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Many of the "classical" multivariate data analysis and multidimensional scaling techniques
call for approximations by lower dimensional configurations. A model is proposed, in which
different sets of linear constraints are imposed on different dimensions in component analysis
and "classical" multidimensional scaling frameworks. A simple, efficient, and monotonically
convergent algorithm is presented for fitting the model to the data by least squares. The basic
algorithm is extended to cover across-dimension constraints imposed in addition to the dimen-
sionwise constraints, and to the case of a symmetric data matrix. Examples are given to
demonstrate the use of the method.
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1. Introduction

One of the most important roles of multivariate data analysis is finding a repre-
sentation in a reduced number of dimensions. Eigenvalue or singular value decompo-
sition plays an important role in this process. Often, however, additional information
about the data may be incorporated in the data representation. For example, Panel A
of Figure 1 displays a configuration of nine colors according to the Munsell System
(Torgerson, 1958). The stimuli are arranged factorially in terms of brightness (value)
and saturation (chroma). In multidimensional scaling (MDS) of dissimilarities among
these colors, the factorial structure may be explicitly incorporated in the stimulus
representation. It is of interest to see how well the specific Munsell dimensions reflect
observed dissimilarities among the colors.

One traditional approach to this problem is to obtain an unconstrained stimulus
configuration, which is then transformed by a procrustes rotation to match the hypoth-
esized structure. A goodness of agreement between the two provides an indication of
how good the hypothesized structure is in accounting for the observed data. One
potential problem with this approach is that it involves two distinct criteria, one for
obtaining the unconstrained solution and the other for the rotation. The two criteria are
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often incompatible, which makes it difficult to evaluate the goodness of the overall fit
of the hypothesized structure. Another potential problem is that the initial uncon-
strained solution may leave out pertinent dimensions. For example, we may initially
obtain an r-dimensional solution, while some of the dimensions in the hypothesized
structure may not be among the first r dimensions. We may then erroneously conclude
that the relevant dimensions do not exist (ten Berge, 1986). Furthermore, constructing
a target matrix for the procrustes rotation may not be so straightforward. Factorial
structures of stimuli, for example, require quantifications of factorial designs before
they can be used as targets.

A number of attempts have been made to directly incorporate external information
in dimension reduction. For example, Rao (1964) proposed the restricted eigenvalue
method. He also proposed principal components of instrumental variables, also known
as reduced rank regression (Anderson, 1951) or redundancy analysis (van den Wollen-
berg, 1977). Carroll, Pruzansky, and Kruskal (1980) proposed CANDELINC that 
lows impositions of constraints on both rows and columns of a data matrix (see also
Golub, 1973). Ter Braak (1986) and B6ckenholt and B6ckenholt (1990) made analogous
developments for discrete data. Takane and Shibayama (1991) proposed CPCA (Con-
strained Principal Component Analysis), which provided a comprehensive framework
to impose linear constraints. Technically, all these methods amount to projection of a
data matrix, followed by the (generalized) eigenvalue or singular value decomposition.
Thus, no new numerical techniques are required.

The above methods, however, can typically accommodate only one set of con-
straints on each side of a data matrix. In obtaining multidimensional solutions, they
form multiple sets of linear combinations of a same set of constraints. This is not very
attractive, however, when the dimensions of the hypothesized structures corresponds
with specific attributes of stimuli. In the Munsell color example discussed earlier, the
horizontal axis represents chroma, and the vertical axis value. A separate set of con-
straints are necessary to characterize each dimension.

Let I-I 1 denote a matrix of contrast vectors among levels of the chroma dimension,
and similarly, H2 for the value dimension. Let v1 and v2 be coordinate vectors corre-
sponding to the two dimensions. Then, Vl is a linear combination of HI alone. That is,
v1 = Hlv], where v] is a vector of weights. Similarly, v2 -- HEV~. Let V = [vl, v2].
Then,

v = [nlv , n2v ]. (1)

The methods mentioned earlier, on the other hand, join H1 and H2 into a single matrix,
H = [H1, HE], and obtain V as linear combinations of the entire matrix. That is,

V = HV*, (2)

where V* is a matrix of weights. This typically obtains dimensions that are mixtures of
the prescribed dimensions.

In this paper we propose a matrix decomposition that directly incorporates con-
straints of the form in (I) in component analysis and classical MDS contexts, and that
avoids the difficulties associated with the procrustes rotation approach discussed ear-
lier. We call this decomposition DCDD (Different Constraints on Different Dimen-
sions). In contrast, we call constraints of the form in (2) "CPCA" type. The DCDD
type of constraints have been used in confirmatory factor analysis and analysis of
covariance structures (e.g., J6reskog, 1969, 1970), in "nonclassical" MDS (e.g., Heiser
& Meulman, 1983; Meulman & Heiser, 1984; Ramsay, 1980; Takane, 1978, 1981), and
in unfolding analysis (DeSarbo & Rao, 1984; Heiser, 1981). Yet, except for a few
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special cases, their use in component analysis and classical MDS seems new and merits
our consideration (see, however, a recent article by Velu, 1991; also see van der Lans,
1992).

DCDD, unlike CPCA, does not reduce to singular value decomposition. A special-
purpose iterative algorithm has to be used to fit the constraints. We propose an algo-
rithm, which is a simple adaptation of an ALS (alternating least squares) algorithm
developed earlier by Meulman and Heiser (1984, see also Meulman, 1986) and by van
der Burg, de Leeuw and Verdegaal (1988). In the next section, we present our method
along with some empirical justifications. We define our problem more precisely (section
2. I), give a simple and efficient algorithm to solve the problem (section 2.2), and discuss
a technique to speed up the convergence of the algorithm (section 2.3). We also extend
our method to across-dimension constraints (see section 2.4) and to the case of 
symmetric data matrix (section 2.5). In section 3, we give additional remarks on the
model and the algorithm, and discuss some relationship between DCDD and other
methods (e.g., Brckenholt and Brckenholt, 1990). In section 4, we illustrate practical
uses of the proposed method (DCDD) through concrete examples, followed by discus-
sions (section 5).

