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A program is described for principal component analysis with external information on subjects and
variables. This method is called constrained principal component analysis (CPCA), in which regres-
sion analysis and principal component analysis are combined into a unified framework that allows a
full exploration of data structures both within and outside known information on subjects and vari-
ables. Many existing methods are special cases of CPCA, and the program can be used for multivariate
multiple regression, redundancy analysis, double redundancy analysis, dual scaling with external cri-
teria, vector preference models, and GMANOVA (growth curve models).

Regression analysis and principal component analysis
(PCA) typically proceed from opposite ends of the data
analysis spectrum. Regression methods are usually con-
sidered explanatory techniques in which the variability
in a set of dependent variables is partitioned into two or-
thogonal components: variability accounted for by known
external information (e.g., one or more predictor vari-
ables), and variability that is independent of external in-
formation (i.e., error variability). PCA, on the other hand,
is an exploratory technique used to investigate structures
in data when no external information is available. In this
paper, we describe a program for constrained principal
component analysis (CPCA), in which features of regres-
sion analysis and PCA are combined into a unified frame-
work that captures advantages of both.

Takane and Shibayama (1991) have described in detail
the rationale and methodology underlying CPCA. Briefly,
the analysis can be conceptualized as proceeding in two
distinct stages: (1) an external (regression) analysis in
which a data set is partitioned into predictable and error
variation, and (2) an internal analysis in which PCA is ap-
plied to the results of the external analysis. The external
analysis decomposes an N subject X n variable matrix of
dependent variables Z, into variation predictable from
external information on subjects and variables and vari-
ation unrelated to the external information. Assuming the
information on subjects (e.g., age, gender, IQ, treatment
condition, etc.) is coded into an N X p (< N) matrix, G,
and the information on variables (e.g., occasions, design
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matrix for pair comparisons, characteristics such as order,
familiarity, and complexity of stimuli presented in a mem-
ory task, etc.) into an n X g (<<n) matrix, H, the model
can be written as

Z=GMH +BH'+GC +E, (1)

where M (p X g), B (N X g), and C (p X n) are matri-
ces of coefficients to be estimated, and E (N X n) is ama-
trix of error components. The four terms on the right side
of the equation explain unique (orthogonal) portions of
the variation in Z. The first term pertains to variation that
can be explained uniquely by information on subjects and
variables combined, the second term by information on
variables alone, and the third term by information on sub-
jects alone. The fourth term includes variation in Z that
is independent of information on subjects and variables.

At this stage, the analysis is related to multivariate mul-
tiple regression. In fact, if only the main data Z, and in-
formation on subjects, G, were available, then only the
third and fourth terms in Equation 1 would be estimated,
and the parameters in C would equal the regression co-
efficients obtained from a standard multivariate multiple
regression analysis (assuming both G and Z contained
continuous variables). Thus, the Stage 1 full model can
be viewed as a doubly multivariate multiple regression
analysis with external information not only on subjects
but also on variables. Of course, the full model may not
always be desired, or other submodels may be of substan-
tive interest along with the full model. In such cases, it is
possible to obtain Z = BH’ + E (by simply omitting G
from the analysis), or Z = GC + E (by omitting H from
the analysis).

The second stage, the internal analysis, applies PCA to
each of the decomposed submatrices from the Stage 1
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Table 1
Summary of Analyses
Number Data External Analysis Internal Analysis
1 z none PCA of Z
2 GZ Regress Z on G PCA of (Z’
to obtain Z’
3 Gz Regress Z on G PCAof Z - ;Z’
to obtain gZ’
4 ZH Regress Z on H PCA of Zy
to obtain Zg
5 ZH Regress Zon H PCAof Z - Z;
to obtain Zj,
6 GZH  RegressZonG and PCA of gZy
and H to obtain Zy
7 GZH  RegressZonHto PCAofZy' — cZy
obtain Zg and on G
and H to obtain gZj
8 GZH RegressZonGto PCA of cZ' - ¢Zy

obtain cZ’ and on G
and H to obtain ;Zy

9 GZH

Regress to obtain
L, Zyand gZ;,

PCAOfZ — ¢Z' - Zy— cZj

analysis. Alternatively, submatrices can be recombined for
PCA if desired. For example, the first and second terms
can be combined, amounting to PCA of that part of Z
that is predictable overall from external information on
variables (including that which is unique to H and that
part which H shares with G). Similarly, the first and third
terms can be combined, and the part of Z that is pre-
dictable from G, both uniquely and in commeon with H,
can be component analyzed.

