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1. Introduction

Projectors play important roles in many statistical methods. Oblique pro-
jectors are particularly useful in instrumental variable estimation of regression
models in econometrics, where the disturbance term tends to be correlated with
predictor variables ([3], pp. 363-366). Let Py , represent the oblique projector
onto ¥ along W (i.e., Sp(P) = V, where Sp(P) denotes the range space of P,
and Ker(P) = W, where Ker(P) denotes the null space of P. Let Z denote a
matrix of predictor variables in regression, and L a matrix of instrumental
variables, such that rank(L'Z) = rank(Z) = rank(L) (see Section 3 for the
meaning of this rank requirement). Then, the instrumental variable estimation
invokes a projection matrix onto ¥ = Sp(Z) along W = Ker(L).

This paper explains two important questions regarding oblique projectors.
One is concerned with products of two oblique projectors, and the other with
decompositions of oblique projectors. In the first part of this paper we in-
vestigate what determines the onto- and the along-spaces of a product of two
oblique projectors under various conditions. In the second part we examine
various decompositions of oblique projectors when both predictor variables
and instrumental variables consist of two distinct sets of variables.

2. Products of two oblique projectors

Let P; and P, be two projection matrices of a same order. It is well known
(5], Theorem 5.1.4) that the commutativity of the two matrices provides a
sufficient condition for the product of two projection matrices, PP, = P,P,, to
be also a projection matrix. However, as is well known, this is a sufficient but
not a necessary condition. Brown and Page [1] provided a necessary and suf-
ficient (ns) condition for PP, to be also a projection matrix. More recently,
GroB and Trenkler [2] provided a number of interesting results on products of
oblique projectors. In this paper we provide alternative (but often equivalent)
characterizations of GroBl and Trenkler’s theorems. These characterizations
shed further light on their theorems. In presenting our results we explicitly
discuss their relations to GroB and Trenkler’s results.

We first discuss equivalent conditions to Brown and Page’s condition for
PP, to be also a projection matrix, and give analogous conditions for each of
P;Q,, Q,P;, and Q,Q, to be also a projection matrix, where Q;, =1—P;,
i = 1,2. We then consider situations in which two or more of these conditions
are simultaneously satisfied. It turns out that the commutative case arises when
all the four conditions are simultaneously satisfied.

Let P, i=1,2 be projectors onto space ¥, along space W, where
Ve W, =E", i=1,2. We sometimes write this as P, =Py, y, i = 1,2, since
Sp(P;) = V; and Ker(P;) = W,. Then, Sp(Q,) = W, and Ker(Q,) =V, i =1,2.
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We define Sp(Plpz) = V12, Ker(Ple) = VV]z, Sp(PzPl) = Vél, and
Ker(PzPl) = VVZ]-

Lemma 1 (Condition (1)). The following statements are equivalent:
(i) (P,P,)’ = P,P,.
(i) P,Q,P,P, = 0.
() P,Q,Q,P, = 0.
(IV) P]P2Q1P2 =0.

Proofs of equivalences among these statements are rather trivial and will not
be presented here. Note that the above condition implies Ker(P,P;) =
Sp(I — P\ P,), so that Vj; & W, = E".

Note 1. Equivalence between (1-i) and ¥j2 C V5 & (Wi N W) has been pointed
out by Brown and Page ([1], p. 339) without a proof. This has recently been
proved by GroB and Trenkler [2], who used equivalences between (1-i) and (ii),
and the fact that (1-ii) implied Sp(Q,PP>) C W N W as part of their proof.
GroB and Trenkler also state that under Condition (1), Sp(P1P>) = 1 N (@
(Winw)) and Sp(I-—P,P;) = Ker(P\P) =W, & (Wi N ). (Although
Ker(P\Py) = W, & (WiNV,) holds in general, Sp(I—PiP;) = Ker(PP5)
holds if and only if Condition (1) holds.)

Note 2. Werner ([8], Lemma 2.2) has shown that an ns condition for (1-i) is
e (Wn 1)@ (W NW). A proof somewhat simpler than Werner’s is
given below, which uses some of the relations stated Lemma 1.