2. The Method

2.1. The Problem

Let Z denote an n by p data matrix, and let Gi (n by si ; i = 1, ... , m) and i (
by ti; i = 1, ... , m) be rn sets of row and column constraint matrices, respectively.
Without loss of generality we assume Gi and Hi are of full column rank. The constraint
matrices may consist of continuous variables alone, discrete variables alone, or mix-
tures of both, which may or may not have been columnwise centered. The discrete
variables are coded into either dummy variables or contrast vectors. Examples of Hi’s
are given in Tables 1, 3, and 4. Not all Gi’s or Hi’s have to be distinct.

The row constraint matrix Gi may, for example, represent subjects’ demographic
information such as gender, age, education levels, etcetera. The column constraint
matrix Hi, on the other hand, may represent any structural relationships among the
columns of data matrix Z, for example, a factorial structure among a set of stimuli.
When there are no obvious structures to be incorporated, Gi or I-I i may be set to an
identity matrix. To motivate simultaneous use of Gi and I-I i , consider an example from
Greenacre (1993) who presents a contingency table obtained by cross-tabulating fre-
quencies of car purchasers in terms of class sizes of cars (columns), and age-income
combinations of purchasers (rows). He applied unconstrained correspondence analysis
to the data, and obtained a two-dimensional solution, the first dimension of which
roughly corresponded with purchasers’ age and car sizes, and the second dimension
with purchasers’ income levels and luxuriousness of cars. We may take Gl and I11 to
be matrices of dummy variables indicating purchasers’ age levels and car sizes, respec-
tively, and G2 and I-I 2 indicating income levels and luxuriousness of cars, respectively,
and examine how well these constraints account for the data.

Our problem is to minimize

(m )f= SS Z- ~ GiMiH~. , (3)
i=l

(where SS(X) = tr(X’X)) with respect i (i by ti ) subject to th e restr iction that
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rank (Mi) ri , (4)

where r i is a prescribed integer. Often, ri = 1 for all i. Then, Mi can be reparametrized
as

=d’*’*’Mi iuiv i , (5)

where di is a positive scalar, and u~ and v~ si-component and ti-component vectors of
*weights, respectively. Minimizing (3) over i amounts to minimizing ( 3) over di, u i

and v~ for i - 1, ... , m. Let ui = Giu~ and vi = Hive. We assume [luill = 1 and
Ilvill = 1 for i, where IM = (x’x)1/2. Theserestrictions are necessary to identify the
parameters.

In some cases, the value of ri between 1 and min(si, ti) may be chosen. For
example, ai may represent qualitatively distinct experimental treatments under which
measurements in the data matrix were taken. We would like to capture the treatment
effects, but one dimension may not be sufficient to capture all important aspects of the
differences among the treatments. In this case, ui, vi, and di are replaced by matrices
Ui(S i by ri), Vi(t i by ri), and Di(r i by ri), respectively. To identify the parameters in
this case, it is convenient to require U~Ui -- I, V~Vi = I, and Di diagonal and pd. When
no rank restriction is imposed on Mi (i.e., r i = min(si, ti)), no special representation
of Mi (or GiMilt~) is necessary.

Criterion (3) is defined in the usual identity metrics. However, it is straightforward
to incorporate metric matrices other than identity matrices. Nonidentity metric matri-
ces considerably widen the scope of data analysis (Meredith & Millsap, 1985). For
example, it becomes possible to perform correspondence analysis or dual scaling
(Greenacre, 1984; Nishisato, 1980) with the DCDD type of constraints.

Let K and L denote the metric matrices. Both K and L are assumed nnd, and to
satisfy the following rank conditions; rank (KGI) = rank (Gi) and rank (LHI) 
(Hi) for all i. We generalize (3) 

f= SS Z - ~’~ GiM/H} , (3’)
i= l K,L

where SS(X)K,L = tr(KXLX’). Velu (1991) recently considered a special case of (3’),
where m = 2, Hl = H2 = I, K = I and L taken to be the inverse of the covariance
matrix among the columns of data matrix Z.

Criterion (3’) can be reduced to criterion (3) by simple transformations (e.g., 
1980). Let K = RKR~: and L = RLR}; be any square root decompositions of K and L.
Then, (3’) can be rewritten 

f= SS R~ZRL - ~ R’KGiMiH}RL
i=1m

)= SS Z* - ~’~ G~MiH~ , (3")
i=1

where Z* = R~ZRL, G~ = R~Gi and H~. = R~I-Ii. This is essentially the same as (3),
and can be minimized in the same way. Once * *GiMiHi in (3") is obtained, GiMiH} 
(3’) can be derived by GiMiH~ = (R~f)+G~MiH~ (RL) +, where X+ indicates the
Moore-Penrose inverse of X.
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An iterative algorithm to minimize (3) will be presented in the next section. How-
ever, there are three special cases where the minimization of (3) does not require 
iterative algorithm. First of all, when Gi = G and Hi = H for all i, (3) reduces 

f= SS(Z - GMH’), (6)

where M = Y./m_-l Mi. This is the CPCA problem discussed by Takane & Shibayama
(1991). The GMH’ that minimizes (6) can be obtained by the singular value decompo-
sition (SVD) of P~ZPH, where P~ = G(G’G)-lG’ and PH = H(H’H)-IH’ .

Secondly, when G~Gj = 0 for i # j and/or H~Hj = 0 for i # j, the minimization
of (3) is equivalent to that 

m

X SS(Z - GiMiI-I[),
(7)

i=l

which can be minimized separately for each i. Each minimization problem is again a
CPCA problem.

Finally, when no rank restrictions are imposed on any Mi’s, there is a simple
analytic solution. Let vec(X) denote a supervector formed by column vectors of matrix
X. Define A as

A = [HI ~)Gll ... IHm (~)Gm], (8)

where (~) indicates a direct (Kronecker) product. Then, f in (3) can be rewritten 

f = SS(vec(Z) - Am), (9)

where m is a supervector of mi = vec (Mi). A least squares estimate of m is obtained
by

m = (A’A)-A’ vec (Z), (10)

where X- denotes a y-inverse of X.

2.2. Algorithm

In this section, we present an algorithm to minimize (3). It is an ALS algorithm
(e.g., de Leeuw, Young, & Takane, 1976), and hence is monotonically convergent. 
noted earlier, essentially the same algorithm has been used elsewhere by Meulman and
Heiser (1984; Meulman, 1986) and by van der Burg et al. (1988). A similar algorithm 
also used by Takane, Young, and de Leeuw (1980) for the weighted additive model,
which is also a special case of the DCDD model (van der Lans, 1992).