In all, nine analyses are possible allowing a full ex-
ploration of main data structures both inside and outside

the known external information (see Table 1, and the Ex-

ample Analyses section). The nine analyses include:
(1) PCA of Z unconstrained by G or H. This is a straight-
forward principal component analysis of Z. (2) PCA of
Z constrained by G and (3) PCA of Z independent of G.
Analysis 2 is a component analysis of the part of Z that
is predictable overall from subject information, whereas
Analysis 3 component analyzes the part of Z from which
subject information has been partialed. In these analyses,
external information on variables is ignored, which
amounts to combining the first and third terms from the
full model presented above (obviously, these would be the
analyses of choice if no stimulus information were avail-
able). Notice, however, that Analysis 3 is not an analysis
of E from the full model. The error component will differ
depending on whether H is included or ignored. (4) PCA
of Z constrained by H, and (5) PCA of Z independent of
H. These analyses are equivalent to Analyses 2 and 3
above, except that now information on variables is incor-
porated and subject constraints are ignored (or are un-
available). (6-9) PCA of the four terms in the full model.

RELATIONS TO OTHER METHODS

CPCA is a very general method for finding a reduced
rank representation of the relationship among sets of

variables, and it subsumes several existing methods
as special cases. For example, if only G and Z were avail-
able and both contained continuous variables, CPCA
would reduce to what has been called principal compo-
nents of instrumental variables (Rao, 1964), reduced
rank regression (Anderson, 1951), and redundancy analy-
sis (Van den Wollenberg, 1977). The unique aspect of
CPCA is that it extends redundancy analysis to incorpo-
rate external information on variables and on subjects,
suggesting as a possible synonym for CPCA the term
double redundancy analysis (or if only Z and H are avail-
able, we refer to the analysis as redundancy analysis of
structured variables). Additionally, unlike standard re-
dundancy analysis, CPCA focuses not only on structur-
ing the predictable parts of Z but also on structuring

Table 2
Analysis of Main Data Matrix (Z)

ANALYSIS 1: Analysis of Z @

SS & %SS for the external analysis ®

SS= 484.000 %SS= 100.000

SS & %SS for the internal analysis ©

SS=356.148 %SS (per term $S)= 73.584 %SS (per total SS)= 73.584

Dimensionwise SS & %SS 1 2

§8= 253.493 102.654

%SS (per term SS) 52.375 21.210

%SS (per total SS) 52.375 21.210

Matrix A of Component Loadings @

] .761 —.464
2 .763 357
3 -.592 573
4 -.903 335
5 .810 321
6 -.678 —.487
7 -.574 —.549
8 .883 246
9 —-.450 -.619
10 .638 -.378
11 -.774 .566
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Dimension 1 vs Dimension 2
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Figure 1. Plot of loading matrix for Analysis 1.

residuals in Z after variation accounted for by external
information has been removed. ‘

Other special cases of CPCA include growth curve
models (GMANOVA; see Khatri, 1966; Rao, 1965) and
two-way CANDELINC (Carroll, Pruzansky, & Kruskal,
1980), which both analyze only the first term in Decom-
position 1. If Z is a matrix of pairwise preference data,
G is a vector of ones, and H is a design matrix for paired
comparison, then three vector models for pairwise pref-
erence data (e.g., De Soete & Carroll, 1983; Heiser & de
Leeuw,1981; Takane and Shibayama,1988) are all spe-
cial cases of CPCA that differ according to which term
in Decomposition 1 is analyzed. (See Takane & Shiba-
yama, 1991, for details and for a discussion of how CPCA
relates to yet other methods. Example applications are
also included.)

A commonly used method for investigating the reduced
rank relationship between two sets of variables (e.g., Z
and G) is canonical correlation. It obtains linear combi-
nations (components) of each set of variables under the
constraint that corresponding pairs of components are
maximally correlated. The problem with canonical cor-
relation is that components that maximally correlate
might account for only a small portion of the variation in
their respective sets. As a result, a component in one set
(e.g., G) might correlate highly with a component in a
second set (e.g., Z) but might explain only a small por-
tion of the overall variation in Set Z (and vice versa).
This overall portion of variation in one set that is ex-
plained by a component of another set is called redun-
dancy, and it is this quantity that CPCA maximizes(for a
full description of the difference between canonical cor-
relation and redundancy analysis, see Van den Wollen-

berg, 1977). CPCA also differs from canonical correla-
tion by accommodating information on subjects and on
variables. A method that does incorporate both subject
and variable constraints is GENFOLD?2 (DeSarbo & Rao,
1984). However, GENFOLD2 does constrained unfold-
ing analysis by fitting a distance model using an iterative
gradient procedure, whereas CPCA does constrained
principal component analysis by fitting a bilinear model.