Assume (1-i) and let x € V5. Then, P,x = x, and x = P;x + P,Q;x + Q,Q;x
=Px +P,Q,Px + Q,Q,P,x. However, PixeV, P,QPxecWnh
because of (1-iv), and Q,Q,P,x € Wy N W, because of (l-iii), implying
ache(WMnh) e (N w).

Conversely, let x € E*. Then, Pyx € V5. Let P>x =x; + X, + X3, where
X €N, Xp e Wi, and x;e WiNW,. We have (P1P2P1)P2X = P,Pyx,
= PPy(x; + x2 + x3) = P, Pyx, implying (1-i).

Note 3. In Lemma 1, P;Q, and Q,P; are not necessarily projection matrices.

Note 4. We can derive conditions similar to Condition (1) for P,Q;, QP> and
Q,Q, to be also projection matrices, which we state as Corollaries 1-3:

Corollary 1 (Condition (2)). The following statements are equivalent:
@ (P1Q,)* = P1Q,.
(i) P, P,P1Q, = 0.
(it)) P1P,Q;Q, = 0.
(iv) P1Q,Q,Q;, =0.
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Corollary 2 (Condition (3)). The following statements are equivalent:
(i) (QiPy)" = Q,P..
(1) Q,Q,Q,P, = 0.
(iii) Q,Q,P,P, = 0.
(lV) Q1P2P1P2 =0.

Corollary 3 (Condition (4)). The following statements are equivalent:
(i) (QQ)" = Q,Q..
(ii) Q1P2Q1Q2 =0.
(i) Q,P,P,Q, = 0.
(iv) QQ;P1Q, =0.

Note 5. According to GroB and Trenkler’s result mentioned in Note 1,
Sp(P1Q2) = Vi N (Wa & (Wi N 1)), and Ker(P1Q,) = V2 & (Wi N W3) under
Condition (2), Sp(Q,P2) = WiN (V36 (K NW)), and Ker(Q,P;) = W
&(M N 72) under Condition (3), and Sp(Q,Q,) = M N (W & (1 N 1)), and
Ker(Q;Q,) = ¥ & (V1 N Ws) under Condition (4).

Note 6. Conditions analogous to Conditions (1)—(4) can also be given for P,P;,
Q,P,, P,Qq, and Q,Q,, which we call Conditions (1)-(4'), respectively. Note
that 15 =1 NN @ (W N W)), and Wh = W & (Vi N W) under Condition
(1), Sp(Q:P1) =Mn (& (M N 1)), and Ker(QP1) =W & (N 1)
Funder Condition (2'), Sp(P,Q;) = 12N (W & (V1 N W), and Ker(P,Q,) =
Vi @ (Wi N W) under Condition (3), and Sp(Q,Q;) = W N (M & (1 N 1)),
and Ker(Q,Q;) = V1 & (W N V3) under Condition (4').

The following lemma due to Grof3 and Trenkler ([2] Lemma 2) is useful in
the sequel.

Lemma 2.
@NnhchWandVi NV C V.
(b) Wia C Wy + Ws and Wy C Wy + Ws.

Lemma 2 concerns only those relations pertaining to ¥j,, W;,, V»; and Ws,.
Similar relations can be stated for the onto- and the along-spaces of P,Q,,
Q.P1, QP;, P,Q,, Q,Q;, and Q,Q, as well.

Interesting special cases follow from concatenating two conditions at a time
among the four conditions (Conditions (1)—(4)) discussed above. We discuss
combinations of Conditions (1) and (2), Conditions (1) and (3), Conditions (2)
and (4), and Conditions (3) and (4). The other two possible combinations,
Conditions (1) and (4) and Conditions (2) and (3), do not seem to lead to any
interesting cases.
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Theorem 1 (Condition (5)). The following statements are equivalent:
(i) Conditions (1) and (2).
@ii) P,P,P, = P,P;.
(iii) P,\P,Q; =0 (Sp(P,Q,) C W C Wh).
av) Wo=m + W,
v) Sp(P2Q,) = # N V.
(vi) Conditions (3') and (4).
(vii) QQ,Q; = Q,Q;.
(viii) P1Q,Q, =0 (Sp(Q,Q,) € W C Ker(P,Q,)).
(ix) Ker(P1Q,) = W + 1.
(x) Sp(QQ,) = M N .

