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Abstract. Constrained principal component analysis (CPCA) incorporates
external information into principal component analysis (PCA) of a data matrix.
CPCA first decomposes the data matrix according to the external information
(external analysis), and then applies PCA to decomposed matrices (internal
analysis). The external analysis amounts to projections of the data matrix onto
the spaces spanned by matrices of external information, while the internal anal-
ysis involves the generalized singular value decomposition (GSVD). Since its
original proposal, CPCA has evolved both conceptually and methodologically;
it is now founded on firmer mathematical ground, allows a greater variety of
decompositions, and includes a wider range of interesting special cases. In this
paper we present a comprehensive theory and various extensions of CPCA,
which were not fully envisioned in the original paper. The new developments
we discuss include least squares (LS) estimation under possibly singular met-
ric matrices, two useful theorems concerning GSVD, decompositions of data
matrices into finer components, and fitting higher-order structures. We also dis-
cuss four special cases of CPCA; 1) CCA (canonical correspondence analysis)
and CALC (canonical analysis with linear constraints), 2) GMANOVA (gener-
alized MANOVA), 3) Lagrange’s theorem, and 4) CANO (canonical correlation
analysis) and related methods. We conclude with brief remarks on advantages
and disadvantages of CPCA relative to other competitors.
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1 Imtroduction

It is common practice in statistical data analysis to partition the total variability
in a data set into systematic and error portions. Additionally, when the data are
multivariate, dimension reduction becomes an important aspect of data analysis.
Constrained principal component analysis (CPCA) combines these two aspects
of data analysis into a unified procedure in which a given data matrix is first
partitioned into systematic and error variation, and then each of these sources
of variation is separately subjected to dimension reduction. By the latter we
can extract the most important dimensions in the systematic variation as well
as investigate the structure of the error variation, and display them graphically.

In short, CPCA incorporates external information into principal component
analysis (PCA). The external information can be incorporated on both rows
(e.g., subjects) and columns (e.g., variables) of a data matrix. CPCA first decom-
poses the data matrix according to the external information (external analysis),
and then applies PCA to decomposed matrices (internal analysis). Technically,
the former amounts to projections of the data matrix onto the spaces spanned
by matrices of external information, and the latter involves the generalized sin-
gular value decomposition (GSVD). Since its original proposal (Takane and
Shibayama, 1991), CPCA has evolved both conceptually and methodological-
ly; it is now founded on firmer mathematical ground, allows a greater variety
of decompositions, and includes a wider range of interesting special cases. In
this paper we present a comprehensive theory and various extensions of CPCA,
which were not fully envisioned in the original paper. The new developments
we discuss include least squares (LS) estimation under non-negative definite
(nnd) metric matrices which may be singular, two useful theorems concern-
ing GSVD, decompositions of data matrices into finer components, and fitting
higher-order structures.

The next section (Section 2) presents basic data requirements for CPCA.
Section 3 lays down the theoretical ground work of CPCA, namely projections
and GSVD. Section 4 describes two extensions of CPCA, decompositions of a
data matrix into finer components and fitting of hierarchical structures. Section 5
discussesseveralinterestingspecialcases, including 1)canonical correspondence
analysis (CCA,; ter Braak, 1986) and canonical analysis with linear constraints
(CALC; Bockenholt and Bckenholt, 1990), 2) GMANOVA (Potthoff and Roy,
1964), 3) Lagrange’s theorem on ranks of residual matrices and CPCA within the
data spaces (Guttman, 1944), and 4) canonical correlation analysis (CANO) and
related methods, such as CANOLC (CANO with linear constraints; Yanai and
Takane, 1992) and CA (correspondence analysis; Greenacre, 1984; Nishisato,
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1980). The paper concludes with a brief discussion on the relative merits and
demerits of CPCA compared to other techniques (e.g., ACOVS; Joreskog, 1970).

2 Data Requirements

PCA is often used for structural analysis of multivariate data. The data are,
however, often accompanied by auxiliary information about rows and columns
of a data matrix. CPCA incorporates such information in representing struc-
tures in the data. CPCA thus presupposes availability of meaningful auxiliary
information. PCA usually obtains the best fixed-rank approximation to the data
in the ordinary LS sense. CPCA, on the other hand, allows specifying metric
matrices that modulate the effects of rows and columns of a data matrix. This
in effect amounts to the weighted LS estimation. There are thus three important
ingredients in CPCA; the main data, external information and metric matrices.
In this section we discuss them in turn.

