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Abstract: A probabilistic DEDICOM model was proposed for mobility tables.
The model attempts to explain observed transition probabilities by a latent mobil-
ity table and a set of transition probabilities from latent classes to observed classes.
The model captures asymmetry in observed mobility tables by asymmetric latent
mobility tables. It may be viewed as a special case of both the latent class model
and DEDICOM with special constraints. A maximum penalized likelihood (MPL)
method was developed for parameter estimation. The EM algorithm was adapted
for the MPL estimation. Two examples were given to illustrate the proposed
method.
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(MPL) method; EM algorithm; RIC.

1. Introduction

We develop a probabilistic model for mobility tables. Denote such a
table by F = {f;;},i.j = 1, ... ,n, where f;;, the element in the i-th row and the
J-th column of F, represents the observed frequency of moves from origin i to
destination j. Although originally designed for mobility tables, the model
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applies equally well to any square contingency table where there is one-to-
one correspondence between rows and columns. Examples of such tables are,
among others, brand loyalty data, journal citation data (e.g., Coombs, Dawes,
and Tversky 1970, p. 73), discrete panel data on two occasions, stimulus
identification data, agreement or association data, e.g., between two patholo-
gists diagnosing a same group of patients using the same set of disease
categories, between actual and ideal numbers of children, and between hus-
bands’ and wives’ religions (e.g., Johnson 1980) or occupations in two-earner
families, and so on.

These tables are typically asymmetric, that is, f;; # f;;. An important
element in modelling such a table is how to represent the asymmetry to reveal
interesting structures. In this paper we use the DEDICOM model (Harshman,
Green, Wind, and Lundy 1982) to capture asymmetry in moblity tables.
DEDICOM represents asymmetric relationships among manifest categories
by a smaller number of latent categories that have asymmetric relationships
between them. We adapt it to give probabilistic accounts of mobility tables.

In the next section we describe the proposed model in some detail and
follow with an exposition of related models which either directly or indirectly
motivated the proposed model (Section 3). The proposed model is usually
not identifiable, and we discuss the range of unidentifiability in Section 4.
We develop a maximum penalized likelihood (MPL) method for parameter
estimation to deal with the problem of possible unidentifiability in the model
and adapt the EM algorithm for the MPL estimation. These are described in
Section 5, and further details are given in the Appendix. The MPL method
introduces a penalty parameter into the estimation scheme. The problem of
choosing an optimal value of the penalty parameter is investigated in Section
6. The paper concludes with two illustrative examples and discussion.

2. The Model

We model P = {p;;}, where p;; is the transition probability from origin i
to destination j. Let a;), denote the probability of observed (manifest) class i
given latent class s and ry, the probability of transition from origin latent class
s to destination latent class ¢ (a latent mobility table). We posit that

Pij = X ralits Gjie + 85 q;, ¢y

st
where s,r=1,...,5, §; is a Kronecker delta, and g; the probability of
inherent stayers in observed class i (the portion of observation units in a cer-
tain observed class who by nature will never move to another class). Note
that observation units in this class are not the only ones actually staying in
class i. There is another class of observation units in class { who return to
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class I via transitions through latent classes. The probability of such a class is
given by X, ry; a5 a;,. The total probability (p;) of staying in class i is the
sum of this probability and g;, the probability of inherent stayers. We require

n
Z djjs = 1 ) (2)
i=1

fors=1,...,S and

n
Drat 2 qi=1, 3
$,t i=1
and that all a; |, r; and g; are between O and 1 inclusive. It follows that
%;ipij = 1. The model attempts to explain observed transition probabilities
(p;;) by a latent mobility table (r,,), and a set of conditional transition proba-
bilities (g; ;) from latent classes to observed classes. The model captures
asymmetry in mobility tables by asymmetric latent mobility tables (ry, # ry).
The model also captures excess probabilities often observed in the
diagonal entries of observed mobility tables by postulating probabilities (g;)
of inherent stayers. Quite often, diagonal elements of F have some special
status not shared by their off-diagonal counterparts, and a special treatment is
necessary for them (Clogg 1981). For example, in the trade data between
nations, diagonal entries represent domestic trade, which may not be directly
comparable with international trade. In the social mobility data discussed
below, the ¢; may be construed as probabilities of inheritance of social status.
This provision is similar to the notion of uniqueness in factor analysis, is use-
ful in dealing with missing diagonal entries, and amounts to providing » addi-
tional latent classes, one for each observed class, that do not allow transitions
among themselves. Observed transitions among observed classes are
accounted for by the latent classes that allow transitions among themselves.
While the g; may optionally be set equal to zero, doing so often leads to a
significant deterioration in goodness of fit.