THE CPCA PROGRAM

Program Description

CPCA is written in Fortran for the IBM PC XT, AT,
PS/2, or compatibles under MS-DOS/PC-DOS 3.0 or
higher. A math coprocessor is supported. The program
can analyze problems with up to 1,000 subjects and 40
variables in each of Z, G, and H. At this point in develop-
ment, the program does not accommodate missing data.
At least 550 K of available memory is required. The pro-
gram is very efficient. For example, using a 486DX2/66

Table 3
Analysis of Z Regressed on G (the Subjects Information Matrix)
ANALYSIS 2: Analysis of P(G)Z ©
SS & %SS for the external analysis ®
SS=346.747 %SS= 71.642

Matrix C transposed (in Model Z = GC +E) ®

1 422 —1.267 1.202 -.357
2 1.484 -.399 =.152 —.933
3 —.608 1.145 —.652 15
4 —.984 1.293 —.895 .586
5 1.466 -.538 -.014 -.914
6 =712 =.157 -.498 1.367
7 =.667 -.125 -.306 1.098
8 1.355 —.547 294 =1.102
9 —.600 —.258 —.039 .898
10 —.068 -.731 1.478 —.679
11 —.735 1.451 —.893 177

SS & %SS for the internal analysis @
S8=319.763 %SS (perterm SS)= 92.218 %SS (per total SS)= 66.067

Dimensionwise $S & %SS 1 2
SS= 243.727 76.036
%SS (per term SS) 70.290 21.929
%SS (per total SS) 50.357 15.710
Matrix A of Component Loadings ®
1 764 —-.500
2 741 456
3 -.619 344
4 -.933 257
5 792 373
6 —.613 —.394
7 -.502 -.360
8 .870 313
9 -.346 —.40
10 621 —.440
11 —-.796 453
Matrix of correlations between G and F @
1 .686 480
2 -.567 667
3 458 -.591
4 -.576 —.555
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Figure 2. Plot of loading matrix for Analysis 2.

computer, an analysis of 200 subjects with 11 variables in
Z, 4 variables in G, and 3 variables in H required 24 sec
of CPU time to perform all nine analyses.

Input

Input to the program consists of job parameter infor-
mation on number of subjects, number of variables in Z,
number of variables in G, number of variables in H, data
transformations (raw data, column centered, or standard-
ized), number of components, input/output options, and
input data format. This information along with the data
for N subjects (both Z and G data), a design matrix for
H, and optional target matrices for procrustes rotations
are all placed in an input file using any standard word-
processing program or editor. The program is run by typ-
ing cpca-t followed by an input filename and an optional
output filename. The syntax is

cpca-t infile.ext outfile.ext

where infile.ext is the file containing job parameter in-
formation and the data, and outfile.ext is an optional file
that receives the results of the analysis.

Output

For Analysis 1, the program output includes total sums
of squares (SS) for the main data, SS and percent sums
of squares (%SS) for each of the components retained,
component loadings, and component scores. Loadings and
scores can be plotted for each pair of components, and,
to aid interpretation, optional varimax, promax, and pro-
crustes rotations are available. When rotations are re-
quested, SS and %SS of squares for rotated components
are printed, and, in the cases of promax rotation, corre-
lations among components are given.
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For all analyses in which the main data are constrained
by external information (e.g., Analyses 2, 4, 6, 7, and 8
above), the program prints out (1) total SS for the main
data, (2) SS and %SS accounted for by the external in-
formation, (3) matrices of parameter estimates (i.e., ma-
trix M, B, or C), (4) SS and %SS for each of the compo-
nents retained in the internal analysis, (5) loadings of the
main variables on components constrained by external in-
formation, and scores on those components (optional
plots are available), (6) weights and loadings of the exter-
nal variables on the externally defined components (e.g.,
these would be redundancy variate weights and loadings
for the case in which only G and Z are analyzed), and
(7) all of the above for optional varimax, promax, and
procrustes rotations, as well as correlations among fac-
tors for promax rotated components.

For all analyses of error terms (e.g., Analyses 3, 5, and
9), the program printout includes total SS for the main
data, SS and %SS for the part of the main data that is in-
dependent of the external information, SS and %SS for
each of the components retained in the internal analysis,
and component loadings and scores. Again, optional plots
and rotations are available.

Availability

A copy of the program and the program user’s manual
may be obtained from the first author or can be down-
loaded from http://castle.uvic.ca/psyc/files.html

EXAMPLE CPCA ANALYSES

This example analyzes scores on four groups, each con-
taining 11 psychiatric patients (G1 = manic-depressive
[depressed]; G2 = manic-depressive [manic]; G3 = sim-
ple schizophrenia; G4 = paranoid schizophrenia) on 11
psychopathological items from the Brief Psychiatric Rat-

Table 4
Analysis of Residuals After Regressing Z on G
ANALYSIS 3: Analysis of Q(G)Z O
SS & %8S for the external analysis @
SS=137.253 %SS= 28.358
SS & %8S for the internal analysis ©
$S= 73.887 %SS (per term SS)= 53.832 %SS (per total SS)= 15.266