Assume, for the moment, ri = 1 for all i, and define

Z(-k) = Z -- di uiv~. (11)
i#k

Then, for a specific k, (3) may be rewritten 

fk(dk, Uk, Vk) = SS(Z<-k) - dkUkV’~). (12)

One way to minimize (3) is to minimizefk sequentially for k = 1, ... , m, with respect
to dk, ul, and vk, assuming temporarily di, ui, and vi (i # k) are known. This
sequential process is repeated until convergence is reached. Thefk, on the other hand,
may be minimized by minimizing it with respect to uk (for fixed d/~ and vk), v/~ (for fixed
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dk and uk) and dk (for fixed u~ and vl). A complete minimization off~ is not necessary,
however, and it is sufficient and usually more efficient to update uk, vk, and d~ (ac-
cording to Steps 3.3 through 3.5 below) only once before moving to the next k. This
decreases the value of fi consistently. Since f is bounded below and the parameter
updating equations are continuous, the iterative sequence is bound to converge to a
stationary point.

Algorithm

Step I.
Step 2.
Step 3.

Step

Set q = 0 (iteration number) and initialize di, ui, and vi (i = 2, ... , m).
Increment q by 1.
For k = 1, ... , m, sequentially, repeat Step 3.1 to Step 3.5.
3.1.

Step 3.2.
Step 3.3. normalize, where

Calculate Z(_k) according to (11).
(Only when q = 1). Initialize v~.
Update uk by Pc,(k) Z(_k)vg 
G~(G~Gk)-IG~,. PG(/0 

Update v/~ by PH<~)Z[-~)u~ and normalize, where PHil) = H/,(H~H~)- 1 
Update d~ by dk = u~Z(_~)v~.

Step 3.4
Step 3.5.

Step 4. Check convergence. If not converged, go back to Step 2. The iteration is termi-
nated when the amount of decrease inffalls below a certain threshold value; for
example (f(q) -f(q+~))/f(q) <- 10-1°.

A few remarks are in order. First, it can be proven that each of Steps 3.3, 3.4 and
3.5 obtains the global minimum offk given the other parameters fixed. Secondly, it can
be shown that u~,Z~_k)vt, = IIPH~k)Z~-~u~II, so that dr, can alternatively be obtained as
the normalization factor in Step 3.4. Thirdly, Steps 3.3 and 3.4 may be more efficiently
carried out by the following procedure. Let G~ = FiR~, be the QR decomposition of
Gt~. Then, PG(k) = FkFk. We calculate F~Z~_~)vk first, normalize it, and then pre-
multiply it by Fk. Often FkZ(-k) is much smaller in size than P~<k)Z(_~). Essentially
the same holds for Step 3.4. Note that the QR decompositions of Gt~ and Hk need to be
obtained only once before the iteration starts.

When 1 < rk < min(sk, tk) for some k, Steps 3.3-3.5 should be modified accord-
ingly. The PG(k)Z(-k)Uk and PH(k)Z~-k)Vk are orthonormalized by the Gram-Schmidt
orthonormalization procedure in Steps 3.3 and 3.4, and Dk = diag(U~:Z~_/,)Vk) in Step
3.5. When no rank restriction is imposed on Mk for some k, GkM~H~ is simply updated
by PG(k)Z(_k)PH(k). It can be shown that the iterative algorithm with this update leads
to the same solution as the analytic solution mentioned earlier, when no rank restric-
tions are imposed on any Mi’s.

2.3. Further Remarks

When n >> p and there are no row constraints to be incorporated (i.e., i =I for
all i), a significant cut in computation time is obtained by the following procedure. This
procedure also has an important implication for avoiding the estimation of incidental
parameters. Let the QR decomposition of Z be Z = FzR~, where F~Fz = I and R~
is upper trapezoidal. Then, (3) can be rewritten as follows:

f= SS(FzR’z - Z0)

= SS(R’z - F~Z0) + SS(FzF’zZo - Z0)

= SS(R’z - F~Z0), (13)
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where

Z0 = ~ MiH} = MH’, (14)
i=l

with M = [M1, ¯ ¯ ¯, Mm] and H = [H1, . .. , Hm]. The SS(FzF~Zo - Zo) vanishes,
because Z0 is in the column space of Z, and therefore FzF~Z0 = Zo. That Z0 is indeed
in the column space of Z can be seen from the fact that when no rank restrictions are
imposed on Mi’s, M in (14) can be updated 

M = ZH(H’H)-I.

Since rank restrictions only restrict M to lie in a subspace of M given above, M should
lie in the column space of Z, irrespective of rank restrictions.

Let N = F~M. Then, (13) can be rewritten 

f= SS(R’z - NH’). (15)

We may apply the algorithm presented in the previous section to minimize (15). The
number of rows of R~ is at most p, which is usually much smaller than n. Once N is
obtained, M can be recovered by

M = FzN. (16)

Since R~ can also be obtained from the Cholesky factorization of Z’Z -- RzR~, the
above procedure enables us to fit the DCDD type of constraints to covariance or
correlation matrices, provided that no row restrictions are imposed on Z. When we deal
with covariance or COlTelation matrices, however, there is no way to recover M from N.

The above procedure has a far reaching consequence beyond mere computational
convenience. Rows of data matrix Z often correspond with subjects. When there are no
row constraints, the number of parameters in M to be estimated increases, as n in-
creases. Such parameters are called incidental parameters. In the presence of such
parameters, even nonincidental parameters in the model may not be consistently esti-
mated (e.g., Andersen, 1980; Kiefer & Wolfowitz, 1956). The number of parameters 
N, on the other hand, is bounded by some function of p. That is, we are in effect
bypassing the estimation of incidental parameters in the above procedure. Note that
this result holds for any model Z0 that is in the column space of data matrix Z, ordinary
PCA being the most prominent example (see also Kiers & Krijnen, 1991; and Kiers,
Kroonenberg, & ten Berge, 1992).

2.4. Additional Constraints

Additional linear constraints may be incorporated in the minimization of (3). 
particular interest are across-dimension constraints. For example, in the Munsell color
example discussed in the introduction section, we may be interested in testing whether
two chroma units are equivalent to one value unit, as hyphotesized by the Munsell
System. Since this hypothesis involves stimulus coordinates on different dimensions,
across-dimension constraints are required.