3. Related Models

The proposed model may be viewed as a special case of both the latent
class model (LCM; e.g., Hagenaars 1990) and DEDICOM (e.g., Harshman et
al. 1982; see, in particular, footnote 2 on page 236 of their paper, where they
suggest a similar idea leading to model (1)) with special constraints. Clogg
(1981) proposed the following latent class model for mobility tables:

Pij = 2 T @iu bjiu + 8 g - )
u

This is a special kind of conditional quasi-independence model (Goodman
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1968), that is, an independence model except for the diagonal entries, condi-
tional on latent classes. This model is similar to (1) except that two sets of
conditional transition probabilities from latent classes to observed classes are
differentiated in (4), one on the origin side (g;|,) and the other on the destina-
tion side (b;),). While a;, and b;, are almost always similar, equating them
in (4), as in (1), will destroy the model’s ability to account for asymmetry in
F. (See, however, Grover and Srinivasan 1987.) In Clogg’s model, asym-
metry is captured by differences between a;, and b;), for i=1,...,n;
u=1,...,U. However, interpreting the differences between the two sets of
quantities is not always an easy task. This directly motivated the proposed
model. Model (1) singles out asymmetric components and captures them in
one set of parameters, r,,, which facilitates the interpretation.

Hagenaars (1990) extended LCM so that latent classes have a factorial
structure. Suppose there are two factors, origin and destination, that distin-
guish latent classes. Then, subscript u in (4) is replaced by two indices, s and

t, where s (s =1,...,5) indicates the level of the first factor and ¢
(t=1,...,7) thelevel of the second factor. Model (4) then becomes
Pij = X Tt il by + 55 ;. 3
s,t

Note that although there are ST latent classes in model (5), we sometimes call
levels of the first factor ‘‘origin latent classes,”” and levels of the second fac-
tor ‘‘destination latent classes.”” If we further assume that S = 7, that there is
one-to-one correspondence between levels of the two factors (as in the
observed mobility table), and that a;,,, = a;), for all ¢, and b i1se = bj; for all s,
we obtain

Pij =X ra Girg by + 855 q; (6)
st
The constraints that a; |, = a;), and bjig = bj|; are not so restrictive, help
reduce the number of parameters in the model considerably, and make clear
that s is specifically related to the origin side and ¢ to the destination side. In
model (6) we may assume ry =r, while capturing asymmetry in P by
differences between a;; and b; |, but then we end up with a similar situation
as in model (4). A more attractive idea is to capture the asymmetry in P by
asymmetry in ry, while equating a;,; and b;,;, which no longer have to be
differentiated for the purpose of capturing asymmetry. We then have model
(1), which can thus be regarded as a special kind of LCM with special con-
straints on its parameters (Mooijaart and van der Heijden 1992).
Let A = {a;5}, R = {ry} and D = diag {g,} where diag {g;} is a diago-
nal matrix with diagonal elements equal to ¢;. Define
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A"=[A L],
and
« _[R O
<[54
where 0 is an § by n matrix of zeroes. Then,
P=A"R"A" =ARA" + D, (7)

which is a special case of DEDICOM (Harshman, et al. 1982) with special
0-1 constraints on some portions of A*, R*, and D (as well as constraints (2)
and (3) and 0 < g, ;, 7 and ¢; < 1). Model (1) can thus also be regarded as a
special case of DEDICOM.

An extensive literature exists on models of mobility tables. Hout (1983)
and Breiger (1990) provide concise descriptions of other representative
models of mobility tables not discussed above. Also, see Duncan (1979) who
proposed association models for social mobility tables, Yamaguchi (1983)
who proposed a quasi- independence model for samples of subjects stratified
by educational attainment, and Sato and Sato (1995) who presented a model
similar to the one proposed in this paper under the name ‘‘fuzzy clustering.’’

4. Identifiability of the Model

The ARA’ part of (7) is usually not unique. Similar unidentifiability
properties have been noted elsewhere in similar contexts (Clogg 1981; de
Leeuw, van der Heijden, and Verboon 1990). Nonuniqueness derives from
the fact that ARA” = ATT™! R(T")"! T'A” = BCB" for any square nonsingu-
lar matrix T, where B = AT and C = T™! R(T")™. However, B and C have to
satisfy the same constraints as A and R, which limits the range of admissible
T. We have

1=1,,B=1,AT=1% T, )
and

1-Y¢qg=15C1lg=1gT!RT ) 17%. )
i

For every T satisfying (8), we have 1’ T™! = 17, hence

I'sT'ROIN) 1g=153R13=1-Yg;. (10)
i

It follows from (10) that, for every T satisfying (8), constraint (9) is satisfied
as well. In addition to (8), however, the matrix T should be constrained so

that the elements of B and C also satisfy 0<b;; <1 and 0 =<¢;; <1, which
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further restricts the range of admissible T. However, these restrictions are
usually not sufficient to determine T uniquely. That is, T other than Ig is still
possible. In general, it is difficult to decide whether T is unique in a given
situation without actually fitting the model.

In some cases there are strong theoretical reasons to set some of the
model parameters to zero. We have already seen that some of the elements in
A" and R” are fixed at zero, but we may also set some of the elements in A
and R to zero. For example, we may postulate that Latent Class 1 is such that
aqy1 =0, implying that observed category 1 can never arise from this latent
class. Or we may posit that latent classes are ordered in some way, for exam-
ple, according to their economic status, but transitions between them are only
in one direction, say, from upper to lower classes. We may then set r,, = O for
all s <. These additional constraints help further reduce the degree of
nonuniqueness in the model, and in some cases they are sufficient to identify
the model. However, it is still not at all easy to decide, on an a priori basis,
whether a given set of constraints are sufficient to determine the model
uniquely.