Proof, The 10 statements in Theorem 1 can be grouped into two, (i}(v) in one
group and (vi)—(x) in the other. We first show equivalences among statements
in each group, and then show equivalence between the two groups by showing
one of the statements in the first group (iil) is equivalent to one of the
statements in the second group (viii).

To show equivalence between (i) and (iii), we add both sides of (1-iv) and (2-
iii) and obtain (iii). Conversely, if (iii) holds, both (1-iv) and (2-iii) are trivially
true. Statement (ii) is just a restatement of (iii). To show equivalence between
(iii) and (iv), we first note W, C Wj, which holds in general, but since W} C W,
from (5-iii), we obtain W, + W, C Wj,. We also have W;, C Wi + W from
Lemma (2-b). Together these imply W, = W; + W;. Equivalence between (iii)
and (v) can be shown in a similar manner.

It is obvious that (i) and (vi) are parallel statements, so are (ii) and (vii), (iii)
and (viii), and so on, so that equivalences among (vi)—(x) can be proved in a
manner analogous to the above. Finally, we have (5-iii) if and only if (5-viii),
since P;P;Q,; = 0 holds if and only if P;(I — Q,)Q, = 0, which in turn holds if
and only if P1Q,Q, = 0, concluding the proof. O

Note 7. Statements (5-iv), (5-v), (5-ix) and (5-x) imply Wr & (W N V)
=mMm+m, homeWnm)=wmnh, he(WMnw)=Ww+/, and
W, N (W @ (V1 N 13)) = W N W, respectively.

Similarly we have, the following corollary.

Corollary 4 (Condition (6)). The following statements are equivalent:
(i) Conditions (1) and (3).
(ii) P,P,P, = P, P;.
(iii) Q;P1P, =0 (V12 C V2 C Ker(Q,P))).
(iv) Vo =nnh.
(v) Ker(Q,P1) = Wi + .
(vi) Conditions (2') and (4').
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(vil) Q,Q,Q; = Q;Q,.

(vii)) Q,Q,P; =0 (Sp(Q,P;) C ¥ C Ker(Q,Q))).
(ix) Sp(Q,P,) = M N 15,

() Ker(Q,Q)) = ¥ + Fs.

Note 8. Statements (6-iv), (6-v), (6-ix), and (6-x) imply V1 N (V2 & (Wi N W3))
=nnh, moWhnh =m+h, mnheinm)=mnh, and
Vi & (Wi N 1) =N + B, respectively.

Corollary 5 (Condition (7)). The following statements are equivalent:
(i) Conditions (2) and (4).
(11) P2P1P2 = P2P1.
(iii) P,P1Q, =0 (Sp(P1Q,) C W, C Wa).
(iv) W = W + Wa.
) Sp(P1Q,) = Vi N M.
(vi) Conditions (') and (3).
(vi)) Q,Q,Q; = Q:Q>.
(viii) P,Q,Q, = 0 (Sp(Q,Q,) C M3 C Ker(P2Q))).
(ix) Sp(Q,Q,) = W N W,.
(x) Ker(P,Q,) = V| + W,.

Note 9. Statements (7-iv), (7-v), (7-ix), and (7-x) imply that W @ (W N W)
=W+m, nnmeoMnh)=Nnhm, mnmae1nh))=mnm,
and V| @ (W) N Wh) = V| + W, respectively.

Corollary 6 (Condition (8)). The following statements are equivalent:
(i) Conditions (3) and (4).
(ll) P1P2P1 = P2P1.
(i) Q,P,P, = 0 (5 C W C Ker(Q,P3)).
i) i =rnh.
(V) Ker(Q,P,) = ¥ + Wi,
(vi) Conditions (1') and (2').
(vi1) Q,Q,Q; = Q,Q:.
(vii)) QQ,P = 0 (Sp(Q,P1) C % C Ker(Q,Q,)).
(ix) Ker(Q,Q,) =V + .
(x) Sp(Q,P) = i N Wh.

