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Abstract: In the “pick any/n" method, subjects are asked to choose any number of items from
a list of nitems according to some criterion. This kind of data can be analyzed as a special case
of either multiple-choice data or successive categories data where the number of response
categories is limited to two. An item response model was proposed for the latter case, which
is a combination of an unfolding model and a choice model. The marginal maximum-likelihood
estimation method was developed for parameter estimation to avoid incidental parameters,
and an expectation-maximization algorithm used for numerical optimization. Two examples of
analysis are given to illustrate the proposed method, which we call MAXSC.

Key words: muitiple-choice data, successive categories data, unfolding model, marginal
maximum-likelihood (MML) method, expectation-maximization algorithm.

In the “pick any/n” method, subjects are given
a set of n items (stimuli, objects) and are asked
to choose any number of them according to
some criterion. For example, they may be asked
to choose acceptable vacation sites from a list
of n possible sites; they may be asked to choose
from a list of n durable goods those they intend
to purchase in the next six months; in a per-
sonality inventory they may be asked to mark
those behaviors that adequately describe their
behavioral disposition.

These data may be analyzed as a special case
of multiple-choice (unordered categorical) data
with only two response categories (“acceptable”

9, &

and “not acceptable”; “purchase” and “do not
purchase”; “apply” and “does not apply”) per
item. An item response model for such data
has been presented (Takane, 1997). In this
model both of the responses to each item are

represented as points in a multidimensional

space, and subjects choose one according to its
closeness to their ideals (represented as points
in the same space). Alternatively, the data
may be treated as a special type of successive
categories (ordered categorical) data with only
two response categories. In this case each item,
rather than each category of item, may be
represented as a point, and the subjects are
assumed to choose (or not to choose) the item
according to its closeness to their ideals. In
this paper we discuss a model for “pick any/n”
data viewed as a special type of successive cat-
egories data.

Subjects’ ideal points account for individual
differences in the kind of preference data we
deal with in this paper. However, they also
become incidental parameters (i.e., parameters
which are bound to increase in number as
more observations are obtained), if estimated
jointly with other parameters of interest. This

' The work reported in this paper is based on a talk given at the European Psychometric and Classification Meeting in
Jouy-en-Josas, France, July 1983, under the same title. This work has been supported by research grant A6394 to the
author by Natural Sciences and Engineering Research Council of Canada.
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may result in inconsistent maximum-likelihood
(ML) estimates (e.g., Andersen, 1980) of non-
incidental parameters. To avoid this difficulty,
the marginal maximum-likelihood (MML) es-
timation method (Bock & Lieberman, 1970)
has been developed for the proposed model. In
this estimation method, a subject’s ideal point
is introduced as a random effect parameter,
assumed to follow a certain distribution over
the population of subjects, which is then in-
tegrated out to obtain marginal probabilities of
choice patterns. Estimates of item parameters
as well as those characterizing the subject
distribution are determined so as to maximize
the marginal likelihood.

In the next section we present details of the
proposed model along with the MML method
for parameter estimation. We call this method
MAXSC, MAXimum likelihood item response
theory (IRT) models for Successive Categories
data. We then discuss an expectation maximiza-
tion (EM) algorithm for maximizing the mar-
ginal likelihood. This is followed by examples
of the model’s application, and finally by a
discussion and a look at further prospects.

The model

Suppose each of N subjects has chosen any
number of items from a set of n items accord-
ing to a certain criterion. It is convenient to
classify the N subjects in terms of their choice
patterns, which are indexed by k. Let us assume
that there are K distinct observed choice pat-
terns. Define:

- 1, if item { is chosen in
gk=4 response pattern k (1)
0, otherwise.

Each choice pattern is then described by a
sequence of g* fori =1, ..., n. Let f, denote the
observed frequency of the kth choice pattern.
We assume that items are represented as points
in an A-dimensional Euclidean space. Let x,
denote the coordinate of item i on dimension a
(i=1,...,na=1, ..., A). We also assume that
the subject’s ideal point is represented in the
same Euclidean space. Lety = (y,, ..., y,) be a
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vector of coordinates of the subject point. We
further assume that y is a random vector with
its density function denoted by h(y). Let d(y)
denote the distance between item i and a sub-
ject whose ideal point is at y. This is given by:

a(y) = (5, - 3" @

This is a special case of Coombs’ (1964) un-
folding (ideal point) model for preference data.
Let p(y) denote the conditional probability of
a subject at y choosing item i. We posit that:

