applied kernal discriminant analysis to the same set of data,
which gave a somewhat irregular boundary. b

3.3 Weighted least squares and robust regression SR

The simple (unweighted) LS in (4) may be generalized to the weighted LS5 'This is
particularly simple when the weight matrix is diagonal. The optimal scaling of ' femains
exactly the same as before since in this case the (unnormalized) weighted LS c‘nterxon is
separable ; ‘i.e., Ok

(y—X'E)’W(y—X*5)=Zw.~(y.-—x/l;)2, L §(13)
where w; is the -th diagonal element of weight matrix W. The unweighted LS éstlmate
of b in (3) must be replaced by the approprlate weighted LS estimate, o

b=(X"WX*) " X" Wy. . (14)
The nqrmalization factor should also be modified; i.e., we use y' Wy instead:of y’y.
When W is not diagonal, (14) is still valid. However, the optimal scaling of y.requires a
more sophisticated quadratic programming method (e.g., Stoer, 1971).

For illustration we applied the weighted LS OLC to Neal’s data reported-in Smith
(1947, p.277). The data consist of two criterion groups, 25 normals (Groupi:}) and 25
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Fig.3 Territorial maps obtained by OLC with three different weight matrices. Th ‘gata are
from Neal (reported in Smith, 1947, p. 277). S ‘

psychotics(Group 2). Predictor variables are some sort of size scores and shape scores.
Fig. 3 displays the cases in terms of the two predictor variables used as::coordinates.
Normals (shown by squares) are clustered in the lower right corner. Smith (1947) previous-
ly applied the quadratic discriminant function (QDF) method to the data. Here we use the
same set of data to demonstrate how the weights affect discrimination.

We first analyzed the data by the simple OLC (this corresponds with W =1I). The
boundary hyperplane for this case is indicated by the dotted line in the figure. Four cases
in Group 1 are misclassified into Group 2, while two cases in Group 2 are misclassified into
Group 1. Inspection of Fig.1 suggests that the derived boundary hyperplane may be
located too low. In fact by moving the boundary up slightly in parallel to the original, two
of the misclassified cases in Group 1 can be saved. The boundary cannot be moved up too
high, because two cases correctly classified in Group 2 would then be misclassified.

We have experimented on several sets of weights to come up with the set of weights
that can lift the boundary to a desired position. The original boundary is lowered because
of Case 35 which is deep in the wrong side of the boundary. The weight for this case was
first lowered to 0.1 to reduce its influence while keeping all the other weights at unity. The
derived boundary is shown by the broken line. The bottom part of the boundary has gone
too far in this case. The weight for Case 35 was then increased to 0.5 and at the same time
the weight for Case 12 is increased to 2.0 to lift the upper portion of the boundary. The
resultant boundary is indicated by the solid line, which is more or less optimal. The total
number of misclassifications is now reduced to four. As will be seen in Section 4, this
weighting scheme also works better in terms of true error rate.

Although the search for an optimal set of weights sounds a bit arbitrary in the present
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case (capitalizing too much on the data), an important implication is that we may use
robust regression techniques (e.g., Ramsay, 1977) in conjunction with our optimal scaling
approach. Many techniques for robust regression adjust weights according to some built-
in mechanism to control influence of influential cases.

4. Estimation of true error rate

The performance of discriminant analysis methods should be evaluated in terms of
true error rate. More flexible data-oriented methods may do very well for the data at
hand (i.e., in terms of apparent error rate) but their performance may not carry over to
future observations. In view of this an estimate of the true error rate was pbtained for
LDF/QDF (linear/quadratic discriminant functions) and OLC/OQC (optimal linear/qua-
dratic classifiers) using the bootstrap method (Efron, 1983). While there are other avail-
able estimation methods (e.g., McLachlan, 1976 ; the leaving-one-out method by Lachen-
bruch, 1975 ; cross-validation by Stone, 1974), the bootstrap method seems to have more
desirable properties (Gong, 1986).

The bootstrap method attempts to correct bias in the apparent error rate. This is
done by generating many sets of so called bootstrap samples. In the present context each
bootstrap sample is generated in such a way that it consists of », cases drawn randomly
(with probability 1/#,) from group 1 with replacement and #. cases similarly drawn from
group 2. For each bootstrap sample the difference is taken between the error rate in-
classifying the original sample (using the estimates derived from the bootstrap sample) and
the apparent error rate in the bootstrap sample. This difference is averaged ‘across
bootstrap samples to obtain an estimate of bias in the apparent error rate in the original
sample.: The bootstrap estimates of true error rate in Table 3 are based on 1000-beotstrap

RN PR

Table 3 .

" Estimates of true error rate 1
LDF/QDF |~ OLC/0QC R
Bootstrap Bootstrap Leaving-one- o “ji

: ‘method method out method i
Example 1 ' .303 - o.en 214
(Hand’s data) .197 274 286 TN

(.258) .234) (.245)

" Example 2 .306 .255 250 0 THET
(Laurie’s deta) .035 .433 .429 Coepl e
linear (.180) (.338) (.334) N

210 091 .000 il v

-quadratic .043 - .077 - .000: Lo

.132) » (.068 (.000) o

Example 3 .008 .157 .160 s

(Neal’s data) . .174 077 .080 et
Weights all unity (.09 1D 1200 3

.078 .080 S

Wy =20 ; Wy =.05 : 079 .080 Copd

079 (.080) i

In each cell the top figure indicates the estimated misclas- e
sification rate in group 1, the middle the misclassification R
rate group 2, and the bottom a weighted average of the top ot
two. X
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samples each. v