Note 10. Statements (8-iv), (8-v), (8-ix), and (8-x) imply that
nNnnemnm))=nnh, moMhnh)=n+m, heéinm)
=W + W, and W, N (N & (W N 1a)) = V1 N WA, respectively.

Proofs of equivalences among statements within Corollaries 4-6 are similar
to those for Theorem 1 and will not be given here.

We now take three conditions at a time from Conditions (1)—~(4). We con-
sider all possible combinations of three conditions at a time, namely
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Conditions (1)—(3), Conditions (1), (2), and (4), Conditions (1), (3), and (4),
and Conditions (2)—(4).

Theorem 2 (Condition (9)). The following statements are equivalent:
(i) Conditions (1)-(3).
(ii) P, P,P, = P,P,P, = P,P,.
(iii) PP, = Pyrpsm 1wy, Where the latter is the projection matrix onto V1 NV
along W, + W2.
(iv) Conditions (2'y-(4').
) Q1Q:Q; = Q:Q,Q; = Q:Q;.
(V) Q2Q; = Pwom v 413

Proof. As in the case of the statements in Theorem 1, the six statements in
Theorem 2 can be grouped into two distinct groups, one consisting of (i)—(iii),
and the other (iv)—(vi). We show equivalences among statements within groups,
and then between groups.

We obtain (i) by the combination of Conditions (5) and (6). We also obtain
(i) from (5-ii) and (6-ii), establishing equivalence between (i) and (ii). Equiv-
alence between (i) and (iii) can be seen by noting (5-iv) and (6-iv). (Although
the latter was not shown explicitly in Corollary 4, it can easily be shown in a
manner similar to that for (5-iv) in Theorem 1.)

Equivalences among (iv)}—(vi) can be shown in a manner parallel to the
above. Finally, (9-i) and (9-iv) are equivalent, because Conditions (1) and (2)
are equivalent to Conditions (3') and (4') according to Theorem 1, and Con-
ditions (1) and (3) and Conditions (2) and (4') are equivalent according to
Corollary 4, establishing equivalences among all the statements in Theorem 2.

Note that under Condition (9), (N NWK) © W, + W, =E" and (W1 N W)D
i+ Wh=E. O

Note 11. Theorem 3 of GroB and Trenkler [2] states that ns conditions for (9-iii)
are (D) N+Wh=Vo(WMnh),and (2) 1 + V3 & (Wi N W) = E". To under-
stand the relation between Theorem 3 of GroB3 and Trenkler and our Theorem
2, note (9-vi) above, which holds if and only if (9-iv) holds. Under Condition
@), Q,Q, is a projector along ¥} & (W N ¥;) (see Note 6), which reduces to
Vi + ¥, under Conditions (2') and (4'), implying (1). Also, under Conditions
(3") and (4) Sp(Q,Q;) = W] N W,. Thus, under Conditions (2')~(4'), (2) must
hold. Conversely, if (1) and (2) hold, (9-iii) must hold (according to Theorem 3
of GroB and Trenkler), which holds if and only if Conditions (2'), (3’) and (4')
hold (according to our Theorem 2). Thus, the two theorems are equivalent. It is
interesting to note that in GroB and Trenkler’s theorem, the condition for
P P2 = Pynp, 4w IS stated in terms of conditions on the onto- and the along-
spaces of Q,Q;. The condition equivalent to (1) and (2) can be stated in terms
of conditions on the onto- and the along-space of P;P;, which are (1')
Mi+W=me(WnNh), and 2) W +Wme (N nh)=E"
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Note 12. Under Condition (9), Sp(P:2Q;) = Sp(Q,P2) =WinV,;, and
Ker(P;Q,) = Ker(Q,P|) = W} + V5.