Across-dimension constraints require comparability of scale across dimensions.
Since the restriction that ]]vi]]= 1 for i = 1 ..... m is completely arbitrary, it is not
meaningful to impose across-dimension constraints on v/s. However, ~i = divi (i 
1, ... , m) represents weights applied to i ( i = 1 .. ... m) to obtain a best approx-
imation to data matrix Z, so that the across-dimension constraints may be imposed on
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~i’S" While the same holds for fi i = dini, in the following discussion we assume that the
across dimension constraints are imposed only on the column side and that ri = 1 for
all i. When r i > 1 for some i, ri copies of I-I i should be made, which are treated as if
they are separate constraints (de Leeuw, 1984).

Let ~’ = (re’~, ... , ~;n) and ~*’ = (re~, ... , V’m). Across-dimension constraints
may generally be expressed as

C’V* = 0, (17)

where C is a known constraint matrix. In some cases the constraints may be stated in
terms of ~ rather than V*, that is,

C*’~ = 0, (18)

where C* is analogous to C above. However, (18) can be reduced to (17) 

C*’~ = C*DH~* = C’r¢ * = 0, (19)

where C’ = C’*DH, and DH is a block diagonal matrix with Hi’s as diagonal blocks. An
example of C* will be given in section 4. I. To incorporate (17), it is necessary to update
all parts of V* simultaneously. For fixed ui (i = 1, ... , m), let

A = [H1 (~) Ul I ... IHm (~) Um]. (20)

Then, the LS criterion (3) can be rewritten 

f= SS(vec (Z) - AT*),

which is minimized with respect to ~* subject to the constraint (17). Standard proce-
dures are available for this constrained LS problem (see, for example, Takane, Yanai,
& Mayekawa, 1991, Appendix C). Once ~* is updated, ui’s are sequentially updated
with Iluill -- 1 for fixed ~* as before. The simultaneous updating of ~* and sequential
updatings of ui’s are alternated until convergence is reached.

2.5. The Symmetric Case
When a data matrix is symmetric, row and column constraints are usually identical

(Gi = I-I i, i = 1, ... , m), and it is natural to assume uk = vk (or Uk = Vk). Let 
denote the symmetric data matrix. We assume S is (at least nearly) nnd. For simplicity,
we also assume ri = 1 for all i. An extension to r i > 1 is analogous to the rectangular
case.

The minimization criterion, (3), is rewritten 

f=SS S--E d2iviv~
i=1

= SS(S(-k) - d~2vkv~:), (21)

where

m

S(-k) = S- d2iviv~.

A modification necessary in the algorithm is straightforward.

(22)
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Step 3 has to be replaced by
Step 3.1. Obtain S(_~,) according to (22).
Step 3.2. Update vk by Pn(k)S(-k)vk and normalize.
Step 3.3. Update d~2 by max (v~S(_k)V~, 0).

Step 3.3 obtains the least squares update of d~ subject to d,2 -> 0 given S~_,) and vk.
The S~-k) = PH(k)S(-k)PH(k) is not assured of nnd, and consequently vkS(-k)V, 
v~,S(_k)v, can be negative. Step 3.3 simply sets 2 = 0 if it is negative.

Step 3.2 is not an ALS step. However, monotonic convergence of the algorithm
can be assured, if S’~_,) is nnd. In the following proof we omit subscript k; thus, S, v,
and d2 denote S~_/0, vk, and d~2, respectively. The old and new updates of v are
distinguished by subscripts, o and n. The problem is to minimize

f--- SS(S - d2vv’), (23)

subject to Ilvll : 1. Under d2 = v’Sv, this is equivalent to maximizing

y = v’Sv, (24)

subject to the same restriction (llvll -- 1). We must prove v~Svn -> v~Svo, when v is
updated by

SVov. IlSvoll (25)

This is straightforward by noting that using Lemma 2 by ten Berge (1986) twice, 
have

v~S~vov~,Sv,, v~,S2v°

v~S2vo
-> ~ -> v~,Svo (26)

v~,Svo

Note that S is assumed nnd, which is not assured. Empirical evidence shows,
however, that the problem rarely arises in practice, if the original data, S, is at least
nearly nnd. Moreover, if necessary, we can always modify the algorithm such that it
does converge monotonically. This can be done by replacing Step 3.2 by a step that
takes the eigenvector associated with the largest eigenvalue of PH~k)S(-k)PH(k).

Additional across-dimension constraints can be incorporated in a similar way to
the rectangular case. In this case we may differentiate the left vi and the right vi, and
treat them as separate parameters. The problem then becomes essentially the same as
in the rectangular case. Although there is no theoretical guarantee that left v and the
right v are proportional to each other at a convergence point (ten Berge & Kiers, 1991),
this seems to be the case most of the time.

3. Additional Remarks

3.1. Uniqueness and Local Minima
A necessary and sufficient condition for uniqueness of parameters has been given

in Kiers & Takane (1993) for a similar situation. This condition stipulates that Gi (i 

1, ..., m) are disjoint with all uj (j ~ i) and/or I-Ii (i = 1 .... , m) disjoint with 
vj (j ~ i), assuming that all uj’s and vj’s are linearly independent. This condition 
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useful, but it is stated in terms of unknown parameters. Consequently, it can only be
used after the DCDD model is fitted. However, there is one clear case in which it can
be determined a priori if the condition is satisfied. Recall that when no rank restrictions
are imposed on any Mi, there is an analytic solution. The Mi can be uniquely deter-
mined if and only if matrix A defined in (8) has full column rank. This condition 
sufficient, but not necessary for the uniqueness of parameter estimates in the rank-
restricted case. When A has full column rank, Kiers and Takane’s condition is auto-
matically satisfied. However, A being singular does not imply that parameters are
nonunique. In the example to be presented in section 4.2, G = [I, I] and H = [H1, It2],
neither of which are of full column rank, and consequently A = [I ~) 1, I (~) H2] isnot
of full column rank, yet Kiers and Takane’s condition is satisfied, and consequently
uniqueness of parameter estimates is guaranteed.

There is a case in which uniqueness is definitely lost. This is the case where Gi =

G and Hi = H for all i. In this instance all uj’s are contained in all Sp(Gi) and all vj’s
are contained in all Sp(lli) , and Kiers and Takane’s condition is clearly violated. There
is indeed no unique solution in this case, because this case reduces to CPCA in which
representations of GMIt’ are not unique. In CPCA, the SVD of PaZP~t gives only one
of all possible solutions. If DCDD is applied in this case, it obtains one of the solutions,
which is related to the SVD of PaZPt-/by

UDV’ = FuR’uDRvF’v = FuPD*Q’F’v = U*D*V*’, (27)

where UDV’ is a DCDD solution, U*D*V*’ is the SVD of PGZPH, FuR’U and FvR~,
are QR decompositions of U and V, respectively, and PD*Q’ is the SVD of R’uDRv.