So whether or not there are additional constraints, a specification of
conditions under which the model is unique is extremely difficult, if not
impossible, particularly when the number of latent classes is large. A method
is, therefore, necessary that works regardless of whether the model is unique.
It should be able to produce unique parameter estimates when the model is
nonunique and to handle fixed parameters easily.

5. Parameter Estimation

The maximum likelihood (ML) estimation method often used in the
analysis of contingency tables is not adequate for our model. When the
model is not identified, it leads to nonunique parameter estimates, causing
great difficulty, because we do not know which set of possible parameter esti-
mates we should interpret. Presumably, they are all equally good. The ML
method also often leads to boundary estimates (i.e., estimates of a; |, ry and
q; which are on the boundary of the parameter space, that is, 0 or 1 in the
present case) for which the usual asymptotic properties of maximum likeli-
hood estimates do not hold. The EM algorithm (Dempster, Laird, and Rubin
1977) used in the optimization also becomes infinitely slow in such cases.
(Note that the situation just described is fundamentally different from the one
in which these parameters are a priori fixed.)

We use the maximum penalized likelihood (MPL) method to avoid
these difficulties, because it can uniquely determine the parameter estimates
and also avoid boundary estimates. By avoiding boundary estimates, the EM
algorithm is often faster than when it is used for ML estimation. Like the ML
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method, the MPL method can handle the fixed constraints quite easily. (We
thank an anonymous reviewer for pointing out the importance of this feature.)
The MPL estimators are asymptotically equivalent to the ML estimators,
because the effect of the penalty term (see below) diminishes relative to the
log likelihood term as the sample size increases.

In the MPL method we consider

InL,=%;;fijlnp;; = A(Ei ajjs ~ 1) = MZg 1 + Zigi — 1)
+ P(Zi,s 61‘3 1nails + z"s,t ast in Ty + 2"i 8i 1nCIi) s (11)

where p;; is given by (1), the A’s are Lagrangean multipliers, p is a small posi-
tive number representing the penalty parameter, and the &’s indicate whether
the corresponding parameters are a priori fixed at zero. More precisely,
d; = 0 if a;) is fixed at zero, and 9, = 1 otherwise, 0y = 0 if ry, is fixed at
zero, and 8, = 1 otherwise, and ; = 0 if ¢; is fixed at zero, and §; = 1 other-
wise. We maximize InL, with respect to a;y, ry, and ¢;, and obtain its sta-
tionary point with respect to A, (s = 1, ...,S) and A. The first term of (11) is
the log likelihood term, and the second and third terms (related to A and A;)
are for incorporating side conditions, (2) and (3). The penalty term (related to
p) introduces nonzero gradients in the direction along which the likelihood
function is flat, and thereby uniquely determines the parameter estimates.
The uniqueness is assured by nonsingularity of the Hessian matrix derived
from InL,. (The general form of the Hessian matrix is given in the Discus-
sion section). In general, the penalty has the effect of forcing nonfixed param-
eter estimates away from the boundary of the parameter space. The strength
of force is modulated by the penalty parameter. The value of p will be
chosen to increase the predictive power of the estimates, as will be explained
in the next section. When an optimal value of p happens to be zero, the MPL
method reduces to the ML method.

The EM algorithm for maximum likelihood estimation in LCM (Good-
man 1979) can readily be extended to the MPL method (Green 1990). The
EM algorithm consists of the following two steps:

E-Step. Evaluate

Fiist = fij Pstrij » (12)
where py;; = Iy di1s 4j1:/pij, and
i = fi Pivii » (13)

where p;i; = q;/pi. Note that fi, =0 if 8,=0, 8; =0 or 3, =0, and
fii=0if§; =0,
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M-Step. Update each nonfixed parameter by
ajts = fis /X fas (14)
k

where f:; = Ej,t (f;;‘st + f;ts) + 8is ps
rstzf:t/N*, (15)

where f =X fiin + 84 p, and N* =X, fy, =N +n"p, with N being the
sample size (i.c., N = %;; f;j = Z;; Z;, fiza + i fiz) and n* the number of free
parameters in {ry, ¢;} (e, n” =X, 8, + Z; §;), and

gi=(fis +8 p)/N™. (16)

The two steps are alternated until convergence is reached. A detailed deriva-
tion of the algorithm is given in the Appendix. We use uniform random
numbers for initial estimates of parameters, rescaled to satisfy constraints (2)
and (3).