Note that Condition (9) only states a set of equivalent conditions under
which PP, = Py, w1+, Nothing is said about P,P;, which may or may not
even be a projector. Indeed, as will be shown later (Theorem 3), we need all
four conditions (Conditions (1)—(4)) to establish P1P, = P,P; = Pyp w145 -

Similarly for Theorem 2, we have

Corollary 7 (Condition (10)). The following statements are equivalent:
(i) Conditions (1), (2) and (4).
(i) P1Q,P, = Q,P,Q, =P,Q, = PVsz,W|+Vz~
(iii) Conditions (1’), (3') and (4).
(iv) P,Q,P; = Q| P2Q, = P,Q; = Pyjy 54 m-

Note 13. Under Condition (10), Sp(Q,Q;) = Sp(Q;Q,) = M N W;, and
Ker(P1P2) = Ker(P2P1) =W + W

Corollary 8 (Condition (11)). The following statements are equivalent:
(i) Conditions (1), (3) and (4).
(i) Q;P2Q, = P,Q,P, = QP = Py vy,
(iii) Conditions (1'), (2') and (4).
(iv) Q,P1Q, = P1Q,P; = Q,P1 = Pyrm, w115

Note 14. Under Condition (11), Sp(PiP2) = Sp(P.Pi) =V N ¥, and
Ker(Q,Q,) = Ker(Q,Q,) = 1 + 1.

Corollary 9 (Condition (12)). The following statements are equivalent:
(1) Conditions (2)—(4).
(i) Q,Q:Q; = Q:Q,Q: = Q;Q:z = Py 1111,
(iii) Conditions (1)—(3).
(iv) P\P,Py = P,P P, = PP = Pyrps i

Note 15. Under Condition (12), Sp(P;Q,) = Sp(Q,P;) = Vi N W5, and
Ker(P,Q;) = Ker(Q,P2) = V1 + M.

Proofs of equivalences among statements within Corollaries 7-9 are all
similar to that for Theorem 2, and will not be given here.

We now assume that all of Conditions (1)-(4) hold. This leads to the fol-
lowing characterization of the commutativity of P; and P,, different from that
of Rao and Mitra ([5], ch. 5).
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Theorem 3 (Condition (13)). The following statements are equivalent:
(i) Conditions (1)—(4).
(ii) Conditions (1"Y~4').
(lll) P]Pz = P1P2P1 == P2P1P2 = P2P1 - PV1|'1V2,W1+W2-
@v) P1Q, =P,Q,P, = Q,P1Q; = Q,P1 = Pyrmm+1-
W) Q,P; = Q,P,Q, = P,Q,P; =P,Q; = Pyrp 4w
(vi) QQ; = Q,Q,Q, = Q,Q,Q; = Q,Q; =Pmmyi+5-

Proof. Equivalences among (iii)—(vi) are well known. Equivalences among (i),
(ii) and (iii) are trivial, since Conditions (1) and (2) are equivalent to (3’) and
(4") and Conditions (3) and (4) are equivalent to (1) and (2’) (see Conditions (5)
and (8)). O

Note 16. Theorem 4 of GroB and Trenkler [2] states that ns conditions for (13-
iii) are (1) PyP; = Py, m+m, and (2) rank(PP,) = rank(P,P;), and their
Remark 4 states that the latter condition can be replaced by (2) 75; C V1. Note
that (1) is equivalent to Conditions (1)~(3) (our Theorem 2), and (2) is
equivalent to Conditions (3) and (4) (see (8-iii)). Jointly they are equivalent to
Condition (13). Note also that Conditions (9) and Conditions (2) and (4) are
also jointly equivalent to Condition (13). This implies that (2) can also be
replaced by Wa C Wy (see (7-iii)).

Note 17. Under Condition (13), we have (1) rank(P;P;) + rank(P;Q,)
+rank(Q,P;) + rank(Q,Q,) =n, and (2) rank(P,P;)+rank(Q,P)
+rank(P,Q,) + rank(Q,Q,) =n [4]. This means that E” is decomposed
into E'=(Nnh)ehn WmeWmnh)e(WiNw), where VNh=
Sp(PiPy) = Sp(P2Py), ¥i N Wz = Sp(P1Q,) = Sp(Q,P1), W N V2 = Sp(Q,P2)
= Sp(P,Q,), and i N 5 = Sp(Q,Q,) = Sp(Q,Q, ), which imply rank(P;P,)
= rank(P,P;), rank(P;Q,) = rank(Q,P;), rank(Q;P,) = rank(P,Q,), and
rank(Q,Q,) = rank(Q,Q)).