exp(-d: (7))
)= ’ 3
PO e a ) v ®

where b is a threshold parameter. The model
postulates that each item has a response
strength, exp(~d:(y)), for a subject at y which is
a decreasing function of the distance between
item i and y, and that an item is chosen (or not
chosen) by the subject according to its response
strength relative to the response threshold.
This is a special case of Luce’s (1959) choice
model, in which item {’s response strength is
compared with the response threshold, b, and
the choice is made with the probability pro-
portional to item i’s response strength. That
is, p.(y) = ¢ exp(-d’(y)) for some c # 0, but since
the probabilities of choice and non-choice
should add up to unity, ¢ must be equal to
1/{exp(-d:(y)) + b}. It is assumed that there is a
single threshold parameter, b, that applies to
all items. This means that the acceptance cri-
terion is the same across all items. The con-
stant, v, in the exponent modulates the shape
of the response strength function. It can be set
to either 1.0 or 2.0. However, for reasons dis-
cussed by Takane (1997), v = 2.0 is generally
favored, and it will be assumed so throughout
the rest of this paper.

The conditional probability, P (y), of choice
pattern k is now stated as:

P =Ipyyi-py). @

This assumes independence of choices con-
ditional on y, which is known as the local
independence assumption in latent structure



Choice model analysis of the “pick any/n” type of binary data 33

analysis (Lazarsfeld & Henry, 1968). The mar-
ginal probability, P,, of choice pattern k is then
given by

P, = | P(yh(ydy. )
We assume
y-~ N(O’ E)> (6)

where X is further assumed to be diagonal
without loss of generality, with the diagonal
elements denoted by 62, e = 1, ..., A. The zero
mean vector in (6) identifies the origin of the
representation space. The integral in (5) may
be approximated by the Gaussian quadrature

P,= X P(y)B(y,) ™

at selected points y,. A special table is available
for B(y,,) with B(y,) =11, B(y,,). The likelihood
of the entire set of choice patterns can now be
stated as:

L=1Ipx (8)
We find estimates of model parameters, x, b,
andofori=1,..,nanda=1, .., A that
maximize the L.

Once L in (8) is maximized, we may use the
Akaike information criterion (AIC; Akaike,
1974) defined by:

AIC(m) = 21n L*(m) + 2n_, 9)

for the goodness of fit (GOF) comparison
among fitted models, where n represents a
particular model fitted, L*(r) is the maximum
likelihood obtained under model & , and #, is
the effective number of parameters in the
model. The model with the smallest value of
AIC is chosen as the best predictive model
of future observations. The effective number of
parameters is calculated by:

n=(Mn+1)A+1. (10)

There are nA x,, values, one b, and A values of
o,. Note that the translational and rotational

indeterminacies in the Euclidean space have
been removed by setting the mean vector of
y to zero and the covariance matrix to be
diagonal in (6).

Some IRT models similar to the one pre-
sented in this paper have been proposed by
various authors, including DeSarbo and Hoffman
(1986, 1987), Andrich (1988), and Hoijtink
(1990). These models, as in the present case, all
use distance functions (the unfolding model),
as opposed to scalar products, in the exponent
of the response strength function. DeSarbo and
Hoffman, however, used the joint estimation
method, in which subjects’ ideal points were
simultaneously estimated along with other
parameters of interest. The potential difficulty
associated with the lack of usual asymptotic
properties of ML estimators under such cir-
cumstances has already been noted. Andrich’s
model has a serious limitation in that it cannot
predict choice probabilities greater than .5,
as Andrich himself noted. This is due to the
unnecessarily restrictive assumption that b = 1
in Andrich’s model. Hoijtink’s method, called
Parella, allows a more flexible response strength
function than (3) adopted in this paper. How-
ever, both Parella and Andrich’s simple logist
model are limited to a single dimension.

An EM algorithm

Following Bock and Aitkin (1981), we have
developed an EM algorithm to maximize
the log of the marginal likelihood stated in (8).
The algorithm comprises the following two
steps, which are alternated until convergence is
reached.