Dimensionwise SS & %SS 1 2
SS= 45.523 28.364
%SS (per term SS) 33.167 20.665

%SS (per total SS)
Matrix A of Component Loadings @

9.406 5.860

1 .761 —.464
1 139 -.026
2 .035 -.099
3 432 403
4 054 =.063
5 119 A17
6 =317 .140
7 -.572 =.354
8 .067 —-.059
9 =.594 .551
10 .089 .006
11 132 2.035
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Figure 3. Plot of loading matrix for Analysis 3.

ing Scale. The 11 items are (1) emotional withdrawal,
(2) guilt feelings, (3) tension, (4) grandiosity, (5) depres-
sive mood, (6) suspiciousness, (7) hallucinatory behav-
ior, (8) motor retardation, (9) unusual thought content,
(10) blunted affect, and (11) excitement. For purposes of
the analyses presented below, Z is a 44 X 11 matrix con-
taining scores on the 11 items for all 44 patients, G is a
44 X 4 matrix of dummy coded variables indicating the
four patient-type groups, and H is an 11 X 4 matrix of
dummy coded variables indicating item-type classifica-
tions. For this example, we classified together items that
might be expected to be symptomatic of depression (guilt,
depressive mood, and motor retardation), manic state (ten-
sion, grandiosity, and excitement), simple schizophrenia
(emotional withdrawal and blunted affect), and paranoid
schizophrenia (suspiciousness, hallucinatory behavior,
and unusual thought content). In what follows, we show
the results of each of the nine analyses provided by the
CPCA program, along with explanatory comments. Note
that optional output, such as printed factor scores and
graphs of factor scores, and the results of various rotations
are excluded due to space constraints.

Table 2 and Figure 1 show the output for Analysis 1.
The highlighted numbers below correspond to those
shown in Table 2.

© Analysis 1 is a straightforward principal components
analysis of Z.

@ The SS and %SS are given for the external (or re-
gression) analysis. In Analysis 1, there are no external
constraints on Z; therefore, in this case, the values of 484
and 100% reflect the total variability in Z.

® Summary results are given for the internal (or PCA)
analysis. The SS term reflects the amount of variability
accounted for by the number of components retained. In

Table §
Analysis of Z Regressed on H (the Variables Information Matrix)
ANALYSIS 4: Analysis of ZP(H) O
SS & %SS for the external analysis ®
SS=400.371 %SS= 82.721

Matrix B in Model Z = BH (transpose) + E @

1 -.038 1.629 —.464 —.883

2 .638 .1.465 -1.028 -1.341

3 -.279 1.163 —1.039 252

4 -.714 1.722 -.574 -.231

S -.123 1.350 -1.109 —.046

6 273 1.683 -.741 -.909

7 -.026 1.381 -.332 —.523

8 178 1.663 -.919 -1.174

9 .604 1.502 -.838 ~.445
10 .705 .996 -.565 -.759
11 .730 1.227 -.922 -1.198
12 —1.036 —.480 1.171 336
13 —1.006 —-.538 1.093 .807
14 —.897 —.552 1.486 -.176
15 —.822 -.332 1.767 —.206
16 —.780 —.424 1.273 —1.228
17 -1.174 —.412 1.257 -.529
18 -1.006 —-.343 1.363 —-.897
19 -.897 -.379 1.773 —-.704
20 -1.006 -.671 915 .966
21 -1.187 -1.093 .384 .268
22 -1.174 -.214 1.279 -.617
23 1.584 —.292 —.558 —-.588
24 990 607 -.910 —.363
25 1.259 —.349 -1.180 .032
26 1.888 -.350 -.767 -.619
27 .865 .145 -1.071 442
28 1.424 -.063 -1.139 -.301
29 1.317 487 -.072 -1414
30 1.670 .081 —.956 -.028
31 1.024 -.305 -.920 .605
32 1.482 445 -.834 —-.730
33 1.233 .064 -.539 -.129
34 —.285 —-.995 -.111 1.552
35 —.945 —.809 443 1.070
36 —.621 —1.066 099 1.020
37 —.678 -.459 -.304 1.620
38 —.396 —-.971 .658 810
39 -.519 -1.071 007 1.330
40 —.860 —.942 902 .655
41 —.480 —-1.022 .389 737
42 —.234 —1.369 497 1.084
43 —.956 -.780 219 1.342
44 277 —1.331 420 1.111

SS & %SS for the internal analysis @
SS= 350.107 %SS (per term SS)= 87.446 %SS (per total SS)= 72.336

Dimensionwise SS & %SS 1 2
SS= 249.789 100.318
%SS (per term SS) 62.389 25.056

%SS (per total SS)
Matrix A of Component Loadings @

51.609 20.727

1 .696 —.426
2 819 313
3 -.760 488
4 —.760 488
5 819 313
6 -.566 —-.550
7 —-.566 -.550
8 819 313
9 —.566 -.550
10 .696 -.426
11 -.760 488
Matrix of correlations between H and A
1 708 434
2 —.638 .668
3 464 —.432
4 —.473 -.728
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Figure 4. Plot of loading matrix for Analysis 4.