The problem of multiple local minima can also be investigated using a similar
numerical technique. It should be pointed out that the problem does exist, although it
seems rare in practice. For all the analysis results tO be presented in section 4, solutions
were obtained with 10,000 random initial starts, but in no cases were multiple local
minima found. It seems that the problem of multiple local minima is rather rare in
practice, particularly when estimated components are nearly orthogonal to one an-
other.

The algorithm presented in section 2.2 is generally very efficient. Most often it runs
faster than PCA for extracting the same number of components. This is due perhaps to
the additional structure built into the model by the DCDD type of constraints. We have
observed, however, one instance in which convergence of the algorithm was very slow.
It turned out that this was due to an extremely high correlation among the estimated
components. High correlations among the constraint sets tend to slow down the con-
vergence of the algorithm by creating "near" multicollinearity. Highly correlated con-
straint sets should be avoided for the sake of smooth convergence of the algorithm.

3.2. Relations to Other Approaches
Bfckenholt and Brckenholt (1990) proposed a method, called CALC (Canonical

Analysis with Linear Constraints), which is similar to, but distinct from DCDD. For
ease of comparison, assume m = 2, and r i = 1 (i = 1, 2). There are two ways 
incorporate linear constraints (Takane et al., 1991). CALC uses the null space method
in which estimates of ui and ¥i are obtained under R[ui = 0 and C[¥ i : 0o DCDD, on
the other hand, primarily uses the reparametrization method in which ui and vi are
reparametrized as ui = Giu~ and vi = Hive. The two methods are equivalent when Ri
and Gi, and Ci and Hi, are orthocomplement to each other. Such relationships will be
assumed between Ri and Gi, and between Ci and Hi. Then,

PG(i) = QR(i),
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and

PH(i) = Qc(i),

for i = 1, 2, where PG(/) and PH(i) are projection operators onto column spaces i
and Hi, respectively, and QR(i) = I - PR(i) and Qc(/) = I - 

CALC is sequential, but not iterative. It first obtains Ul, Vl, and d1 that minimize
SS(Z - dlUlV’l) subject to R’lU~ = 0 and C~v1 = 0. This amounts to obtaining the
largest singular value (d~) and the associated singular vectors (ul and vl) 
Q,~o)ZQco) = P~o)ZP/_/O). CALC then obtains u2, v2, and d2 that minimize SS(Z~
-- d2u2v~), where 1 =Quo)ZQvo), subject to R~u2 = 0, C~v2 = 0, u~u2 = 0, and
v~v2 = O. This amounts to obtaining the largest singular value (d2) and the associated
singular vectors (u2 and v2) of PQG(2) ZPQH(2). Here, PQG(2) and PQH(2) are 
operators defined by matrices Qu~I)G2 and Qv(1)H2, respectively. The PQG(2)ZPQH(2)
reduces to PG(2)ZPH(2), if 2 = 0’ andv[H2= 0’.

The first cycle of DCDD obtains the same ul, Vl, and dl assuming Z~-I) = Z. It
then obtains the largest singular value (d2) and the associated singular vectors (u2 
v2) of PG(2)Z(_2)PH(2), where Z~-2) = Z - Pu(I)ZPv(1). 

PG(2) Z(-2) PH(2) = PG(2) (Z - Pu(l) ZPv(I))PH(2),

which reduces to PG(2)ZPH(2) if 2 = 0’ or v~H2 = 0’. Matrix PG(2)Z(_2)PH(2) is
generally not equivalent to matrix PQG(2)ZPQH(2). The two matrices are equal only
when G~G2 = 0 and H~H2 = 0. This means that even ifH~H2 = 0, but G~ = G2 = I
(no row constraints), CALC and DCDD will not be equivalent. CALC obtains the SVD
of Qu(1)ZPH(2) for the second dimension, whereas DCDD obtains the SVD of ZPH(2).

Dimension extractions are sequential in CALC. There is no global fitting criterion;
instead, a separate criterion is minimized for each dimension extraction. Consequently,
results depend on which constraint set is accounted for first, second, and so on, unless
both row and column constraint sets are mutually orthogonal. Successive solution
vectors are, however, orthogonal, irrespective of the orthogonality of the constraint
sets. In DCDD, on the other hand, there is a global fitting criterion which is minimized
simultaneously across all dimensions, but the solution vectors need not be mutually
orthogonal.

We programmed CALC, and analyzed the example data set to be reported in
section 4.2. Although no details will be given, we confirmed that all our theoretical
expectations about CALC given above were correct. For example, the factorial struc-
ture of a second dimension is destroyed, following extraction of a correlated first
dimension. That is, coordinate values which are supposed to be equal on the second
dimension are no longer equal.

Heiser (1987) considered the DCDD type of constraints in the context of corre-
spondence analysis (CA), and developed an elegant algorithm for incorporating them.
However, his method minimizes, in line with the usual (unconstrained) CA,

f* = tr(U’KU) + tr(V’KV) - 2 tr (U’FV),

where F is a contingency table, and K and L are diagonal matrices of row and column
totals of F, respectively. The minimization off* will be equivalent to that of

f= SS(Z - GMH’)r,L,

where Z = K-~FL-1, if U’KU = I or V’LV = I. However, neither of these conditions
are generally satisfied in DCDD. Thus, Heiser’s method is also distinct from our
method.
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TABLE 1

Design Matrices for Torgerson’s (1958) Data

271

Factorial Equal Interval

Chroma (H,) Value (H~) Chroma (H,) Value
Stimulus hn h~2 h,a h~4 h2, h22 hz~ h24 h, h~

1 2 0 0 0 1 3 0 4 -14 2
2 -i 2 0 0 0 0 1 -5 - 5 1
3 -i -i 1 0 0 0 1 -5 13 1
4 2 0 0 0 0 -2 0 4 -14 0
5 -i -i -I 1 0 -2 0 4 4 0
6 -i -I -i -i 0 -2 0 4 22 0
7 -1 2 0 0 0 0 -i -5 - 5 -I
8 -i -I 1 0 0 0 -i -5 13 -i
9 2 0 0 0 -1 3 0 4 -14 -2

Correlations:
h2~ h22 h2a h~

hn 0 0 0 0

h~ .516 .211 .365 0

h~a 0 0 0 0

h~ .632 -.387 -.671 0

Cor(h,, h~) = 

4. Examples of Application

Two examples in this section illustrate practical uses of DCDD. In both examples,
we systematically compare unconstrained solutions, CPCA solutions, and DCDD so-
lutions.