3. Decompositions of oblique projectors

The second problem we deal with relates to decompositions of oblique
projectors. In this section we examine various decompositions of oblique
projectors when both predictor variables and instrumental variables consist of
two distinct sets of variables. Let Z be a matrix of predictor variables in re-
gression, and let L be a matrix of instrumental variables. Depending on the
relationships between the two matrices, various decompositions of Psyz) er(z)
are possible. For notational convenience, we denote Pgyz) kerrr) by Pz We
assume throughout this section that
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Condition (14). rank(L'Z) = rank(Z) = rank(L).

Note that this condition is equivalent to Sp(Z) & Ker(L') = E". Note also
that under rank(L'Z) =rank(Z), (L'Z)’L'€{Z"}, and under
rank(L'Z) = rank(L), Z(L'Z)” € {(L')"} ([5], Section 4.11). Under (14),
Pz, = Z(L'Z)"L’ is the projector onto Sp(Z) along Ker(L') [9]. Let Z be
partitioned into [X]Y], and let L be analogously partitioned into [M|N]. We
assume, analogously to Condition (14), that

Condition (15). rank(M'X) = rank(X) = rank(M),
Condition (16). rank(N'Y) = rank(Y) = rank(N).

Decompositions of P,; we will discuss are mostly analogous to those of
orthogonal projectors. To motivate these decompositions we briefly review
representative decompositions of orthogonal projectors. Let Z = L. We then
have P; = Py, = Z(Z'Z)"Z'. Define Q; =1 — P;. Then, P% =Py, Qé =Q,
P, =P;, Q, =Q, and P,Q, = Q;P; = 0. When Z is partitioned, various
decompositions of P; are possible, as given below. The first four of them were
mentioned in Ref. [6], and the last one was first noted by Takane et al. [7] and
was presented, in its general form, in Ref. [10].

Lemma 3.
() Pz =Py + Py ifand only if X'Y = 0.
(11) PZ = PX + Py — PXpy ifand only ifP)(Py = PyP)(.
(iii) Pz =Py + Py, y = Py + Py, x.
(iv) Pz =Py, +Pyyo, if and only if Sp(X)NSp(Y)= {0}, where
Py, = X(X'QyX) X'Qy and Pyjp, = Y(YQxY) YQy.
(V) Pz = Pz + Pyz2)-5, where Sp(A) = Ker(B') and Z'W = B for some W.

Note 18. (1) Holds if and only if X and Y are mutually orthogonal. Note that
this condition is also equivalent to PyPy = PyPy = 0.

(2) Holds when Py and Py may not be orthogonal, but commutative. This
implies that the part of Sp(X) and the part of Sp(Y) excluding their common
space, Sp(X)NSp(Y), are mutually orthogonal. That is, (Pxy — PxPy)
(Py — PxPy) = (Py — PxPy)(Py — PxPy) = 0. This decomposition plays an
important role in two-way ANOVA with no interaction. Let X and Y denote
matrices of dummy variables for the two factors. Then, PxyPy = PyPy =Py,
where 1, is the n-component vector of ones. We have
P, - P,, = (Px — Py,) + (Py — Py,), where the first term on the right hand side
of this equation pertains to the main effect of X, and the second term to the
main effect of Y.
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(3) Holds in general. This decomposition is useful when we fit one of X and
Y first, and then fit the other to the residual in multiple regression analysis. We
have PXPQXY = PQXYPX =0 and PyPQYX = PQ},Xpy =0.

(4) Holds if and only if Sp(X) and Sp(Y) are disjoint. The matrices Q, and
Qy in Pyx/p, and Py, are called metric matrices. Note that the two terms in
this decomposition are not mutually orthogonal. However, define a metric
matrix,

K' =Qy +Qy + TDTI»

where T is such that Sp(T) = Ker(Z') and D is an arbitrary positive definite
matrix. Then, Pz = PZ/K*, PX/Qy = PX/K'» Py/QX = Py/Kx, and
(P)(/K*)/K*Py/]{* = (. (That iS, PX/Qy = P)(/K* and Py/QX = Py/[(* are mutually
orthogonal under the metric implied by K*.) The matrix K* is an example of
orthogonalizing metric defined by Rao and Mitra ([5], Lemma 5.3.1).