this example, the amount of variability accounted for by
the first two principal components was 356.148. The %SS
(per term SS) reexpresses this variability into a percentage
of the variance in Z that is related to the external con-
straints. In contrast, the %SS (per total SS) reflects the
percentage of total variability accounted for by the num-
ber of components retained. In Analysis 1, there are no
external constraints; therefore, these two values are the
same. The example results show that the first two prin-
cipal components account for 73.584% of the total vari-
ation in Z. The dimensionwise SS and %SS give the
same information, but for each component considered
separately. For example, the current analysis indicates
that the amount of variability accounted for by the first
component is 253.493, which accounts for 52.375% of
the total variance in Z.

© Matrix A contains the (unrotated) loadings of the
variables in Z on the first two principal components, and
the loadings are plotted in Figure 1 (if more than two
components are retained, pairwise plots are produced).
The plot indicates that the relations among the items are
fairly clear: Items characteristic of depression (Items 2,
S and 8) are located in the third quadrant, those charac-
teristic of manic state (Items 3, 4, and 11) are in the
fourth quadrant, simple schizophrenic symptoms (Items
1 and 10) are in the second quadrant, and those related
to paranoid schizophrenia (Items 6,7, and 9) are in the
first quadrant.

The results for Analysis 2 are shown in Table 3 and
Figure 2. The highlighted numbers below correspond to
those shown in Table 3.

© Analysis 2 is an analysis of the part of Z that is pre-
dictable from G—that is, it is an analysis of GZ’, where
6Z’ = GC, and is equivalent to redundancy analysis. In

the current example, it is an analysis of between-groups
variation.

@ The values in this section show that the between-
groups variation is 346.747, which accounts for 71.642%
of the total variation. This total percent of variation in Z
that can be accounted for by G is called the total redun-
dancy.

@® Matrix C is a matrix of parameter estimates for pre-
dicting Z from G. In general, this matrix contains the re-
gression coefficients that would be produced via a multi-
variate multiple regression of Z on G. In the current
example, G is a matrix of dummy variables coding group
membership, so the values in matrix C are the means for
each group on each of the 11 variables.

© This section indicates that when PCA is applied to
the between-groups variation, ¢ Z', the variation accounted
for by a two-component solution is 319.76, which repre-
sents 92.218% of the between-groups variation and
66.067% of the total variation. In the language of redun-
dancy analysis, we would say that the first two predictor
(redundancy) variates account for 66.067% of the over-
all variance in Z, which represents 92.218% of the total
redundancy. The dimensionwise SS and %SS give cor-
responding values separately for the first and second com-
ponents. Thus, the first two redundancy variates account
for 50.357% and 15.710%, respectively, of the total vari-
ance in Z.

Matrix A shows the loading matrix that arises when
PCA is applied to ;Z’. These loadings are plotted in Fig-
ure 2 and are strikingly similar to the ones presented ear-
lier for the unconstrained solution. Overall, these results
suggest that most of the variation in Z (and the factor
structure arising out of it), is due to differences among pa-
tient groups. In redundancy analysis, Matrix A would be
referred to as the matrix of cross-loading of the criterion
variables (Z) on the predictor (redundancy) variates.

Table 6
Analysis of Residuals After leng ZonH
ANALYSIS 5: Analysis of ZQ(H) O
SS & %SS for the external analysis @
SS= 83.629 %SS= 17.279
SS & %SS for the internal analysis ®
SS=47.968 %SS (per term SS)= 57.358 %SS (pertotal SS)= 9.911

Dimensionwise SS & %SS 1 2

SS= 28.680 19.288

%SS (per term SS) 34.294 23.064

%SS (per total SS) 5.926 3.985

Matrix A of Component Loadings @

1 016 -.226
2 19 -.057
3 -.372 -.017
4 218 —.068
5 -.124 -.083
6 -.001 —.443
7 454 219
8 .005 141
9 —.453 224
10 -.016 226
11 154 .086
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Figure 5. Plot of loading matrix for Analysis 5.

® The matrix of correlations between G and F is a
loading matrix that reflects the structure of the predictor
(redundancy) variates. The sign and size of the loadings
in the current example indicate that the difference between
Groups 1 and 3 (depressed and simple schizophrenic pa-
tients) and Groups 2 and 4 (manic and paranoid schizo-
phrenics) accounts for most of the variability in Z (50.357%
as seen above). The second redundancy variate, account-
ing for 15.71% of the variance in Z contrasts depressed
and manic patients with the two groups of schizophrenics.