2.1 The Main Data

Let us denote an N by n data matrix by Z. Rows of Z often represent subjects,
while columns represent variables. The data in CPCA can, in principle, be any
multivariate data. To avoid limiting applicability of CPCA, no distributional
assumptions will be made. The data could be either numerical or categorical,
assuming that the latter type of variables is coded into dummy variables. Mix-
ing the two types of variables is also permissible. Two-way contingency tables,
although somewhat unconventional as a type of multivariate data, form another
important class of data covered by CPCA.

The data may be preprocessed or not preprocessed. Preprocessing here re-
fers to such operations as centering, normalizing, both of them (standardizing),
or any other prescribed data transformations. There is no cut-and-dry guide-
line for preprocessing. However, centering implies that we are not interested
in mean tendencies. Normalization implies that we are not interested in differ-
ences in dispersion. Results of PCA and CPCA are typically affected by what
preprocessing is applied, so the decision on the type of preprocessing must be
made deliberately in the light of investigators’ empirical interests.

When the data consist of both numerical and categorical variables, the prob-
lem of compatibility of scales across the two kinds of variables may arise.
Although the variables are most often uniformly standardized in such cases,
Kiers (1991) recommends orthonormalizing the dummy variables correspond-
ing to each categorical variable after centering.

2.2 External Information

There are two kinds of matrices of external information, one on the row and
the other on the column side of the data matrix. We denote the former by an N
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by p matrix G and call it the row constraint matrix, and the latter by an n by
g matrix H and call it the column constraint matrix. When there is no special
row and/or column information to be incorporated, we may set G = Iy and/or
H=I,.

When the rows of a data matrix represent subjects, we may use subjects’
demographic information, such as IQ, age, level of education, etc, in G, and
explore how they are related to the variables in the main data. If we set G = 1y
(N-component vector of ones), we see the mean tendency across the subjects.
Alternatively, we may take a matrix of dummy variables indicating subjects’
group membership, and analyze the differences among the groups. The groups
may represent fixed classification variables such as gender, or manipulative
variables such as treatment groups.

For H, we think of something similar to G, but for variables instead of
subjects. When the variables represent stimuli, we may take a feature matrix or
a matrix of descriptor variables of the stimuli as H. When the columns corre-
spond to different within-subject experimental conditions, H could be a matrix
of contrasts, or when the variables represent repeated observations, H could be
a matrix of trend coefficients (coefficients of orthogonal polynomials). In one
of the examples discussed in Takane and Shibayama (1991), the data were pair
comparison preference judgments, and a design matrix for pair comparison was
used for H.

Incorporating a specific G and H implies restricting the data analysis spac-
es to Sp(G) and Sp(H). This in turn implies specifying their null spaces. We
may exploit this fact constructively, and analyze the portion of the main data
that cannot be accounted for by certain variables. For example, if G contained
subject’s ages, then incorporating G into the analysis of Z and analyzing the
null space would amount to analyzing that portion of Z that was independent
of age. As another example, the columnwise centering of data discussed in the
previous section is equivalent to eliminating the effect due to G = 1y, and
analyzing the rest.

There are several potential advantages of incorporating external informa-
tion (Takane et al., 1995). By incorporating external information, we may obtain
more interpretable solutions, because what is analyzed is already structured by
the external information. We may also obtain more stable solutions by reducing
the number of parameters to be estimated. We may investigate the empirical
validity of hypotheses incorporated as external constraints by comparing the
goodness of fit of unconstrained and constrained solutions. We may predict
missing values by way of external constraints which serve as predictor vari-
ables. In some cases we can eliminate incidental parameters (Parameters that
increase in number as more observations are collected, are called incidental pa-
rameters.) by reparameterizing them as linear combinations of a small number
of external constraints.



Constrained Principal Component Analysis: A Comprehensive Theory 395

2.3 Metric Matrices

There are two kinds of metric matrices also, one on the row side, K, and the
other on the column side, L. Metric matrices are assumed non-negative definite
(nnd). Metric matrices are closely related to the criteria employed for fitting
models to data. If coordinates that prescribe a data matrix are mutually orthog-
onal and have comparable scales, we may simply set K = I and L = I, and
use the simple unweighted LS criterion. However, when variables in a data ma-
trix are measured on incomparable scales, such as height and weight, a special
non-identity metric matrix is required, leading to a weighted LS criterion. It
is common, when scales are incomparable, to transform the data to standard
scores before analysis, but this is equivalent to using the inverse of the diago-
nal matrix of sample variances as L. A special metric is also necessary when
rows of a data matrix are correlated. The rows of a data matrix can usually
be assumed statistically independent (and hence uncorrelated) when they rep-
resent a random sample of subjects from a target population. They tend to be
correlated, however, when they represent different time points in single-subject
multivariate time series data. In such cases, a matrix of serial correlations has to
be estimated, and its inverse be used as K (Escoufier, 1987). When differences
in importance and/or in reliability among the rows are suspected, a special di-
agonal matrix is used for K that has the effect of differentially weighting rows
of a data matrix. In correspondence analysis, rows and columns of a contin-
gency table are scaled by the square root of row and column totals of the table.
This, too, can be thought of as a special case of differential weighting reflecting
differential reliability among the rows and columns.