4.1. Torgerson " s Color Data

Torgerson (1958) collected dissimilarity data on the nine colors presented in Panel
A of Figure 2. He applied "classical" multidimensional scaling to his data, which
amounted to the eigenvalue decomposition of the scalar product matrix derived from
his original data by the Young and Householder (1938) transformation. This solution 
presented in Panel D.

Recall that the nine colors have a factorial structure according to the Munsell
System. This structure is captured in the stimulus design matrices, H 1 and I-I 2, specified
in the contrast form and given in the upper left portion of Table 1. These contrast
vectors are obtained in a manner similar to that in ANOVA. There are five levels in the
chroma dimension, and four contrast vectors are needed to distinguish among them.
The hll contrasts stimuli 1, 4 & 9 with all the rest, h12 stimuli 2 & 7 vs 3, 5, 6, & 8, h13
stimuli 3 & 8 vs 5 & 6, and h14 stimulus 5 vs 6. These contrast vectors are not unique.
Correlations between H1 and I’I 2 are given in the left side bottom of Table 1. It can be
seen that they are not mutually orthogonal. The factorial structure does not assume
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TABLE 2
Summary Results for Torgerson’s (1958) Data

Percent Number of
SS Explained Parameters

D. Unconstrained 98.78 15

Constrained (Factorial)
E. CPCA 97.72 13
C. DCDD 96.77 8

Constrained (Equal Interval)
E. CPCA 93.87 3
F. DCDD 93.58 2

Equal Interval Across Dimensions
DCDD (C:V = 1:2) 85.78 1
DCDD (C:V = 3:8) 93.57 1

equal intervals between adjacent levels. Design matrices under this assumption are
presented in the upper right corner. They happen to be mutually orthogonal.

The two design matrices, 1tI and 1-12, are joined into a single matrix, H = [H1, H2],
in CPCA solutions. CPCA in this case amounts to the eigenvalue decomposition of
PnSPH. The CPCA solution with the factorial design is presented in Panel B. It is
strikingly similar to the unconstrained solution (Panel D). The CPCA solutions under
the equal interval hypothesis is displayed in Panel E. Both of the CPCA configurations
are rotated relative to the Munsell configuration, and their dimensions do not corre-
spond one-to-one with the Munsell dimensions. The DCDD analysis, on the other hand,
extracts dimensions which coincide with the hypothesized dimensions. The DCDD
solution under the dimensionwise factorial hypothesis is shown in Panel C. Stimuli
having equal coordinate values on Munsell dimensions take equal coordinate values on
the corresponding DCDD dimensions. Interestingly, derived vl and v2 are nearly or-
thogonal, despite the fact that I-I 1 and H2 are not mutually orthogonal. The DCDD
configuration is displayed in Panel F. This configuration differs from the Munsell con-
figuration (Panel A) only in one respect. Whereas in the latter, two chroma units are
assumed equivalent to one value unit, no such assumption is made in F. Adjacent levels
are assumed equally spaced within dimensions, but not across dimensions. An across-
dimension equal interval hypothesis can be incorporated via across-dimension con-
straints, where C*’ = [1 -1 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0] combined with hi and h2
given in Table 1. This C* stipulates the chroma interval defined by Stimuli I and 2 is
equal to the value interval defined by the same pair of stimuli. The configuration derived
under this hypothesis is identical to the Munsell configuration (Panel A).

The unconstrained solution is least similar to the Munsell configuration, while it
provides the best fit to the data, as indicated by the largest proportion of SS accounted
for by the solution (see Table 2). The DCDD solution (F) derived under the within-
dimension equal interval assumption still accounts for more than 93% of the total SS,
only a 5% reduction from the unconstrained solution. The Munsell configuration (A)
derived under the across-dimension equal interval hypothesis, on the other hand, ac-
counts for less than 86% of the total SS, a considerable drop in fit from that of solution
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(a) Unconstrained (b) Unconstrained
(Stimulus 1 eliminated)

(c) TxS Factorial - CPCA (d) TxS Factorial - DCDD

FIGURE 2.
Stimulus configurations derived from Delbeke’s (1978) data under various hypotheses. (See Figure 2b.)

F. Solution F indicates that eight chroma units are roughly equivalent to three value
units. When this hypothesis was incorporated, the fit turned out to be 93.57%, which
was almost as good as that of solution F.

Table 2 also provides the numbers of parameters estimated in various solutions.
Let rn denote the dimensionality of the representation space, p the number of stimuli,
t i the number columns in I-I i (i = 1, 2), and t = rank (I-I) where I-I = [I-Ii, I-I2]. Then,
the effective number of parameters is given by (p - 1)m m(m - 1)/2 fo r th
unconstrained solution. The second term is subtracted because of rotational indeter-
minacy. This also applies to CPCA solutions in which the number of parameters is
calculated by tm - m(rn - 1)/2. There is no rotational indeterminacy in DCDD in
which the number of parameters is given by tl + t2.

4.2. Delbeke’ s Data
Delbeke (1978) constructed a set of stimuli by systematically varying the number

of boys and the number of girls in a family. By factorially combining four levels (0 to
3) each of the two variables, 16 stimuli were constructed. The stimuli are numbered
from 1 to 16 by varying the number of boys first from 0 to 3, and then the number of girls
in a similar way. Stimulus 1 thus represents the combination of 0 boys and 0 girls,



Factorial - CPCA (f) BxG Factorial - DCDD

(g) Tx$, BxG Equal Interval - CPCA
(The two solutions are identical)

(h) TxS Equal Interval
- DCDD

F~OURE 2.