The results for Analysis 3 are shown in Table 4 and
Figure 3. The highlighted numbers below correspond to
those in Table 4.

O Analysis 3 is an analysis of the part of Z that is not
predictable from G—that is, it is an analysis of (Z — ¢Z'),
where ¢Z’ = GC. In the current example, it is an analy-
sis of within-groups variation.

® The values in this section show that the within-
groups variation is 137.253, which represents 28.358%
of the total variation.

® This section indicates that when PCA is applied to
the within-groups variation (Z — GZ’), the variance ac-
counted for by a two-component solution is 73.887, which
represents 53.832% of the within-groups variation but
only 15.266% of the total variation. The dimensionwise
SS and %SS give corresponding values separately for the
first and second within-groups components.

© The loading matrix given in this section and illus-
trated in Figure 3 shows that the within-groups structure
differs substantially from the total structure.

The results for Analysis 4 are shown in Table 5 and
Figure 4. The highlighted numbers below correspond to
those shown in Table 5.

© Analysis 4 is an analysis of the part of Z that is pre-
dictable from H—that is, it is an analysis of Zg, where
Z ;= BH’. We refer to this analysis as redundancy analy-
sis of structured variables. In the current example, it is an
analysis of between-item-type variation, in which items
are classified into types as described above.

@ The values in this section show that the between-
item-type variation is 400.371, which represents 82.721%
of the total variation in Z. Again, this percent represents
redundancy in Z, but with respect to item types rather
than patient types.

® Matrix B is a matrix of parameter estimates for pre-
dicting Z from H. In general, this matrix contains the re-
gression coefficients that would be produced if Z were
transposed to produce a p (variables) X N (subjects) ma-
trix, which was then subjected to a multivariate multiple
regression on H. In the current example, H is a matrix of
dummy variables coding item types; the values in matrix
B are the means for each subject on each of the four types
of items. For example, items classified as characteristic
of depression include guilt, depressive mood, and motor

Table 7
Analysis of Z Regressed on G and H

ANALYSIS 6: Analysis of P(G)ZP(H) @
SS & %SS for the external analysis @
SS= 335453 %SS= 69.309

Matrix M in the full model @

1 177 1.435 -.776 —.660
2 -.999 —.494 1.296 —.180
3 1.340 .043 -.813 —.281
4 -.518 —.983 293 1.121

SS & %SS for the internal analysis @
SS=313.775 %SS (perterm SS)= 93.538 %SS (per total SS)= 64.830

Dimensionwise SS & %SS 1 2
SS= 239.164 74.611
%SS (per term SS) 71.296 22.242
%8S (per total SS) 49.414 15.416
Matrix A of Component Loadings @®
1 691 —-.472
2 802 .381
3 —.783 351
4 —-.783 351
5 .802 381
6 —.486 —.385
7 —.486 —.385
8 .802 381
9 —.486 -.385
10 .691 -472
11 —.783 351
Matrix of correlations between H and A @
1 .701 .580
2 —.681 534
3 464 —-.578
4 —.422 -.614
Matrix of correlations between G and F @
1 .689 482
2 —.569 .665
3 454 —.596
4 -.574 -.551
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Figure 6. Plot of loading matrix for Analysis 6.

retardation; the parameters in B associated with this
classification would equal the subjects’ means on these
three items.

O This section indicates that when PCA is applied to
the between-item-type variation, the variance accounted
for by a two-component solution is 350.107, which rep-
resents 87.446% of the between-item-type variation and
72.336% of the total variation (i.e., the item-type redun-
dancy is 72.336). The dimensionwise SS and %SS indi-
cate that the first two item-type redundancy variates ac-
count for 51.609% and 20.727%, respectively, of the total
variance in Z.

® Matrix A shows the loading matrix that arises when
PCA is applied to the Zyobtained from Zy = BH’.
These loadings are plotted in Figure 4. These results
show that dummy coding the items into types has the ef-
fect of constraining the loadings for items within a type
to be equal. Moreover, the figure clearly indicates that
these constraints capture the essence of the structure of
Z (only one item from each item type appears in the fig-
ure because same-type items overlap).

® The matrix of correlations between H and A indi-
cates that the first item-type redundancy variate is defined
by the difference between Item Types 1 and 3 (depressed
and simple schizophrenic) and Item Types 2 and 4 (manic
and paranoid schizophrenic). The second item-type redun-
dancy variate contrasts the combined manic and depres-
sive item types with item types characteristic of schizo-
phrenia (simple and paranoid item types combined).

The results of Analysis 5 are shown in Table 6 and Fig-
ure 5. The highlighted numbers below correspond to
those shown in Table 6.