When, on the other hand, columns of a data matrix are correlated, no special
metric matrix is usually used, since PCA is applied to disentangle the correla-
tional structure among the columns. However, when the columns of the residual
matrix are correlated and/or have markedly different variances after a model is
fitted to the data, the variance-covariance matrix among the residuals may be
estimated, and its inverse be used as metric L. This has the effect of improving
the quality (i.e., obtaining smaller expected mean square errors) of parameter
estimates by orthonormalizing the residuals in evaluating the overall goodness
of fit of the model to the data. Meredith and Millsap (1985) suggests to use
reliability coefficients (e.g., test-retest reliability) or inverses of variances of
anti-images (Guttman, 1953) as a non-identity L.

Although as typically used, PCA (and CPCA using identity metric matri-
ces) are not scale invariant, Rao (1964, Section 9) has shown that specifying
certain non-identity L matrices have the effect of attaining scale invariance.
In maximum likelihood common factor analysis, scale invariance is achieved
by scaling a covariance matrix (with communalities in the diagonal) by D!,
where D? is the diagonal matrix of uniquenesses which are to be estimated
simultaneously with other parameters of the model. This, however, is essential-
ly the same as setting L = D~! in CPCA. CPCA, of course, assumes that D?
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is known in advance, but a number of methods have been proposed to estimate
D? noniteratively (e.g., Ihara and Kano, 1986).

3 Basic Theory

We present CPCA in its general form, with metric matrices other than identity
matrices. The provision of metric matrices considerably widens the scope of
CPCA. In particular, it makes correspondence analysis of various kinds (Gree-
nacre, 1984; Nishisato, 1980; Takane et al., 1991) a special case of CPCA. As
has been noted, a variety of metric matrices can be specified, and by judicious
choices of metric matrices a number of interesting analyses become possible.
It is also possible to allow metric matrices to adapt to the data iteratively, and
construct a robust estimation procedure through iteratively reweighted LS.

3.1 External Analysis

Let Z, G and H be the data matrix and matrices of external constraints, as
defined earlier. We postulate the following model for Z:

Z=GMH +BH + GC+E, €3]

where M (p by ¢), B (N by g), and C (p by n) are matrices of unknown pa-
rameters, and E (N by n) a matrix of residuals. The first term in model (1)
pertains to what can be explained by both G and H, the second term to what
can be explained by H but not by G, the third term to what can be explained
by G but not by H, and the last term to what can be explained by neither G
nor H. Although model (1) is the basic model, some of the terms in the model
may be combined and/or omitted as interest dictates. Also, there may be only
row constraints or column constraints, in which case some of the terms in the
model will be null.

Let K (N by N) and L (n by n) be metric matrices. We assume that they
are nnd, and that

rank(KG) = rank(G), )
and
rank(LH) = rank(H). 3)

These conditions are necessary for Pg/x and Py /L, to be defined below, to be
projectors.

Model (1) is under-identified. To identify the model, it is convenient to
impose the following orthogonality constraints:

G'KB =0, “4)



Constrained Principal Component Analysis: A Comprehensive Theory 397
and
HLC =0. &)

Model parameters are estimated so as to minimize the sum of squares of the
elements of E in the metrics of K and L, subject to the identification constraints,
(4) and (5). That is, we obtain min SS(E) g ;, with respect to M, B, and C, where

f =SS(E)k,. = tr(E’KEL) = SSRER;); ; = SS(RXER.). (6)

Here, “=" means “defined as”, and Rx and R;, are square root factors of K and
L, respectively, i.e., K = RkRy and L = R; R} . This leads to the following
LS estimates of M, B, C, and E: By differentiating f in (6) with respect to M
and setting the result equal to zero, we obtain