(5) Arises when we impose a constraint of the form B'b = 0 on the vector of
regression coefficients, b. Note that this constraint can equivalently be written
as b = Ab, where b is the reduced (reparameterized) coefficient vector. Note
that Pz Pzzz)y- 258 = Pzzz)-28Pz4 = 0.

We can readily extend the above decompositions into K-orthogonal cases
where K is a nnd metric matrix such that rank(KX) = rank(X) and
rank(KY) = rank(Y). Define Pz = Z(Z'’KZ) Z'’K and Qg =1—Pyxi.
Then, under the rank conditions stated above P% x = Pz, Qé/K = Qzx>
(KPzx) =KPzx, (KQzx) =KQzx, PzxQzx =QzxPzx =0, and
(Pz/x)KQzx = (Qzx)KPzx =0. We assume that Z=[X]|Y], and
rank(KX) = rank(X) and rank(KY) = rank(Y).

Lemma 4.
. Pz/x = Pyjx + Py if and only if X'’KY = 0.
2. Pzix = Px/x + Py/x — Px/xPy/x if and only if Px/xPy;x = PyxPx/k.
3. Pzx = Pyix + Py, vk = Pyjx + Poyox/k.
4. PZ/K = PX/KQy/]( -+ PY/KQX/K ifdl’ld only lfSp(X) n Sp(Y) = {0}
5. Pzx = Puyx + Pzizkzys/x, where Sp(A) = Ker(B') and ZKW =B for
some W,

Note 19. Note that P/ is a special case of Pz, where L = KZ, and that it
reduces to P; when K = 1. Note also that the two terms in decomposition (4')
are not K-orthogonal. However, as in (4), we can find an orthogonalizing
metric under which the two terms are K*-orthogonal. Such a metric is found by
K* = KQy x + KQy/x + TDT', where Sp(T) = Ker(Z'), and D is an arbitrary
pd matrix.

We now derive decompositions of Pz.; analogous to (1)~(5) and (1)~5")
above:
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Theorem 4.
1" Py..=Px.y+Py.yifand only if MY =0 and NX = 0.
2. Pz..=Px.y+Pyr.n—Px.uPy.n if and only if Pyxy.yPy.y
= PY : NPX M-
3" Pz..=Px.m+Pyr.0uv =Pr.n+Pg yx.0y. m
4”. PZ:L =PX:QN:YM+PYZQM,XN ifII—PX:MPy;Nl #0
5. Pz L= PZA .o+ Pz(yz)—g : L(Z/L)" D> where Sp(A) = KCI’(D/), Sp(C)
= Ker(B'), L'V = B for some V and ZW = D for some W.

Proof. (1”) is nothing but Theorem 5.1.2 of Rao and Mitra [5]. (Note that
Px.mPy.n =Py .nPx.u» =0 is also an equivalent condition.) (1”) also
subsumes (4') of Lemma 3. (Simply set M' = X'’KQy ¢ and N’ = Y'KQy x, and
verify that M'Y = 0 and N'X = 0.)

To prove (2”) we first let U and W be two matrices such that
Sp(U) = Sp(X) N Sp(Y) and Sp(W) = Ker(M') + Ker(N'). By Theorem 5.1.4
of Rao and Mitra [5] concerning the product of two projectors, the co-
mmutativity of PX M and Py 'N lmphes PX . MPY N = Py : NPX M= PU LW
Let Py =P;.; —Py.y and P, =P;.; — Py.n. From Theorem 5.1.3 of Rao
and Mitra [5] concerning the difference between two projectors,
Pi = Psyzjnkerur) spyokerzy  and  Pa = Pspz)nker(vr) sp(r)eker(z). Because of
the commutativity of Py., and Py.y, P; and P, are also commutative;
ie., P=P,P, =P,P;. Again by Theorem 5.1.4 of Rao and Mitra [5],
P is the projector onto (Sp(Z)nNKer(M')) N (Sp(Z) N Ker(N')) along
(Sp(X) @ Ker(Z')) + (Sp(Y) ® (Z')) = E", which implies P = 0. The converse
is trivial.