For Hand's data (discussed in Section 2.2) LDF and OLC perform. amoxlmately
equally with the latter having a slight edge over the former. Both linear gfd:quadratic
“discrimination methods (LDF/QDF and OLC/OQC) were applied to Laurie’s data (discus-
sed in Section 3.2). For linear discrimination LDF did considerably better than OLC.
However, for quadratic discrimination which is deemed more appropriate for this data set,
the optimal scaling method (OQC) outperformed the usual quadratic discriminiant function
method (QDF). That the quadratic discrimination methods are better than the linear ones
for this data set is indicated by the smaller true error rates in the former. . FeaNeal’s data
(discussed in Section 3.3) LDF was found slightly better than OLC with the simple (unweigh-
ted) LS, but with appropriate weights OLC could be made to perform at least as well as
LDF. The weighting scheme discussed earlier indeed improved the discrimination in
terms of the true error rate. ‘

Overall the bias in the apparent error rate is only minimal for OLC/0QC (i.e., the
apparent and true error rates are not very much different from each other). Also, for
OLC/0QC there is a good agreement between the bootstrap method and the lgavmg one-
out method. This may indicate some robustness of the optimal classifier Approach. In
fact it can be shown that for this approach the apparent and true error rateg estimated by
the leaving-one-out method are always identical (there is no bias in the estimate of the
apparent error rate). It may be due to the fact that in the optimal classifier approach only
misclassified cases contribute to the loss function. On the other hand, it may imply that
the optimal classifier approach is stable when the error rate is small, but it may not be so
for more difficult discrimination problems. (This may be the reason why OLC was rather
poor for Laurie’s data). This point needs further investigations.

5. Discussion

In this paper we presented a relatively robust method for two—group,ﬁlisc‘riminant
analysis. The method enjoys wider applicability than the ordinary discriminant function
method, since no distributional assumptions are made on the predictor variables. Hence,
for example, a mixture of discrete and continuous predictors can be aecom odated quite
naturally. Extensions to biased discrimination, quadratic (and higher order polynomial)
discrimination, and.robust discrimination are also rather straightforward. : An extension
to multiple-group discriminant analysis seems also quite straightforward, although this
case was not explicitly discussed. Obviously in order to claim superiority of the presént
method in more general contexts much work needs to be done, particularly in reference to
performance of other discriminant analysis methods, such as kernel discrimipant analysis
(Hand, 1982), biased discrimination (DiPillo, 1976), classification trees (Breiman, et al,
1983), logistic discrimination (Cox, 1966 ; Anderson, 1972), the location model (Krzanowski,
1975) and ideal point discriminant analysis (Takane & Shibayama, 1984). -*!°

A couple of optimal scaling procedures have been proposed previously for discriminant
analysxs based on the ALS framework. One is MORALS/CORALS (multlple and canoni-
cal optlmal regression by ALS) by Young, de Leeuw and Takane (1976). and the other called
CRIMINALS (Gifi, 1981, pp. 234-235). MORALS is, however based on the monotomc1ty
principle, and CRIMINALS on the homogeneity principle. These procedures are thus
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distinct from our OLC, which is based on fixed boundary constraints (or sign censtraints).

Comparisons between OLC and the other ALS procedures (MORALS/CORKALS and
CRIMINALS) would undoubtedly be interesting. fog
TR

Appendix .

The b given in (3) is proportional to sample discriminant coefficients in LD¥.. This

is always true for the b, part (coefficients applied to X). However, it is strictly: true for
bo (coefficient for the constant term) only when ;= #n,. : sinde

The sample analogue of LDF is given by : i
Ax)=Bo+ BV x
with Gt
3:1=S“d R : : 15¢AL)
Bo=In(n1/n2)— B\ (X1 + X2)/ 2 : 5 (A2)

where d = &, — &2, 'S is the pooled within-group sample covariance matrix, and ..é,“'and 2
are the sample means of group 1 and group 2, respectively. The assignment is tb group 1
if A(x)>0, and to group 2 if A(x)<0. The B, in (A2) reduces to

Bo=—B\'% | | ,";(Az')
when »,=n,, wheré & is the vector of sample grand means, % =%X “In. i

[

From (1), (2) and (3) in the main text wé have TR

5=<5o>:[n In,X]"l(O)
b, X1, X'X d

But because of a well known inversion formula for partitioned matrlces (eg, Yana1 &
T akeuch1 1983, p. 15), we obtain =

@GP IOHET G
‘ ~Sr7'x Sr7! o
where St is the total sum of squares matrix given by ST—X 04 —LI,.L. )X. “'But since
S and Sy are related by o )
(n—2) S=Sr—kdd’ \ s
where k= n/nin., e
=(n—2) (Sr'—m Sr™ dd’ Sr™*)
where m=(1/k+d’'S™'d)™" (See, for example, Yanai & Takeuchi, 1983, p. 18),;we have
B,=S"'d=4¢Sr'd=qb, ' (A4)
where ¢= (n 2) (1—mc) with c=d’Sr'd. That s, 8, is always proportlonaf to bl Wlth

g as the constant of proportionality. From (A2 ) we have o

ﬂo=*»ﬁlx——qb1x—qbo vu‘. (AS)
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That is, G, is also proportional to b, with the same constant of propm‘tlonahty q.
However, this is true for 3, only when ni= and hence

(f1+f2)/2=f:7 (1%, + n2%2).
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