13f

~-— =GK(Z - GMH’ - BH - GC)LH = 0. 7
23M ( C) 0 )
This leads to, taking into account the orthogonality constraints, (4) and (5),
M = (GKG)"G'’KZLH(H'LH)", 8)
where superscript “—” indicates a g-inverse of a matrix. This estimate of M is
not unique, unless G'’KG and H'LH are nonsingular. Similarly,
19 N N A
_58_111 =K(Z - GMH' — BH' — GC)LH = 0, )]

which leads to
B = K'KZLHH'LH) — K" KGM
= K" KZLHH'LH)~ - K'KG(G'KG)"G'KZLH(H'LH)"
= K KQg,xZLHH'LH)", 10)

where Qg,x = I — Pg/x and Pg/x = G(G'’KG)~G’K. This estimate of B is
not unique, unless K and H'LH are nonsingular. Similarly,

C = (GKG)"GKZQ);, LL", 68))

where Qy,; =1~ Pp/, and Py, = H(H'LH)"H'L. This estimate of C is
likewise non-unique, unless L and G'’KG are nonsingular. Finally, the estimate
of E is obtained by

E =Z - P/ 2P, — K'KQg/xZP),, — Pe/xZQ) AL (12)

This estimate of E is again not unique, unless K and L are nonsingular. Under (2)
and (3), Pg/x, PryL, Qg/x» and Qy , are projectors such that P2 x = Pgx,
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Gk = = Qq/x: Po/xQa/x = Qo/xPox = 0, Pg/xKPg/x = Pg/xK =
KPg/k, and Qg KKQG/K = QG/KK KQg/k- Pg/k is the projector on-
to Sp(G) along Ker(G'K). Note that Pg/xG = G and GKPG/K G'K.
Qg/x is the projector onto Ker(G'K) along Sp(G). That is, GKQg xk =0
and Qg,/xG = 0. Similar properties hold for Py, and Qg . These projectors
reduce to the usual /-orthogonal projectors when K = I and L = 1. Note
also that QG /x = K'KQg/x is also a projector, where KQg/x = KQG k- A
similar relation also holds for Q aiL =LLQy /L

The effective numbers of parameters are pg inM, (N — p)q inB, p(n —q)
in C and (N — p)(n — q) in E, assuming that Z, G, and H all have full column
ranks, and K and L are nonsingular. These numbers add up to Nn. The effec-
tive numbers of parameters in B, C, and E are less than the actual numbers of
parameters in these matrices, because of the identification restrictions, (4) and
(5).

Putting the LS estimates of M, B, C, and E given above in model (1) yields
the following decomposition of the data matrix, Z:

Z = PG/KZP/H/L + K~KQG/KZPI}1/L + Pg/KZQ,H/LLL—
+(Z — Pk ZP)y, — K'KQg/x ZPy 1 — Pe/xZQy, LL7) .
(13)

This decomposition is not unique, unless K and L are nonsingular. To make it
unique, we may use the Moore-Penrose inverses, K* and L*, for K~ and L.

The four terms in (13) are mutually orthogonal in the metrics of K and L, so
that

SS(Z)k.. = SS(GMH))g ; + SSBH)x . + SS(GO)x,1 + SSE)k . (14)

That is, sum of squares of Z (in the metrics of K and L) is uniquely decomposed
into the sum of sums of squares of the four terms in (13).

Let
Z* = Ry ZR;, (15)
G* = R;G, (16)
and
H*=R}H, a7

where K = RgR}, and L = R R] are, as before, square root decompositions
of K and L. We then have, corresponding to decomposition (13),

Z* = PG*Z*P]-I* + QG*Z*PH* + PG*Z*QH* + QG’Z*QH" (18)
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where Pg: = G*(G'G*)"G", Qg. = I — Pg-, Py. = H*(HYH*)"H", and
Qg+ = I —Py- are orthogonal projectors. This decomposition is unique, while
(13) is not. Note that Rx K™K = R, and R; L™L = R] . Again, four terms in
(18) are mutually orthogonal, so that we obtain, corresponding to (14),

SS(Z*)1,1 = SS(Z*) = SS (P-Z*Py-) + SS (Qg-Z*Py-)
+ S8 (Pe-Z*Qy-) + SS (Qe-Z*Qy.) . (19)

Equations (18) and (19) indicate how we reduce the non-identity metrics, K
and L, to identity metrics in external analysis.

When K and L are both nonsingular (and consequently, pd), K"K = I and
L~L = I, so that decomposition (13) reduces to

Z =P;/xZPy;; + Qg/kZPy; + Po/xZQy, + Qo/xZQy 1, (20)
and (14) to
SS(Z)k.L =SS (Pe/kZPy1 ), , + 5SS (Qg/kZPy,L) KL

+855 (Pa/kZQy,1) ¢, +5S(Qo/xZQyyr)y - D

Decomposition (20) is unique.