(2") also follows from statement (vi) of Condition (13). We have
1-Q,Q, =P, +P, - PP, =Py.i, wnm, which is nothing but (2”) of Theo-
rem 4 by setting V] = Sp(X), ¥, = Sp(Y), W = Ker(M’), and W, = Ker(N'), so
that Sp(Z) = ¥} + V; and Ker(L') = W N W.

To prove the first equality in (3”), we need to show that
Sp(Z) = Sp([X | Qx . xY]) and Sp(L) = Sp([M | Q,, . xN]). To prove the for-
mer, we simply note that

I —(MX) MY

[X|QX:MY]:Z 0 I

)

where the second matrix on the right is nonsingular.
Sp(L) = Sp([M | Q,, . xN]) can also be proved similarly. We immediately see
P;.; = P[X|Qx . mY] : [M|Qum . xN]» and X’QM . XN =0 and M/QX . MY =0. So if
Sp(Qyx.»Y) ®Ker(N'Qy ., ) = E”, this case reduces to (1”). To show
Sp(Qx . xY) ® Ker(N'Qy . ) = E*, we first note Sp(X) and Sp(Qy ., Y) are
disjoint, and Sp(M) and Sp(Q,.yN) are also disjoint. This implies
rank(Qy ., Y) = rank(Q,, . yN), since Sp(Z)=Sp([X|Qyx.»Y]) and
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Sp(L) = Sp([M | Qx . »Y]). We also note Sp(Qyx.,Y) and Sp(Q, . xN) are
disjoint. This, together with rank(Qy.,Y)=rank(Q, .xN), implies
Sp(Qy . »Y) ® Ker(N'Qy . ) = E™. The second equality in (3") can be proved
similarly.

To prove (4”), we note that Sp([M | N}) = Sp([Qx . yM | Q. xN]), since
I —(X'M)"X'N
[QN : YM | QM:XN] =L _(YIN)—YIM 1 !
where the second matrix on the right is nonsingular, if I — Py . »Py. x| #0.
We have X'Q,,. yN =0, and Y'Qy . yM = 0, and by a similar argument as in
the proof of (3") above, Sp(X)®Ker(MQ, ,)=E" and
Sp(Y) & Ker(N'Q,, . y) = E", so that this case again reduces to (1"). Note that
in (4), Sp(X)NSp(Y) = {0} if and only if |[I—PxPy|=0, and in (4),
Sp(X) N Sp(Y) = {0} if and only if |I — Px/xPy/x| = 0. However, no such re-
lationship is claimed in (4”). Note also that (4) and (4') both represent equiv-
alence relations, but (4”) only one directional implication.

To prove (57), we note Sp(Z)=Sp([ZA|Z(L'Z)"B]) and
Sp(L) = Sp([L.C | L(Z'L) " D]), which can readily by established following a
similar line of argument as above. We have AZ'L(ZL)yD =0 and
CL'Z(L'Z)"B = 0, and by a similar argument as in the proof of (3”) above,
Sp(ZA) @ Ker(C'L') = E" and Sp(Z(L'Z)"B) & Ker(D'(L'Z)") = E", so that
this case also reduces to (1”). O

Note 20. Note that Sp(Z)nKer(L') = {0} implies rank(Z) = rank(P.)
=rank(Z'P;Z). This, in turn, implies Pz ., can be rewritten as Pz;p,. Since
under similar conditions Py .y =Pyx/p, and Py.y =Pysp, (1”) can be
rewritten as

Pzp, = Pxsp, + Pyp,-

This looks similar to decomposition (1’). However, there is a fundamental
difference between the two. In the above decomposition metric matrices used to
define three projectors are all distinct. We can find a common metric matrix
that preserves the above relationship in a manner similar to that in (4). Define
K* = Py + Py + TDT', where T is such that Sp(T) = Ker(Z') and D is an
arbitrary pd matrix. We then have Pz« = Pz/p,, Px/x» = Px/p,, Py/xe = Py/py,
and (Px/K*)IKPy/K* = 0. A proof is straightforward.
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