The above algorithm is similar to the iterative proportional fitting algo-
rithm (Bishop, Fienberg, and Holland 1975, pp. 83-102) for log-linear con-
tingency table analyses, and has several advantages over the Newton-
Raphson method often used in similar contexts. Constraints (2) and (3) as
well as 0 < a;,, 7y and g; <1 are automatically satisfied. The algorithm is
also monotonically convergent. The convergence may, however, be very
slow. If necessary, we may use one of various acceleration techniques
developed for the EM algorithm (e.g., Jamshidian and Jennrich 1993; Meng
and Rubin 1993). In the last few iterations, it may also be helpful to use the
score method, which requires the information matrix, but techniques to obtain
the observed information matrix have been discussed by Lang (1992) and
Louis (1982). The score method also provides asymptotic variance and
covariance estimates of estimated parameters. Asymptotic properties of the
MPL estimators have been discussed by Cox and O’Sullivan (1990) and Gu
and Qiu (1993). Most of the asymptotic properties of ML estimators also
hold for the MPL estimators.

6. Choosing the Value of p

Various techniques have been proposed for choosing an optimal value
of the penalty parameter, p and include the generalized cross validation
(Craven and Wahba 1979), methods based on marginalization (BAIC; Ishi-
guro and Sakamoto 1983; Sakamoto 1991), and those based on RIC (Regular-
lized Information Criterion; Shibata 1989). RIC is an extension of AIC
(Akaike 1973) to the MPL method and allows choosing the best value of the
penalty parameter. However, the closed-form evaluation of RIC requires the
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penalty term defined by a summation indexed in the same way as the likeli-
hood term. Unfortunately, this is not the case in the present situation. We,
therefore, use a method based on a bootstrap estimate of RIC. Shibata (1995)
discusses five asymptotically equivalent ways of obtaining bootstrap esti-
mates of RIC. We use the one least computationally involved, originally pro-
posed by Cavanaugh and Shumway (1994).

Let F; be the k-th bootstrap sample, and let the maximum penalized
likelihood estimate of model parameters based on F; be denoted by O(F).
Let In L; (F,G(F}:)) represent the maximum penalized likelihood of F based
on O(Fy). (Under this notation InLy (F) =InL, (F,0(F)).) Then, the
bootstrap estimate of RIC by Cavanaugh & Shumway’s formula is given by

RIC = 21nL; (F) - 43, InL; (F, 0(F)) /K) . (17)
k

As with AIC, the model associated with the smallest value of RIC is con-
sidered the best fitting model. When p = 0, RIC formally reduces to TIC
(Takeuchi Information Criterion; Shibata 1989), which is a generalization of
AIC. AIC approximates TIC when the fitted model is reasonably close to the
true model and allows comparisons of models across different values of p as
well as across different models for a specific value of p.

RIC assures that the MPL estimators are most predictive of future
observations among other alternative estimators such as ML. This statement
is true regardless of whether the model is unique, or whether additional con-
straints are incorporated to reduce the degree of nonuniqueness in the model.
The situation is analogous to that of ridge regression where ridge estimators
may be biased, but may still have smaller expected mean square errors than
the usual least squares estimator. The MPL method with an optimal value of
p thus has the dual role of obtaining unique and most predictive parameter
estimates, regardless of the uniqueness of the model.

7. Ilustrative Examples

In this section we report two examples of application. The first draws
on the car switching data (Harshman et al. 1982), in which we compare esti-
mates obtained from the proposed method with those obtained by Kiers and
Takane (1993). The reported analyses exemplify the constrained estimation
feature of the proposed method. The second example analyzes social mobii-
ity data from Miller (1960) and demonstrates usefulness of the proposed
method in practical data analysis situations.
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7.1 Car Switching Data

Harshman et al. (1982, p. 221) presented a contingency table with car
switching frequencies among 16 types of cars. The labels for the 16 car types
are listed in the first column of Table 1, where the first three characters indi-
cate size (SUB = subcompact, SMA = small specialty, COM = compact, MID
= midsize, STD = standard, and LUX = luxury), while the fourth character
indicates origin or price (D = domestic, C = captive imports, I = imports, L. =
low price, M = medium price, and S = specialty). Kiers and Takane (1993)
reanalyzed the data by their unconstrained and constrained least squares
DEDICOM procedure. In their first analysis, they obtained an unconstrained
three-dimensional solution, which was then rotated into a simple structure
solution by the normalized varimax rotation. This solution accounted for
86.4% of the total sum of squares (SS). The three dimensions were inter-
preted as representing clusters of (a) plain large and midsize cars, (b) fancy
large cars, and (c) small/specialty cars. It was then hypothesized that each
car category was represented by one and only one of these dimensions. For
each car category a dimension with the highest loading was identified, and
loadings on other dimensions were constrained to be zero. In their second
analysis, Kiers and Takane fitted this strictly simple-structured pattern
hypothesis by the constrained DEDICOM procedure. The resulting solution
(called “‘constrained nonoverlapping’’ by Kiers and Takane) accounted for
83.7% of the total SS. In the third analysis, the strictly simple-structured pat-
tern hypothesis was relaxed by allowing multiple nonzero loadings in each
car category. Specifically, all loadings in the unconstrained solution larger
than .20 in absolute values were left unconstrained in addition to the largest
loading within each car type. This quasi-simple-structured pattern hypothesis
(called ‘‘constrained overlapping’’ by Kiers and Takane) accounted for
85.3% of the total SS.