1. E-step. For fixed parameter estimates,
calculate:

2,= Bo)Xg.P.(y,)P, (11)

where g, = f,g¥, and

f,= B XLP(y,)P, (12)

2. M-step. For each i independently, maximize

L=2g,Inp(y,) + (f,- &) In (1 - p(y,)) (13)
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with respect to x_, and afterall x,s (i=1, ..., n)
are updated, maximize

1=21, (14)

with respect to b and 62 (a =1, ..., A). In the
current algorithm these two sets of parameters
are updated sequentially, although this is merely
a convention adopted here. Maximizations in
the M-step are carried out by Fisher’s scoring
algorithm. This algorithm is particularly attract-
ive, since the number of parameters to be
updated simultaneously is small (at most A).
We use Hayashi’s (1952) third kind of quantifica-
tion method to obtain initial estimates of item
parameters. (This has an inadvertent effect of
forcing the choice pattern in which no items
are chosen to be excluded from analysis by
MAXSC, although the proposed model itself
should be able to accommodate such a pat-
tern.) We simply set b = 3.00 and 6 = 1/A for
all a, initially.

After the convergence is reached, the sub-
ject’s ideal point can, a posteriori, be estimated
for each choice pattern. We may use the Bayes’
expected a posteriori (EAP) estimation method
for this purpose (Bock & Aitkin, 1981). The
distributional assumption on y in (6) can also
be relaxed by re-estimating the quadrature
weights, B(y,), in (7) from empirical data in
each iteration. The formulae for the EAP
estimates of the subject’s ideal points as well as
their variance and covariance estimates, and
those for re-estimating the quadrature weights,
have been given in Takane (1997) for a similar
situation (MAXMC, MAXimum likelihood
item response models for Multiple-Choice
data). They can be used in the present context
without any serious modifications.

Examples

We illustrate MAXSC with two examples
of application. The first data set is Andrich’s
(1988). It has been analyzed by Andrich him-
self using his own model. The second data
set comes from Sugiyama (1975). It has been
analyzed by Heiser (1981) using homogeneity
analysis, also known as Hayashi’s (1952) third
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kind of quantification method, dual scaling
(Nishisato, 1980), and multiple correspondence
analysis (Greenacre, 1984).

Andrich’s capital punishment data

This example pertains to attitudes toward cap-
ital punishment. A scale was formed consisting
of eight attitude statements using Thurstone’s
methods. These statements are listed in Ap-
pendix A in order of least favorable to most
favorable to capital punishment according to
Wohlwill (1963) (as well as Thurstone’s original
study quoted in Wohlwill). Fifty-four graduate
students at Mudock University in Australia
taking an introductory course in measurement
and statistics responded to the eight items.
The 54 subjects fell into 22 distinct choice pat-
terns out of 256 possible patterns. Observed
frequencies of the 22 choice patterns are given
in Table 3. Table 1 gives a summary of the
GOF statistics (AIC). All solutions with
MAXSC were obtained with five quadrature
points along each dimension. One-, two-, and
three-dimensional solutions were obtained by
MAXSC. The minimum AIC criterion indicates
that the three-dimensional solution is best
among the fitted models, including the saturated
model. The appropriate dimensionality could
be higher, because no attempts were made to
obtain solutions in higher dimensionalities.
However, caution should be exercised, and not
too much faith should be put on the values of
AIC, since the sample size is so small with this
data set that the asymptotic properties of the
maximum-likelihood estimates are not likely
to hold. Rather, from the slight decreases in
the value of AIC beyond the dimensionality
of 1, we may argue that the eight-item scale

Table 1. Goodness of fit comparison:
Andrich’s (1988) data
Saturated model 4073 (255)

Dimensionality

1 51.6 (10)
2 36.4 (19)
3 31.9 (28)

AIC (number of para.).



Choice model analysis of the “pick any/n” type of binary data 35

Table 2. Parameter estimates:
Andrich’s (1988) data

Statement Coordinate

-0.62
-0.51
-0.50
0.09
1.72
1.86
2.03
2.28

X NGB WN =

Threshold estimate = 2.82.
Variance estimate = 1.18.

is essentially unidimensional with a few outly-
ing choice patterns (e.g., 10011011, 10001111),
contributing to the emergence of spurious
dimensions. (Another potential cause will be
mentioned in the Discussion.)