O Analysis 5 is an analysis of the part of Z that is not
predictable from H—that is, it is an analysis of (Z — Zg),
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Table 8
Analysis of the Part of Z That Is Predictable From H
But Unrelated to G
ANALYSIS 7: Analysis of Q(G)ZP(H) @
SS & %8S for the external analysis ®
SS=64.917 %SS=13.413

Matrix B in the full model @
1 -.215 .194 31t -223
2 461 .031 —.253 —.681
3 —.456 -272 —-.263 912
4 —-.891 .287 202 428
5 -.300 -.085 -.334 614
6 .096 .249 .035 —.249
7 -.203 -.053 443 136
8 .001 229 -.144 -.514
9 427 .067 -.062 214
10 528 —.438 211 -.099
11 553 -.208 -.146 -.538
12 —.038 .014 -.126 516
13 —.008 —.044 -.204 .987
14 102 —-.057 .189 .004
15 177 162 471 -.026
16 219 071 -.023 -1.048
17 -.175 .083 —.040 ~.349
18 -.008 152 .067 -717
19 102 115 477 -~.524
20 -.008 -.177 -.381 1.146
21 —.188 -.599 —-413 448
22 -.175 280 -.018 ~.437
23 244 -.334 256 -.307
24 -.349 .565 —.096 -.082
25 —.081 -.392 -.366 313
26 .548 —.393 .046 -.337
27 -.474 102 —.258 723
28 .084 —-.106 -.326 -.019
29 -.022 445 741 -1.133
30 330 .038 -.143 254
31 =316 —.348 -.107 .887
32 .143 403 -.020 —.449
33 —.106 .021 274 152
34 233 -.011 —.404 431
35 -.427 174 .150 -.051
36  -.103 —.083 -.194 -.101
37 ~.160 .525 -.597 .499
38 122 012 365 -.311
39 -.001 ~—.088 —.285 209
40 —-.342 .041 .610 —.466
41 .038 -.039 097 —.384
42 284 -.386 .208 -.037
43 —438 203 -.074 221
4 .795 —.348 127 —-.010

SS & %SS for the internal analysis @
SS= 53.715 %SS (per term SS)= 82.744 %SS (per total SS)= 11.098

Dimensionwise SS & %SS 1 2
SS= 41.157 12.558
%SS (per term SS) 63.400 19.344
%8S (per total SS) 8.504 2.595
Matrix A of Component Loadings @
1 120 -.270
2 .081 205
3 .187 066
4 .187 .066
5 .081 .205
6 —.511 015
7 -.511 015
8 .081 205
9 -.511 .015
10 120 -.270
I 187 .066
Matrix of correlations between H and A @
1 .266 .680
2 492 144
3 .268 ~.888
4 —.055

—-.991
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Figure 7. Plot of loading matrix for Analysis 7.

where Zy; = BH'. In the current example, it is an analy-
sis of within-item-type variation.

@® The values in this section show that the variation
within item types is 83.629, which is only 17.279% of
the total variation in Z.

@ This section indicates that when PCA is applied to
the within-item-type variation (Z — Zg), the variance ac-
counted for by a two-component solution is 47.968, which
represents 57.358% of the within-item-type variation, but
only 9.911% of the total variation. The dimensionwise SS
and %SS give corresponding values separately for the first
and second within-item-type components.

© The loading matrix given in this section and illus-
trated in Figure 5 shows that the within-item-type struc-
ture differs substantially from the total structure.

The results for Analysis 6 are shown in Table 7 and
Figure 6. The highlighted numbers below correspond to
those shown in Table 7.

O Analysis 6 analyzes the part of Z that is predictable
from both G and H. It is an analysis of ¢Zg, where
6Ly = GMH’. We refer to this analysis as double redun-
dancy analysis. In the current example, it is an analysis
of between-groups variation in between-item-type vari-
ation (i.e., it evaluates whether the item-type profiles
vary over groups).

®© The values in this section show that combined, G
and H account for 69.309% of the total variation in Z.
This percent represents redundancy in Z as a function of
patient-type variation in item types.

® Matrix M is a matrix of parameter estimates for pre-
dicting Z from G and H. In the current example, because
both G and H are matrices of dummy variables, the values

in matrix M are the means for each of the four patient
types on each of the four item types.

O This section indicates that when PCA is applied to
the between-patient-type variation in item-type varia-
tion, the variance accounted for by a two-component so-
lution is 313.775, which represents 93.538% of the ex-
plained variation and 64.83% of the total variation. The
dimensionwise SS and %SS give corresponding values
separately for each of the components.

® Matrix A shows the loading matrix that arises when
PCA is applied to the ;Zy; obtained from gZy = GMH’.
These loadings are plotted in Figure 6. Again, these re-
sults show that the structure of the explained variation
captures the essence of the total variation in Z.