For direct comparisons, we replicated the above three analyses using
the proposed method. All the results from latent class DEDICOM in this sec-
tion were obtained with p = 1.0. This value may not be optimal, since no
serious attempt was made to find its optimal value. However, the effect of
this value seems relatively minor in this particular instance, because derived
estimates are in all cases very close (identical up to three decimal places) to
the ML estimates, which happened to be unique. (That the ML estimates
were unique in all three cases was confirmed by repeating the ML estimation
several times starting from different initial estimates.)

We first fitted the unconstrained three-dimensional latent class DEDI-
COM. Derived parameter estimates are presented in columns 2-4 of Table 1.
The loading pattern (relative sizes of g;y,) in this solution is strikingly similar
to that of the unconstrained-varimax solution of Kiers and Takane, despite the
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Table 1: MPL Estimates of a;;; and ry; for the Car Switching Data.

Constrained Constrained

Unconstrained Nonoverlapping Overlapping
Latent Class 1 2 3 1 2 3 1 2 3
ails
SUBD .05 *00 .17 .21 .22
SUBC .01 .00 .02 .02 .03
SUBI 01 .01 .16 .16 A7
SMAD .01 .03 .20 .22 .23
SMAC .00 .00 .00 .00 .00
SMAI .00 .01 .04 .04 .05
COML 12 *00 .06 .19 A7
COMM .06 *.00 .02 .09 .08
COMI .01 .00 .02 .03 .03
MIDD 29 04 .06 .38 .34
MIDI .01 .01 .02 .03 .03
MIDS 040 12 22 .32 d100.29
STDL 28 *.03 =01 31 27
STDM A3 .37 <00 .63 A2 44 *.00
LUXD *00 35 .00 35 =00 42
LUXI .00 .02 .00 .03 .03
rse (multiplied by 1000)
Dim. 1 284 28 215 201 55 215 262 35 238
Dim. 2 000 174 22 3T 109 60 *14 121 2
Dim. 3 000 000 277 67 31 225 7213 219

The “*” indicates that the corresponding estimate was negative

in Kiers and Takane (1993)
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fact that no rotation was applied in the former. The apparent difference in the
overall size of the loadings results from the difference in the scaling conven-
tion between the two. Whereas in latent class DEDICOM g;|,’s are all non-
negative and satisfy (2), no such constraints are in effect in Kiers and Takane.
This means that scaling is essentially arbitrary in the latter, but since some
negative loadings occurred, they were scaled so that the sum of squares was
unity within each dimension. Although nonnegativity constraints on model
parameters are a more restrictive aspect of the proposed model, in most cases
their effects on overall goodness of fit are relatively minor, while allowing the
precise interpretation of the loadings as conditional probabilities. The uncon-
strained three-dimensional latent class DEDICOM model accounted for
84.4% of the total SS, which is only slightly smaller than the percent SS
accounted for by the corresponding solution in Kiers and Takane. The esti-
mates of conditional probabilities corresponding to the negative loadings in
Kiers and Takane’s solution (marked by asterisks in Table 1) are all close to
Zero.

We then fitted the same strictly simple-structured pattern hypothesis as
in the second analysis of Kiers and Takane. The results are reported in
columns 5-7 of Table 1, where entries left blank indicate the loadings (condi-
tional probabilities) constrained to be zero. Derived estimates are even more
similar to those in the corresponding solution of Kiers and Takane. This solu-
tion accounted for 82.5% of the total SS. No loadings happened to be nega-
tive in Kiers and Takane’s solution, so the estimates of loadings were scaled
to satisfy the same constraints as in latent class DEDICOM. Kiers and
Takane argued that under this normalization convention their estimates of the
loadings could be interpreted as approximate conditional probabilities. In the
latent class DEDICOM model this interpretation is always possible and exact.

Finally, we fitted the same quasi-simple-structured pattern hypothesis
as in the third analysis of Kiers and Takane. Derived estimates are presented
in columns 8-10 of Table 1. Again, the overall loading pattern in this solution
is very similar to that of Kiers and Takane’s constrained DEDICOM solution,
in which the same scaling convention was used as in the unconstrained-
varimax solution, since there were again negative estimates of loadings. The
loadings in Kiers and Takane’s solution, therefore, could not be interpreted as
conditional probabilitiecs. Conditional probabilities corresponding to the
negative estimates in Kiers and Takane’s solution (again marked by asterisks)
turned out to be close to zero in the latent class DEDICOM solution. This
solution accounted for 83.5% of the total SS. The percent SS’s accounted for
by the latent class DEDICOM model are in all cases somewhat smaller than
those in the corresponding solutions by Kiers and Takane. This result stems
partly from the fact that in the latter this quantity is explicitly maximized,
whereas a different criterion is optimized in latent class DEDICOM. It may
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also be that the nonnegativity constraints in the latent class DEDICOM model
are restrictive (albeit only slightly).