3.2 Internal Analysis

In the internal analysis, the decomposed matrices in (13) or (20) are subject-
ed to PCA either separately or some of the terms combined. Decisions as to
which term or terms are subjected to PCA, and which terms are to be combined,
are dictated by researchers’ own empirical interests. For example, PCA of the
first term in (13) reveals the most prevailing tendency in the data that can be
explained by both G and H, while that of the fourth term is meaningful as a
residual analysis (Gabriel, 1978; Rao, 1980; Yanai, 1970).

PCA with non-identity metric matrices requires the generalized singular
value decomposition (GSVD) with metrics K and L, as defined below:

Definition (GSVD) Let K and L be metric matrices. Let A be an N by n
matrix of rank r. Then,

" AR, = R,UDV'R, (22)

is called GSVD of A under metrics K and L, and written as GSVD(A)x 1,
where Ry and Ry, are, as before, square root factors of K and L, U (N by r)
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is such that UKU = I, V (n by r) is such that V'LV = I, and D (r by r) is
diagonal and pd. When K and L are nonsingular, (22) reduces to

A =UDV/, (23)

where U, V and D have the same properties as above. We write the usual SVD
of A (i.e., GSVD(A);,;) simply as SVD(A).

GSVD(A)k, 1 can be obtained as follows. Let the usual SVD of R, AR, be
denoted as .

¥ ARy = U*D*V*, (24)
Then, U, V and D in GSVD(A)g; are obtained by
U= Ry) U, (25)
V= (R]})"V*, (26)
and
D =D". 27

It can easily be verified that these U, V and D satisfy the required properties of
GSVD. However, U or V given above is not unique, unless K and L are non-
singular. When K and L are singular, we may still obtain unique U and V by
using the Moore-Penrose inverses of R and R in (25) and (26), respectively.
GSVD plays an important role in CPCA. The following two theorems are
extremely useful in facilitating computations of SVD and GSVD in CPCA.

Theorem 1 Let T (N byt; N > t) and W (n by w; n > w) be columnwise
orthogonal matrices, i.e., T'T = 1and W'W = L Let the SVD of A (t by w)
be denoted by A = U,D,V',, and that of TAW’ by TAW' = U*D*V*. Then,
U* =TUy (Uy =TU), V¥ =WV, (V4 = WV*), and D, = D*.

Proofof Theorem 1. Pre- and postmultiplying both sides of A = U,D,4V/, by T
and W', we obtain TAW’ = TU4D,V, W' By setting U* = TU,, V* = WV,
and D* = D4, we obtain TAW’ = U*D*V*. It remains to be seen that the above
U*, V* and D* satisfy the required properties of SVD (i.e.,, UYU =L, V¥V =1,
and D* is diagonal and positive definite (pd)). Since T is columnwise orthog-
onal, and U, is a matrix of left singular vectors, U¥U* = U, T'TU, = L
Similarly, V¥'V* = V/,W'WV, = L. Since D, is diagonal and pd, so is D*.
Conversely, by pre- and postmultiplying both sides of TAW’ = U*D*V* by
T and W, we obtain T'TAW'W = A = T'U*D*V*W'. By setting U, = T'U*,
Va4 = W'V*, and D4 = D*, we obtain A = UsD,V’,. It must be shown that
U,Us =1V, V4 =1,and D, is diagonal and pd. That D, is diagonal and pd
is trivial (note that D* is pd). That U, U4 = I, V/,V 4 = I can easily be shown
by noting that TT'U* = PrU* = U* and WW'V* = Py V* = V*, where
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Pr and Pw are orthogonal projectors onto Sp(T) and Sp(W), respectively, and
Sp(U*) C Sp(T) and Sp(V*) C Sp(W).