The unidimensional solution is displayed in
Table 2. These are the estimated scale values of
the eight items. These estimates are in exactly
the same order as those obtained in two pre-
vious studies, reported by Wohlwill (1963).
There is one reversal of order in Andrich’s
(1988) estimates which are obtained from the
same data set as used in the present study.
However, the amount of reversal is slight, and
so we may conclude that the agreement is quite
good among the four studies. The EAP es-
timates of choice patterns are presented in
Table 3, along with their standard errors. They
are listed in order of the estimated coordinate
values, which are again closely in line with
Andrich’s results. In the first column of the
table, where choice patterns are indicated as
sequences of g¥, we observe that ones run from
upper left to lower right, indicating approx-
imate unidimensionality of the eight items
(with a few exceptions noted earlier).

Sugiyama’s religious behavior data

Sugiyama (1975) investigated religious practice
among Japanese people. The six questions used
in the study are given in Appendix B. The data
were collected from a total of 4,243 subjects, of
whom 718 chose none of the six items and were

Table 3. EAP estimates of coordinates of
choice patterns: Andrich’s (1988) data
Observed Standard

Choice pattern frequency  Coordinate error
01100000 4 -1.26 52
11100000 10 -1.12 .63
01110000 3 -50 .70
11110000 8 -31 .60
01111000 1 00 .06
11111100 2 .00 .04
01110010 1 .01 .09
10111100 1 .06 .29
01101010 1 A8 .69
01111110 1 .98 .69
10011011 1 1.47 .09
00111101 2 1.47 R
01011111 1 1.47 .02
01001110 2 1.47 .06
00101101 2 1.47 .04
01001101 1 1.47 .04
10001111 2 1.47 .02
00011111 3 1.47 .02
00010011 1 1.47 .08
00001111 5 1.57 39
00001100 1 1.69 .56
00000111 1 1.95 74
Total, 54.

excluded from the analysis. The remaining
3,525 subjects were classified into 60 distinct
choice patterns. Three choice patterns marked
“%” in Table 4 were unobserved. Observed
frequencies of choice patterns are shown in
Table 4. As before, one- to three-dimensional
solutions were obtained, all with five quad-
rature points along each dimension. Resulting
GOF statistics (AIC) are presented in Table 5.
The saturated model turned out to be the best-
fitting model according to the minimum AIC
criterion. In this case the sample size is so large
that models with more parameters tend to be
favored by the criterion. It is also possible that
some important element is missing in the
current MAXSC model (see Discussion).
Figure 1 depicts the derived two-dimensional
configuration. This choice was dictated by the
interpretability consideration. The horizontal
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Table 4. Frequencies of choice patterns Table 4. Continued
in Sugiyama'’s (1975) data
No. Choice pattern Frequency
No. Choice pattern Frequency
47 010001 137
1 111111 42 48 010000 760
2 111110 33 49% 001111 0
3 111101 6 50 001110 2
4 111100 17 51% 001101 0
5 1711011 12 52 001100 4
6 111010 29 53 001011 4
7 111001 8 54 001010 3
8 1171000 82 55 001001 6
9 110111 51 56 001000 30
10 110110 69 57 000111 33
11 110101 20 58 000110 48
12 110100 54 59 000101 38
13 110011 34 60 000100 64
14 110010 124 61 000011 42
15 110001 27 62 000010 96
16 110000 317 63 000001 20
17 101111 1 644 000000 718
18 101110 2
19% 101101 0 %: zero frequency patterns.
20 101100 g9 #: not included in the MAXSC analysis.
21 101011 1
22 101010 "
23 101001 7 Table 5. Goodness-of-fit comparison:
24 101000 59 Sugiyama's (1975) data
25 100111 8
2% 100110 23 Saturated model 39.7 {62)
27 100101 7 Dimensionality
28 100100 35 1 974.2 (8)
29 100011 10 2 530.0 (15)
30 100010 55 3 472.9 (22)
31 100001 13
32 100000 194 AIC {number of para.).
33 011111 "
34 011110 / direction seems to represent a contrast be-
35 011101 2 tween authentic religious conduct (items 1 and
36 011100 5 ... . .
7 011011 4 3) versus supers.tltlous. bc.ehawor (items 4, 5 and
18 011010 8 6). On the vertical axis item 2 stands alone at
39 011001 4 the top, while all the other items are located
40 011000 a4 at the bottom. This could be due to ambiguity
M 010111 72 in item 2. Many people visit their family graves
42 010110 126 once or twice a year as a routine family event,
43 010101 45 but it may have little to do with their religious
44 010100 142 beliefs. The population of the subjects has a
45 010011 80 much larger spread along the horizontal direc-
46 010010 258 tion than the vertical. The variance estimate
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was .510 along the horizontal as opposed to
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Variance Estimate .079 4

ai g

unit 1

45 8

Variance Estimate
-->.510

Figure 1. The two-dimensional configuration: for

Sugiyama'’s (1975) data.