Estimates of R’s are given at the bottom of the table and are again on
different scales from those in Kiers and Takane’s solution. However, the
overall tendency in the latent mobility tables, that is, the predominant moves
from plain large and midsize cars to fancy large or small/specialty cars,
remain essentially the same as in Kiers and Takane (1993) and Harshman et
al. (1982).

7.2 Social Mobility Data

As a second example, we use intergenerational social mobility data
which are a 8 x 8 joint frequency table of father’s social status and son’s
status in Britain in 1959. The eight social status categories are: 1. profes-
sional and high administrative; 2. managerial and executive; 3. inspectional,
supervisory and other nonmanual (of high grade); 4. the same as in 3, but of
low grade; 5. routine grades of nonmanual; 6. skilled manual; 7. semi-skilled
manual; 8. unskilled manual. The data, displayed in Table 2, were taken from
Clogg (1981) who presented them with a remark on how he made a correction
in the data originally presented by Miller (1960). Several previous authors
analyzed the same data set (e.g., Duncan 1979). To benchmark the goodness
of fit of the proposed model, the AIC of the saturated model is 538.9 with 63
parameters for this data set, that of the independence model is 1395.0 with 14
parameters, and that of the quasi-independence model fitted to off-diagonal
elements is 903.7 with 22 parameters. (Note that in these models no penalty
should be introduced to determine the model parameters uniquely, so that the
straightforward ML method was used to fit these models. We use AIC as an
approximation to RIC(0) where O is the value of p.)

Table 3 gives bootstrap estimates of RIC as a function of p and the
number of origin (and destination) latent classes (S). The sample size of the
bootstrap study was 100. Numbers in parentheses indicate the bias terms
added to minus twice the maximum log penalized likelihood to obtain the
value of RIC. These are analogous to twice the number of parameters in AIC
but take into account the amount of penalty incorporated in the optimization
criterion. The value of p was varied from .001 to 1 with an increment factor
of 10. The minimum RIC solution is obtained when p =.01 and § = 4. The
RIC value of 519.2 compares favorably with both the AIC values of all of the
benchmark models mentioned above as well as with the AIC value of 543.1
with 35 parameters associated with the best fitting model obtained by Clogg
(1981).
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Table 2: The Social Mobility Data from Miller (1960).

Father's Son’s Status Raw
Status 1 2 3 4 5 6 7 8 Totals

1 50 19 26 8 7 11 6 2 129
2 16 40 34 18 11 20 8 3 150
3 12 35 65 66 35 8 23 1 345
4 11 20 58 110 40 183 64 32 518
) 2 8 12 23 25 46 28 12 156
6 12 28 102 162 90 333 230 177 1354
T 0 6 19 40 21 158 143 71 458
3 0 3 14 32 15 126 91 106 387
Column

Totals 103 159 330 459 244 1185 593 424 3497

Table 3: Bootstrap Estimates of RIC and the Bias for the Social Mobility
Data.

P 001 .01 1 1
Dimensionality
3 536.1  539.2 572.7 823.0

(59.6) (59.1) (62.2) (59.9)

i 520.2 *519.2 538.8  900.8
(81.1) (75.8) (76.7) (65.0)

5 526.7  525.1 580.5 1033.5
(97.3) (89.6) (92.5) (73.5)

*Minimum RIC solution
The correction factor (bias) to the MPL is
given in parentheses.
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Table 4: MPL Estimates of a;, and ry in the 4 x 4 Latent Classes Solution
for the Social Mobility Data.

Conditional Probabilities of Occupational Categories
Given Latent Classes

Occupational Latem Class Probability
Category I I I v of Staver (gi)
1 .000 .005 182 .000 011

(.000) (.010) (.067) (.000) (.003)
2 .000 .003 .290 .080 .003
(.003) (.003) (.063) (.045) {.002)
3 014 153 293 .194 .002
(012) (.034) (044} (.086) (.002)
4 .065 294 .104 195 .007
(024) (.049) (.048) (.087) (.005)
S 024 .064 .026 266 .003
(014) (.028) (.021) (.072) {.002)
6 436 A4TT .150 047 020
(038) (.072) (.056) (.086) (:014)
7 .253 .001 .000 .186 .011
(.037) (.008) (.004) (.093) (.005)
8 .207 .003 .000 033 012
(.023) (.019) (.003) (.039) (.004)

Joint Probabilities of Origin and Destination Latent Classes

Origin
Latent Destination Latent Class
Class I 11 91 v Total {r;.)
I 411 .001 .000 .051 463
(.055) (.015) (.000) (.025)
I .083 .169 .011 051 313
(033) (.041) {(.009) (.025)
jass .006 .005 .088 .027 126
(005) (.004) (.021) (.012)
v .003 002 .000 .023 .028
(011) (016} (001} {.037)
Total (r.¢) 502 177 099 .153