Suppose we would like to obtain GSVD(Pg/xkZPY, /L) k..- This can be
obtained from SVD of Ry Pg/x ZPy ; R;, = Pg+Z*Ppy-. Note that this is equal
to the first term in decomposition (18). SVD(Pg+Z*Py+), in turn, is obtained as
follows: Let G* = Fg.Ry;. and H* = Fy.R},. be portions of the QR decom-
positions (e.g., Golub & Van Loan, 1989) of G* and H* pertaining to Sp(G*)
and Sp(H*), respectively, where G* and H* are defined in (16) and (17). Fg.
and Fy. are columnwise orthogonal, and Rg- and Ry are upper trapezoidal.
(When G* and H* have full column rank, Rg+ and Ry are upper triangular.)
Then, Pgw = FG*F,G' and PH* = FHtFIIp. Define J = F’G.ZFHt, and let
J = U;D, V), be SVD(J). Then, by Theorem 1, U*, V*, and D* in the SVD
of P+ ZP . are obtained by U* = F.U;, V* = Fy.V,, and D* = D;. Once
SVD of Pg+ZPy:- is obtained, U, V and D in GSVD(Pg,x ZPY, /Kk)K,L can be
obtained by U = (R)~U* = (Ry) F5.U;, V= (R}) V* = R})"Fy.V,,
and D = D* = D;,. As before, the Moore-Penrose inverses may be used for
(R%)™ and (R})~ in these formulae to obtain unique U and V. Note that J is
usually a much smaller matrix than either P5.Z*Py. or Ps k2P /L» and its
SVD can be calculated much more quickly.

Theorem 2 Let T and W be two matrices such that TAW' can be formed. Let
GSVD(TAW’)K,L be denoted as UDV, and GSVD(A)T/KT, w/'LwW as UADAV:Q.

Then,U = K" KTU,,V=L"LWV,4andD = D4, and U, = (T’KT)"TKU,
Vs = (W’LW)—W’LV and Dy =D.

Proof of Theorem 2. We have Rz TAW'R, = R{yUDV'R, = Ry TU4D,V/,
WR[,sothat R U = Ry TU4, R} V = R; WV, andand D = Dy. Solving the
first two equations for U and V, we obtain U = K" KTU,,andV = L"LWV,.
Similarly, U4 = (T'KT)"T'’KU,and V, = (W' LW)~W'LV. It must be shown
that UKU = Iand V'LV = L, and that U, TKTU, = I1andV,WLWV, =L
UKU = U, TKK KK KTU, = U,TKTU, = L V'LV = I can be simi-
larly shown. Conversely, U, T'’KTU4 = U'P7/xKPr/xU = UP} , KK KK~
KPr/xU = UKU = L (Note that K" KPr/xU = U.) V,WLWV, = I can
be similarly shown, R )

In some cases, GSVD(M)gvg-, g~ n+, Where M is given in (5), and is part
of the first term in decomposition (13), may be of direct interest. For example,
Takane and Shibayama (1991) discussed vector preference models, in which
K=LL =1 G =1, and H is a design matrix for pair comparisons. In those
models M contains scale values of stAimuli, and consequently GSVD(M); g5
is of direct interest, but not SVD(MH'). GSVD(I\A’I)G.,G*, HvH+» may be cal-
culated directly, or from related SVD’s or GSVD discussed above. In par-
ticular, if M = UpDy V), represents GSVD(M)gvg+ g~ g+, then because of
Theorem 2, Uy = (GKG)"G'KU, Vy; = (HLH)"H'LV and Dy, = D,
or U = K'KGUy, V = L"LHV)y and D = D). (Note that U = GUy,
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and V = HV,,, when K and L are nonsingular.) Uy and Vs are the regres-
sion weights applied to G and H, respectively, to obtain U and V, respectively.
This is analogous to canonical correlation analysis between, say, G and H, in
which canonical weights are obtained by GSVD((G'G)"GHMH'H) g6, n'H>
whereas canonical variates are directly obtained by SVD(PsPgy).

The relationships among GSVD(PG / KZP H /L) K,Ls SVD(PG* P H* ), SVD
J), and GSVD(I\A'I)G*,G., g+ g+ are summarized in Table 1. In general, when
we have a product of several matrices, say, ABC, SVD(ABC) can be
related to a number of different GSVD’s via Theorem 2: GSVD
Mcpaarc,1, GSVD(A); scc s, GSVD(AB); cc', GSVDB) 4 4,cc» GSVD
(BC) a1, and GSVD(M) 1, apcc p 4 - This extends to products of four or more
matrices.

4 Some Extensions

Within the basic framework of CPCA, various extensions are possible. We dis-
cuss two major ones here; decompositions of a data matrix into finer components
and incorporation of higher-order structures.

4.1 Decompositions into Finer Components

Decomposition (13) or (20) is a very basic one. When more than one set of
external constraints are available on either side of a data matrix, it is possible
to decompose the data matrix into finer components. This is akin to factorial
ANOVA in which a data matrix may be decomposed into the main effect of
Factor A, that of Factor B, the interaction effect between them, and the residual
effect.