® and @ These sections show the matrix of correlations
between H and A and between G and F, respectively. These
matrices have have the same interpretation as redundancy
variates, as described previously. In this case, they indi-
cate that the first overall redundancy variate is defined by

Table 9
Analysis of the Part of Z That Is Predictable From G
But Unrelated to H

ANALYSIS 8: Analysis of P(G)ZQ(H) @
SS & %SS for the external analysis @
SS=11.293 %SS= 2.333

Matrix C (transposed) in the full model @

1 .245 —.268 -.138 .161
2 .049 .096 -.195 .050
3 .168 -.151 161 -.178
4 —.209 —.003 —-.081 .294
5 .031 —.043 —.057 .069
6 —.052 .023 -.217 246
7 —~.007 .055 -.025 -.023
8 —.080 =.052 252 -.119
9 .060 -.078 242 —.223
10 —.245 268 138 -.161
11 .041 .155 -~.080 —.116

SS & %SS for the internal analysis @
SS= 9.909 %SS (per term SS)= 87.750 %SS (per total SS)= 2.047

Dimensionwise SS & %SS 1 2
SS= 5.962 3.947
%8S (per term SS) 52.799 34.951
%SS (per total SS) 1.232 815
Matrix A of Component Loadings @
1 123 -.171
2 .081 .025
3 -.109 —.124
4 130 .084
5 .047 -.022
6 .161 .042
7 -.002 .022
8 —.128 -.003
9 —.159 -.064
10 —.123 A7
11 —-.021 .03
Matrix of correlations between G and F @
1 .050 -.810
2 -.105 815
3 —.784 —.080
4 .839 .075
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Figure 8. Plot of loading matrix for Analysis 8.

Table 10
Analysis of Residuals After Z Has Been Regressed on G and H

ANALYSIS 9: Analysis of Q(G)ZQ(H) ©

SS & %SS for the external analysis @

SS= 72.336 %SS= 14.946

SS & %SS for the internal analysis ®

SS=42.139 %SS (per term SS)= 58.255 %SS (per total SS)= 8.706

Dimensionwise SS & %SS 1 2

Ss= 26.916 15.224

%8S (per term SS) 37.209 21.045

%8S (per total SS) 5.561 3.145

Matrix A of Component Loadings @

1 .006 -.159
2 .091 —.038
3 -.329 -.010
4 A7 -.039
5 —.144 -.015
6 —.098 —.429
7 498 .140
8 .052 .053
9 —.400 .289
10 -.006 159
11 159 .049

the difference between patients who are depressed or sim-
ple schizophrenic and patients who are manic or para-
noid schizophrenic in the item types hypothesized to be
symptomatic of such patients. The second redundancy
variate captures differences between schizophrenics over-
all and manic depressives overall in corresponding item
types.

The results for Analysis 7 are shown in Table 8 and
Figure 7. The highlighted numbers below correspond to
those shown in Table 8.

© Analysis 7 is an analysis of the part of Z that is
uniquely predictable from H, independent of G. It ana-

lyzes (Zj; — ¢Zg ) and can be conceptualized as regress-
ing Z on G, obtaining the residuals from that analysis,
and then applying item-type constraints to those residu-
als. In the current example, it is an analysis of within-
patient-type variation in between-item-type variation.

0, 0, 0, ®, and ® These sections and Figure 7 report
results identical in interpretation to similar results re-
ported previously, with the proviso that they pertain to
between-item-type variation after between-patient-type
variation has been partialed out. Overall, the results in-
dicate there is very little variation in Z that is uniquely at-
tributable to H, and that the structure of this variation is
quite different from the structure of the total variation.
There is, however, some indication that, independent of
group membership, items classified as characteristic of
paranoid schizophrenics are responded to differently
than other item types.

The results of Analysis 8 are shown in Table 9 and Fig-
ure 8. The highlighted numbers below correspond to
those shown in Table 9.

© Analysis 8 is an analysis of the part of Z that is
uniquely predictable from G, independent of H. It analyzes
(gZ’ — gZy) and can be conceived as regressing Z (trans-
posed) on H, obtaining the residuals from that analysis,
and then applying subject constraints to those residuals.
In the current example, it is an analysis of between-patient-
type variation in within-item-type variation.

0, ®, 0, ®, and ® These sections and Figure 8 show
results identical in interpretation to similar results re-
ported previously, this time with the proviso that they per-
tain to between-patient-type variation after between-item-
type variation has been partialed out. The results indicate
no independent effect of patient types.
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Figure 9. Plot of loading matrix for Analysis 9.
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The results of Analysis 9 are shown in Table 10 and
Figure 9. The highlighted numbers below correspond to
those shown in Table 10.

© Analysis 9 is an analysis of the part of Z that is not
predictable from G and H. In the current example, it is an
analysis of within-patient-type variation in within-item-
type variation.

©, ®, and O These sections and Figure 9 show that
very little variation in Z remains that is independent of
G and H, and that the structure of the overall residuals
does not resemble the total structure at all.
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