Unique parameter estimates corresponding to the minimum RIC solu-
tion are given in Table 4. Origin latent classes are arranged in descending
order of their marginal probabilities @.e., 7, =Z;ry). Numbers in
parentheses are estimates of standard errors obtained by the bootstrap
method. (They are byproducts of bootstrap estimates of RIC.) Note that
zeroes (.000) in the table are not exactly equal, but simply very close to zero.
Latent Class I (both origin and destination) represents the low end of social
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status, while Class III is the opposite. Classes II and IV represent middle
strata in the spectrum. Class IV is a somewhat more diffuse class attracting
people from many observed categories. Transition probabilities between
different latent classes are relatively small with relatively large probabilities
concentrated on diagonals. Nonetheless, we see some asymmetry in the table
of ry. Latent Classes III and II (both representing relatively high social
status) tend to shrink, while I and IV tend to grow, as indicated by the com-
parison between row and column marginals of r, (i.e., r,, and r). The proba-
bility of Class II — I is much larger than the reverse. Also, the probabilities
of Classes [, IT and IIT — IV are larger than the reverse. It looks as if Class IV
(and to a lesser extent, Class I) is an attractor. The stayer probability tends to
be large for observed categories 1, 6, 7 and 8 (all representing extreme social
status, none in the middle). However, one should note that g; as well as a;\s
are confounded with the size of observed class i.

The above observations can be made with the estimates of original
parameters of the model. To characterize the nature of the latent classes,
however, it may be better to interpret the conditional probabilities of latent
classes given observed classes. These quantities can readily be derived from
or1g1na1 parameters of the model by as|, = a5 1. /Di s a,,l =aj; /D js
q; =gq;/p; and q; —q,/pj, where p; =X a;,r, and p; =2,aj,r, are
marginal probabilities of origin observed class § and destination observed
class j, respectively. These conditional probabilities, as weil as the condi-
tional probabilities of destination latent classes given origin latent classes
(r115) and the conditional probabilities of origin latent classes given destina-
tion latent classes (ry,) are given in Tables 5 and 6. Note that because of the
dlfferences between rs. and r, and between p; and p, asl, and as,, differ, as
do g; and q;".

Interpretations of the latent classes are clearer, but remain essentially
intact. Also, we can now clearly see that the conditional probability of
inherent stayers in observed Class 1 (professional & high managerial) is
extremely high compared to that in other observed classes. The r,|, is called
outflow probability describing the distribution of destination latent classes for
given origin latent classes, while ry, is called inflow probability describing
the distribution of origin latent classes for given destination latent classes.
Both probabilities confirm the general patterns of asymmetry observed in the
table of ry,. These quantities may also be useful in modeling outflow and
inflow probab111t1es between observed origin and destmatlon classes,
bji = Zstaslt Feis Qe + 81} CII , and pbij= Estalh‘ S|tat|j + Squl » IESpeC-
tively.
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Table 5: Conditional Probabilities (a,; and r¢s) Derived from the Estimates

in Table 4.

Conditional Probabilities of Origin Latent Classes
Given Father’s Occupational Categories

Father’s Origin Latent Class Conditional
Occupational Probability
Category I II III v of Stayer
1 .000 .047 .637 .000 315
2 .006 .025 .843 .051 .075
3 .066 484 .375 .054 021
4 205 .622 .089 .036 047
5 253 444 073 (164 .066
6 .524 387 .034 .003 .051
7 .875 .002 .000 .038 .085
8 .871 .009 .000 .008 112

Conditional Probabilities of Destination Latent Classes
Given Origin Latent Classes

Origin
Latent Destination Latent Class
Class I II I11 v
I .886 .003 .000 .111
1I 264 539 .034 .163
III .050 .037 .696 .217
I\ 094 .060 .003 .843




242 Y. Takane and H.A L. Kiers

Table 6: Conditional Probabilities (ay; and 7,;) Derived from the Estimates
in Table 4.

Conditional Probabilities of Destination Latent Classes
Given Son’s Occupational Categories

Father’s Destination Latent Class Conditional
Occupational Probability
Category I II I v of Stayer

.000 .032 .592 .001
007 .014 .635 .273
074 285 .306 314
247 394 .078 226
176 161 .036 .584
644 248 030 .021
760 .001 .000 .170
853 .005 .000 .041

OO~ O U W~
SBERERI

Conditional Probabilities of Origin Latent Classes
Given Destination Latent Classes

Origin
Latent Destination Latent Class
Class 1 11 I11 v
I .818 .008 .000 .336
I1 165 .956 .108 .333
ITI 012 .027 .891 .179

v .005 .009 .00t .152
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8. Discussion

In this paper we proposed the probabilistic DEDICOM model for
square asymmetric contingency tables to capture asymmetry in an easily
interpretable manner. Unidentifiability of model parameters was overcome
by the use of the MPL (maximum penalized likelihood) method. As in all
LCM, the proposed model is fully probabilistic in the sense that all parame-
ters in the model represent some kinds of probabilities, which optionally can
be turned into other kinds of probabilities, as desired.