Table 1. Relationships among various SVD’s and GSVD’s

0Y) @ 3) @
GSVD (Pg/xZPy; k.. SVD®sZ*Py:) SVDWJ) GSVD(M)grge v e
UDV/ U'D*V* U,D,V) UyDy V),
) U* =R,U U, =F,R,U Uy =(GG)GU
V* =R,V V,; =F.R,V Vy=@H HV
2 U=R;U* U; =F,U" Uy=(G"G) G"'U*
V=R,V V,; =F.V* Vy=HH)HV
(3) U=RgFeU, U* =F. U, Uy =Ra.U,;
V=R, Fu.V, V* =FpV, Vi =RV,
(4 U=GUy U* =G'Uy U; =R, Uy
V=HVy V' =H'Vy V, =Rj.Vy

Notation: K = RKR, , L= RLR, , G = RIKG = FGtRIG., H* = R’LH = FHnR,H., 7 =
RyZR;, J =F;.Z'Fy..
The “—” in the above table may be replaced by “+”.
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The problem of fitting multiple sets of constraints can be viewed as decom-
positions of a projector defined on the joint space of all constraints into the
sum of projectors defined on subspaces corresponding to the different subsets
of constraints. Suppose G consists of two constraint sets, X and Y; that is,
G = [X]Y]. Depending on the relationship between X and Y (Rao and Yanai,
1979), a variety of decompositions are possible.

When X and Y are mutually orthogonal (in the metric of K), we have

Pg/x =Px/x +Pyx. (28)

This simply partitions the joint effect of X and Y into the sum of the separate
effects of X and Y. Since X and Y are orthogonal, the decomposition is simple
and unique. When X and Y are not completely orthogonal, but are orthogonal
except in their intersection space, Px/x and Py k are still commutative (i.e.,
Px/xPy;x = Py;xPx/k), and

Po/x =Px/x +Py/x —Px;kPy/x. 29

This decomposition, when K = I, plays an important role in ANOVA for fac-
torial designs. When X and Y are not mutually orthogonal in any sense, two
decompositions are possible:

Po/xk =Px/x +Pg,ix/x

= Py;x +Pgycv/k» (30)

where Pg, , x/x and Pg, v/ are projectors onto spaces of Qy, x X (the portion
of X that is unaccounted for by Y) and Qy,/xY (the portion of Y that is un-
accounted for by X), respectively. The above decompositions are useful when
one of X and Y is fitted first and the other is fitted to the residuals.

When Sp(X) and Sp(Y) are disjoint, but not orthogonal, we may use

Pg/x = X(X'KQy/xX) X' KQy/x + Y(YKQy/xY)"YKQy/x. (31)

Note that KQy,x and KQy,  are both symmetric. This decomposition is useful
when X and Y are fitted simultaneously. The first term on the right hand side of
(31) is the projector onto Sp(X) along Sp(Qg /x) © Sp(Y) where @ indicates
the direct sum of two disjoint spaces, and the second term the projector onto
Sp(Y) along Sp(Qg,x) ® Sp(X). Note that unlike all the previous decompo-
sitions discussed in this section, the two terms in this decomposition are not
mutually orthogonal. Takane and Yanai (1999), however, discuss a special met-
ric K* under which the two terms in (31) are mutually orthogonal, and are such
that Pg/x = Pg/k+, PX/KQ}'/K = Py/x+ and PY/KQx/x = PY/K*- An example
of such a metric is K* = KQy,x + KQy .
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When additional information is given as constraints on the weight matrix,
Ug, on G, the following decomposition is useful. Suppose the constraints can
be expressed as Ug = AU, for a given matrix, A. Then,

Ps/x =Pca/x +Peke)-B/k> (32)

where A'B = 0, Sp(A) & Sp(B) = Sp(G'), and B = G'KW for some W (Ya-
nai and Takane, 1992). The first term in this decomposition is the projector onto
Sp(GA), which is a subspace of Sp(G), and the second term onto the subspace
of Sp(G) orthogonal to Sp(GA). Since B'(G'’KG)"G’KGU, = 0 for B such
that B = G’KW, the constraint Ug = AU, can also be expressed as B'Ug = 0.
This decomposition is an example of higher-order structures to be discussed in
the next section. It is often used when we have a specific hypothesis about M
in model (1), for example, and we would like to obtain an estimate of M under
the hypothesis. A detailed example of this will also be given in Section 5.2.

It is obvious that similar decompositions apply to H as well. It is also rel-
atively straightforward to extend the decompositions to more than two sets of
constraints on each side of a data matrix. The above decompositions can fur-
ther be generalized to oblique projectors (Takane and Yanai, 1999) useful for the
instrumental variable (IV) estimation often used in econometrics (e.g.,
Johnston, 1984).