(continued)

(i) BxG Equal Interval
- DCDD
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TABLE 3

(TxS) for Delbeke’s (1978) Data

275

Factorial Equal Interval
Total Bias

Total (HI) Bias {H~) {HI) (H,)
Stimulus h n h12 h~3 h~4 h~3 h~ h21 h22 h2~ ha4 h~s h~ h~ h~

1 1 0 0 2 1 -i 0 0 0 0 0 3 -3 0
2 0 1 0 -i 1 -I 0 0 1 0 -i -i -2 -I
3 0 0 1 0 -i -i 0 1 0 -i 1 -i -i -2
4 0 0 0 0 0 3 1 0 0 2 1 -1 0 -3
5 0 1 0 -1 1 -1 0 0 -1 0 -1 -1 -2 1
6 0 0 1 0 -1 -1 0 0 0 0 0 3 -1 0
7 0 0 0 0 0 3 0 0 1 0 -1 -1 0 -1
8 0 0 -1 0 -1 -1 0 1 0 -1 1 -1 1 -2
9 0 0 1 0 -1 -1 0 -1 0 -1 1 -1 -1 2

10 0 0 0 0 0 3 0 0 -1 0 -1 -1 0 1
11 0 0 -1 0 -1 -1 0 0 0 0 0 3 1 0

12 0 -1 0 -1 1 -1 0 0 1 0 -1 -1 2 -1
13 0 0 0 0 0 3 -1 0 0 2 1 -1 0 3
14 0 0 -1 0 -1 -1 0 -1 0 -1 1 -1 1 2
15 0 -1 0 -1 1 -1 0 0 -1 0 -1 -1 2 1

16 -1 0 0 2 1 -1 0 0 0 0 0 3 3 0

Correlations (in metric De) 

hn h~2 hn

h** .027 .030 .023 -.026 -.036 -.392

hx2 .029 .031 -.016 -.028 .310 .176

h,3 .015 -.007 .012 .116 -.127 -.047

h~ .011 .013 -.069 -.011 .349 .509

h~5 .019 -.133 .081 .355 -.643 -.275

h~6 .182 -.079 .042 .514 -.272 -.393

Cor(h~, 2) = -.031

stimulus 2 that of 1 boy and 0 girls, and so on. Delbeke asked 82 university students in
Belgium to rank order the 16 stimuli according to their preference.

Heiser (1981) previously analyzed the data by unfolding analysis (Coombs, 1964).
He obtained both unconstrained and constrained unfolding solutions. The latter was
obtained under similar constraints to those used in the present study. He also applied
correspondence analysis, which is a special form of unfolding analysis. We extend this
line of analysis by incorporating constraints.

By construction, the stimuli have a factorial structure in terms of the number of
boys and the number of girls (the B × G hypothesis). Alternatively, the stimuli can 
characterized by the total number of children (T = B + G) and the sex bias (S = 
G). These two structural designs were coded into matrices of contrasts in a manner
similar to that in the previous example, and are shown in the upper portions of Table
3 (the T × S hypothesis) and Table 4 (the B × G hypothesis). Correlations among 
are given in the bottom portions of the tables. These correlations were calculated with
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TABLE 4

Design Matrices (BxG) for Delbeke’s (1978) 

Factorial Equal Interval
BoTs (HI1 Girls (H,) BoTs (H,) Girls

Stimulus h11 h12 h~3 h21 hn h~3 (h~) (h~)

1 1 0 1 l 0 1 -3 -3
2 -1 0 1 1 0 1 -1 -3
3 0 1 -I 1 0 1 1 -3
4 0 -I -1 1 0 1 3 -3
5 1 0 1 -1 0 1 -3 -1
6 -1 0 1 -1 0 1 -1 -1
7 0 1 -1 -1 0 1 1 -1
8 0 -1 -1 -1 0 1 3 -1
9 1 0 1 0 1 -1 -3 1

10 -1 0 1 0 1 -1 -1 1
11 0 1 -1 0 1 -1 1 1
12 0 -1 -1 0 1 -1 3 1
13 1 0 1 0 -1 -1 -3 3
14 -1 0 1 0 -1 -1 -1 3
15 0 1 -1 0 -1 -1 1 3
16 0 -1 -1 0 -1 -1 3 3

Correlations (in metric De):

hn

h** .057 -.021 -.042

h1~ -.036 .033 .004

h13 -.037 -.012 -.033

Cor (h~, h~) - .062

metric Dc, so that perfectly balanced designs can produce nonzero correlations. The
data were analyzed by correspondence analysis, CPCA, and DCDD. In CPCA and
DCDD, the two factorial hypotheses were fitted with and without the within-dimension
equal interval assumption. In no cases were constraints imposed on the subjects.

Derived stimulus configurations are presented in Figure 2. These configurations
exhibit stimulus points only. Biplots of stimulus points and subject vectors could have
been informative (Gabriel, 1971; ter Braak, 1990), but there were too many subjects 
be plotted for the size of each panel. Ellipses surrounding estimated points are 95%
confidence regions obtained by the Bootstrap method (Efron, 1979). They were ob-
tained by generating 100 Bootstrap samples, analyzing them separately, and calculating
variances and covariances of estimated point coordinates. Under the asymptotic nor-
mality assumption, these variance and covariance estimates can be turned into ellipses
that indicate the degrees of reliability of the estimated points.

The unconstrained solution is displayed in Panel a. It appears that the horizontal
direction roughly corresponds with the total number of children, and the vertical di-
rection with the sex bias, but this is obscured by large variabilities in the estimated point
locations. The instability is largely due to point 1 (the combination of 0 boys and 0 girls)
which is so unpopular. When the analysis was repeated with Point 1 removed, the
remaining points were much more reliably estimated (see Panel b). These findings are
consistent with Heiser (1981). Panel c presents the CPCA solution with the T x 
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factorial structure. This configuration is remarkably similar to the unconstrained solu-
tion. Obviously, the constraints are not very restrictive. The T x S design, being
incomplete factorial, allows quite a bit of freedom. In particular, stimulus 1 is the only
stimulus with the total number of children equal to zero. The DCDD analysis with the
same T x S design yields a much more stable configuration (see Panel d), although
Point 1 still exhibits considerable instability along the horizontal direction. The CPCA
solution with the B x G design is displayed in Panel e. This configuration rotates the
prescribed B x G dimensions approximately 45°, so that the horizontal direction
roughly corresponds with the T dimension and the vertical direction the S dimension.
Although confidence ellipses are quite different, the configuration of points itself looks
very much like the DCDD configuration obtained under the T x S hypothesis. The
DCDD solution with the B x G design is displayed in Panel f.