We currently use the bootstrap estimates of RIC for model selection.
This approach is somewhat unwieldy, particularly given that each model has
to be fitted several times to each of several hundred bootstrap samples to
ensure a globally optimal solution. Computing the effective number of
parameters taking into account the penalty term is one promising alternative.
This is given by n,* = tr (H + pZ)‘1 H), where H is the Hessian of the log-
likelihood part, and £ that of the penalty part, of the penalized log likelihood
function. The idea is that introducing the penalty term is equivalent to
increasing the number of observations, which in turn is equivalent to
discounting the number of parameters. Exactly how much is expressed in the
formula above, which reduces to n, = rank (H) when there is no penalty term
(i.e., p=0), but in general n,* <n,. This number is used as the effective
number of parameters in AIC.

The proposed model can be generalized in various directions. Exten-
sions to multiway tables are one (e.g., Harshman et al. 1982). Multiway
tables take two different forms. One is transition tables at two occasions in
several populations, and the other is transition tables at multiple occasions.
In either case we may posit multiway latent mobility tables, R, possibly with
different structures imposed on them. For the second type of multiway tables,
this has been done by Bockenholt and Langeheine (1996), albeit in a some-
what different context. Structuring parameters in the model is another
interesting possibility even for the two-way model. For example, we may
impose a quasi-independence model on R. Other kinds of constraints in the
DEDICOM model have been discussed by Kiers and Takane (1993).

Appendix

We derive the algorithm described in the parameter estimation section.
We also show how the MPL method can be derived from a MAP (maximum a
posteriori) estimation method in a Bayesian framework. The penalized log
likelihood given in (11) is for incomplete (observed) data. The corresponding
penalized log likelihood for complete data is given by
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InL{ = 23 fist GisInay s + 8, Inaj), + 8y Inry,)

ij st

+X; fui 0; Ing; — (terms related to A’s in (11))
+ P (Zis O Ina;is + Xy, 8 Inry, + 2,8, 1ng,), (18)

where f;;, is the unobserved joint frequency of moves from observed class i
to j in latent class sz, and similarly, f;; is the unobserved frequency of those
staying in observed class i in stayer latent class i.

The E-step requires taking the expected value of InL{, given the
observed data (f;j) and the current values of parameters, a{?), r©, and ¢/®.
That is,

InLE" = EAnLE | fi,af) , rP,q0). (19)

It amounts to rep*]aCing ](lzs't’ fiii? Qi1 Vs and q; in (18) by f;;'sty f;':'i, at((l).z'y rg)),
and q,(o), where Jijse and fy; are given in (12) and (13), respectively,

In the M-step, aff), r{?, and ¢{® are assumed variable, and (19) is max-

imized with respect to them. Differentiating InL{)* with respect to a
nonfixed aff} and setting the result equal to zero leads to

hafd =3 (i + fiu) +p (20)
Jt
so that an update of a{f) will be given by

afly = [X (fijo + fius) + P1/ X @1
it
The A, is obtained by summing both sides of (20) over i. That is,
he = T X ijor + fius) + 855 P, (22)
Y

since %; aff) = 1 because of (2). The above (21) with (22) is essentially the
update (14). Similarly, differentiating InL{" with respect to a nonfixed r(®’
and ¢{® and setting the results equal to zero lead to

D W @3)
L]

and
rg® =fii+p. (24)

Summing both sides of (23) and (24) over st and i, respectively, and adding
them together, we obtain
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A=Y fis t S +n P, (25)

st i
because of constraint (3). We obtain (15) and (16) by substituting this expres-

sion for A in (23) and (24), respectively.
We may rearrange (18) into

InLE) =% 8;[Z (fijsr + fies) + Pl I
+ X5 0u[%; j fijr +P11nry
+8; Z; [fiui + plIng;
— (terms related to A’S) . (26)

Doing so indicates that the MPL method can also be construed as the MAP
(maximum a posteriori) estimation method in a Bayesian framework. We

take Dirichlet distributions as prior distributions of a;5, s = 1,...,S and of
ry and g;. For example, for a;, with a specific s, let a’y = (@115, - - - Anls)s
and o = (04, . ..,0,), where o;’s, i = 1,...,n, are parameters in the Diri-
chlet distribution,

F(Ei(Sis(ai - 1) + 1)) 3 (1)
Hi T ;0 —1) + 1) lzl(ails) , Q7

where we understand 0° = 1. This result, in combination with the multinomial
likelihood for frequency data, £ = (f1, . . . ,f,), Will lead to a posterior distri-
bution which is proportional to another Dirichlet distribution,

TE Qe +fi—D+ 1) 8o +-1)

[T +fi=D+ D l:[(a”s)

This formulation suggests that the o; — 1 above can be regarded as penalty
parameters, one for each a; ;. However, in practice it is usually too much to
specify different penalty parameters for different a;|s’s, so that we may
assume o; — 1 = p for all i. Then, the prior, (27), reduces to

Pr(a; | p)e< H(ails)ﬁi‘p , 29)

Pr(a, |l o) =

L(f1a,,0)e< (28)

s =1,...,S, and the posterior, (28), to
TE0,(fi +p)+ 1)
Hir(Sis(fi + P) + l)

The log of (30) is equal to the portion of the penalized likelihood stated in
(18) pertaining to the a; ;. Essentially the same holds for the ry, and g; part.

L(E | a,,8;p) > TTans)> . (30)
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