079 along the vertical. The estimate of the
threshold parameter turned out to be 4.02.

Discussion and further prospects

We have presented an item response model for
the “pick any/n” type of binary data, which
combined Coombs’ unfolding (ideal point)
model and Luce’s choice model. The MML
estimation method and an associated EM al-
gorithm have been developed to fit the model.
The general approach presented in this paper
points to an important direction in modeling
multivariate categorical data (Takane, 1997)
in general. The approach has already been
extended to another type of categorical data by
Hojo (1997).

We have seen two examples of the applica-
tion of MAXSC. The performance of the model
has turned out to be somewhat disappointing,
however. In neither example could we adopt
the minimum AIC solution as the best solution.
Although part of the problem is the sample
size, we also see some potential limitation in
the current MAXSC model. The threshold

parameter, b, is assumed equal across all items,
which could be too restrictive in many practical
data analysis situations. Indeed, most of the
IRT models for successive categories data (e.g.,
Muraki & Carlson, 1995; Samejima, 1969)
that use a bilinear model (scalar products) in
the response strength function as well as all
factor analytic methods for discrete data (e.g.,
Christoffersson, 1975; Muthén, 1984) differ-
entiate the threshold parameter for different
items. Two exceptions are DeSarbo and Cho
(1989) and Muraki (1990), although Muraki
seems to have changed his mind (Muraki &
Carlson, 1995). DeSarbo and his collaborators’
models (DeSarbo & Cho, 1989; DeSarbo &
Hoffman, 1986, 1987) as well as Takane’s ori-
ginal proposal (1983) have the option of allow-
ing b to vary over subjects, but this does not
seem to be a wise choice, because it introduces
another kind of incidental parameter. In any
case, it is an interesting empirical question to
investigate whether the threshold parameter
really needs to be differentiated across items
in particular situations. To do this, however,
requires a computer program that can fit the
model under both assumptions.

The current MAXSC is restricted to dicho-
tomous data. It should not be too difficult to
extend it to the general successive categories
case, where the number as well as the nature of
response categories may be different across dif-
ferent items. The possibility of differentiating
the threshold parameter (or parameters) across
different items will be more crucial in this case.
The development of a computer program that
can analyze such data is currently under way.

Takane (1984) discussed three kinds of
categorical variables: unordered categorical
variables; ordered categorical variables; and
variables indicating subpopulations of subjects,
such as gender, age group, and level of educa-
tion. MAXMC and MAXSC, respectively,
cover the first two kinds of categorical data.
While the third kind of categorical variables
can be analyzed as special cases of the first two,
Takane also suggested an alternative approach.
The data may be split into several sets
(subpopulations) according to these variables,
and each set may be modeled separately with
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the provision that some of the parameters
in the separate models are constrained to be
equal across different sets. For example, para-
meters in the choice model (3), may be assumed
common, while the distribution of y may vary
across different subpopulations. At the moment,
no software exists that can accommodate all
the three types of categorical data simultan-
eously. This will be an important undertaking
in the near future.
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Appendix A.
Statements in Andrich’s
(1988) data

Capital punishment is one of the most
hideous practices of our time.

The state cannot teach the sacredness of
human life by destroying it.

Capital punishment is not an effective
deterrent to crime.

I don’t believe in capital punishment but I
am not sure it isn’t necessary.

I think capital punishment is necessary but
I wish it were not.

Until we find a more civilized way to prevent
crime we must have capital punishment.
Capital punishment is justified because it
does act as a deterrent to crime.

Capital punishment gives the criminal what
he deserves.

Appendix B.
Questions in Sugiyama’s
(1975) data

Do you make it a rule to practice religious
conduct, such as attending religious ser-
vices, religious worship and missionary
works and do you occasionally offer prayers
or chant sutras?

Do you visit a grave once or twice a year?
Do you occasionally read religious
books, such as the Bible or the Buddhist
Scriptures?

Do you visit shrines and temples to pray
for business prosperity, success in an en-
trance examination and so forth?

Do you keep a talisman, such as an amulet,
charm or mascot near you?

Do you draw a fortune, consult a diviner or
have you had your fortune told within the
last few years?
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