The three configurations shown in the bottom row of Figure 2 were obtained under
the within-dimension equal interval assumption. Two CPCA solutions, one obtained
under the T × S hypothesis and the other under the B x G hypothesis, turned out to
be identical, and are shown in Panel g. This is due to the fact that the T x S design
matrix and the B x G design matrix happen to span an identical space.

The DCDD solutions under equal interval hypotheses are shown in Panel h and in
Panel i. It can be observed that the more stringent the constraints are, the more reliable
the point estimates become. This is indicated by tighter confidence regions in the
configurations derived under the more stringent constraints.

Table 5 presents proportions of SS accounted for by various solutions along with
Bootstrap results; means, standard deviations, maxima and minima of the percent SS.
The unconstrained solution accounts for approximately two thirds of the total SS. This
proportion reduces only by 4% in solutions in Panels g, h, and i. Considering the
variabilities in the percent SS from the Bootstrap study, ranging roughly from 2.50 to
3.00, this is well within the range of sampling variability. The four solutions given in the
bottom row of Figure 3 have an identical fit. We have already seen why the two CPCA
solutions are identical. In addition, the two DCDD solutions (h and i) have an identical
fit with each other and with the two CPCA solutions. In these solutions, no rank
restrictions are imposed on Mi, and Gi’s are common across i. Under these circum-
stances, DCDD and CPCA yield an equivalent fit, because if we let H = [Hi .... , H,n ]
and M = [M1, ̄  ¯ ¯, Mm], the DCDD model can be written as GMH’, the full rank SVD
of which gives the CPCA solution.

An across-dimension equal interval hypothesis can be incorporated via across-
dimension constraints. The hypothesis that a one-unit difference in B is equivalent to a
one-unit difference in G only negligibly worsened the goodness of fit. However, a
similar hypothesis on the T x S dimensions resulted in a considerable drop in fit.
Solution h indicates that a two-unit difference in S is roughly equivalent to a one-unit
difference in T. This post hoc hypothesis yielded a fit of 63.41%, which was almost
identical to the fit of Solution h. It is not clear which of the two hypothesized structures,
T x S or B x G, better accounts for the data.

It might be pointed out that similar observations to the above could perhaps be
made by constrained unfolding analysis. However, DCDD is computationally much
simpler and faster than unfolding analysis, which is also prone to degenerate solutions.

5. Concluding Remarks

Principal component analysis (PCA) is a useful technique for a spatial representa-
tion of a data matrix (e.g., Jackson, 1991; Jolliffe, 1986; Lebart, Morineau, & Warwick,
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TABLE 5

Summary Results for Delbeke’s (1978) Data

Bootstrap on
Percent SS Number of Percent SS Explained
Explained Parameters mean sd max. min.

(a) Unconstrained 67.45 29 69.24 2.65 75.03 62.81

TxS; Factorial
(c) CPCA 66.69 21 68.40 2.68 74.49 60.67
(d) DCDD 65.60 12 66.26 2.67 72.85 58.74

TxS; Equal Interval
(g) CPCA 63.41" 2 64.05 2.82 70.61 52.78
(h) DCDD 63.41" 2 64.05 2.82 70.61 52.78

(e)
(f)

TxS; Equal Interval
Across Dimensions

DCDD (T:S - 1:1) 56.99 1 58.40 2.15 63.88 52.73
DCDD (T:S ~ 2:1) 63.41 1 63.08 3.18 69.88 54.90

BxG; Factorial
CPCA 64.91 11 65.48 2.65 72.71 58.43
DCDD 64.76 6 65.26 2.92 73.06 58.32

BxG; Equal Interval
(g) CPCA 63.41" 2 64.05 2.82 70.61 52.78
(i) DCDD 63.41" 2 64.05 2.82 70.61 52.78

BxG; Equal Interval
Across Dimensions

DCDD 63.34 1 63.51 3.00 69.81 55.70

*These solutions are identical in fit.

1984; Velicer & Jackson, 1990). The derived spatial representation captures the most
prevailing tendency in the data in as few dimensions as possible.

The interpretation of the spatial representation can be greatly facilitated by exter-
nal information incorporated through linear constraints (B6ckenholt & B6ckenholt,
1990; Carroll, et al., 1980; Takane & Shibayama, 1991; Takane, et al., 1991; ter Braak,
1986). Typically theresultant spatial representation is simpler, and exhibits a greater
degree of stability (see section 4.2). External constraints may represent a theoretical
hypothesis. By comparing constrained and unconstrained solutions, empirical validity
of the hypothesis can be investigated. External constraints may allow certain useful
predictions. For example, stimuli, which are not included in the original representation,
can be a posteriori mapped into the representation via the constraints (Carroll, 1972).
In some cases, external constraints are useful in eliminating incidental parameters from
a model (van der Leeden, 1990).

In this paper a method (DCDD) to impose different sets of constraints on different
dimensions was proposed. The DCDD type of constraints often represents original
empirical hypotheses more accurately than the CPCA type, and consequently more
meaningful analyses may be possible. A simple, yet versatile, algorithm to fit the
dimensionwise constraints was given, and extended in various directions, including
across-dimension constraints, symmetric data, etc. Although only two examples were
given in this paper, a host of other examples can readily be generated. Simple structures



TAKANE ET AL. 279

in factor analysis and analysis of MTMM (multitrait-multimethod) matrices are but two
of the possibilities that immediately come to mind.

It may be useful to incorporate orthogonality or partial orthogonality constraints
on U in DCDD. More generally, it will be interesting to incorporate various correla-
tional patterns in U’U which are implied, for example, by hypothesized "causal" re-
lationships among the extracted dimensions (= latent variables). This makes DCDD
more similar in spirit to the PLS approach (Wold, 1982; Lohm/)ller, 1989) to structural
equation models. Both analyze original data matrices rather than covariance matrices.
However, the two approaches are radically different in the principle of algorithm con-
struction. Whereas in DCDD a global minimization criterion (such as (3)) is consistently
minimized, no such criterion exists in PLS. In the latter, convergence points are defined
to be wherever its algorithm achieves a state of "equilibrium".

Throughout this paper we have primarily focused on the analysis of structural parts
of data. However, equally important is the analysis of initially unstructured portions of
data, that is, the analysis of residuals from prescribed structures. The current DCDD
program is also capable of analyzing the residuals by PCA.
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