Decompositions into finer components may generally be written as (Nishi-
sato and Lawrence, 1989):

Z= (ZPGO‘)/K) (ZPH(])/L) (33)

where 3, Pg, zx =Tand ) ; Py ; =1, and where Pz and PH /i are pro-
Jectors onto Sp(G;) and Sp(H;), respectively, in the metrics of K and L. The
Kand L are orthogonalizing metrics, which are simply K and L, except in (31)
where K = K* and L = L*. Because of the orthogonality of the terms in de-
composition (33), the sum of squares (SS) in Z is uniquely partitioned into the
sum of part SS’s, each pertaining to each term in (33). The partitioning of SS

in this manner is similar to the partitioning of deviance in maximum likelihood
estimation.

4.2 Higher-Order Structures

External information other than G or H can also be incorporated into the model.
This information often takes the form of a hypothesis about the parameters in
the model, in which case we may be interested in obtaining an estimate of the
parameters under that hypothesis. For example, a model similar to (1) may be
assumed for M as well. Suppose A (=H) is a design matrix for pair comparisons,
and suppose stimuli in the pair comparisons are constructed by systematically
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manipulating some basic factors. Let S denote the design matrix for the stimuli.
It may be assumed that M = WS’ + E*, where W is a matrix of weights applied
to §’. The entire model may then be written as

Z=G(WS +E"A' +E

= GWS'A' + GE*A' +E. 34)

This model partitions Z into three parts: what can be explained by G and AS,
what can be explained by G and A but not by AS, and the residuals. In Takane
and Shibayama (1991), this model was treated as a special provision in CPCA.
This, however, is an instance of partition (32).

Alternatively, M may be subjected to PCA first, and then some hypothesized
structure may be imposed on its row representation, Uy, or on U = GUy. In
the former case, the model could be:

Z = G(UyD;, Vy, +EYH +E
= G((TW + E)D%, V* + EH +E, (35)

where U}, D}, V3, is the best fixed-rank approximation of M obtained by its
PCA, E* is its residuals, and T the design matrix for U},. In this model, U}, is
modeled by U}, = TW + E, but D}, and V?, are left unmodeled.

If, on the other hand, a model is assumed on U, the entire model might be:

Z=U'D*"V¥ + GE*H' + E
= (TW + E)D*V” + GE*H' +E, (36)

where T is an additional row information matrix. An LS estimate of W in this
model, given the estimate of U*, is obtained by

W = (T'’KT)"T’KU". 37

Rows of W are linear combinations of rows of U*, and thus can be represented
as vectors in the same space as row vectors of U*. The above W can also be
obtained directly by GSVD(Pgr/x ZPYy /L)K,L- Note, however, that in general
SVD(PZ) # P - SVD(Z), where P is any projector. That is, the order in which
projection and SVD are performed is important. The LS estimate of W given
above is thus contingent on the fact that SVD is applied to GMH' first.

Model (1) as well as its extensions discussed in this section can generally

be expressed as
Z= (HG(i))R(nH(n>, (38)
i j
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where R, Gy and Hyj, are specially defined matrices (see below for an
example). This expression is similar to that of COSAN for structural equation
models (McDonald, 1978; see also Faddeev and Feddeeva, 1963). The major
difference between COSAN and (38) is that in the former, Z is a variance-co-
variance matrix, which is bound to be symmetric, so is R, and G;) = Hg),
whereas in (38) no such restrictions apply. In CPCA, Z is usually rectangular.

We show, as an example, how model (34) can be expressed in the above

form. We define
W 0 0
R= [ 0 E* 0] ,

0 0 E
Gy =[G I],

and

S I 0
H2—[0 0 1]'

It can easily be verified that these matrices yield model (34). Models (1), (35)
and (36) can also be expressed in similar ways by defining R, G and H;)
appropriately.

5 Special Cases

CPCA subsumes a number of interesting special cases. Those already discussed
by Takane and Shibayama (1991) are vector preference models (Bechtel et al.,
1971; Takane, 1980; Heiser and de Leeuw, 1981; De Soete and Carroll, 1983),
two-way CANDELINC (Carroll et al. 1980), dual scaling of categorical da-
ta (Nishisato, 1980), canonical correlation analysis (CANO), and redundan-
cy analysis (van den Wollenberg, 1977), also known as PCA of instrumental
variables (Rao, 1964) and reduced-rank regression (Anderson, 1951). In this
paper we focus on other special cases. Specifically, we discuss four groups
of methods; canonical correspondence analysis (CCA; ter Braak, 1986) and
canonical analysis with linear constraints (CALC; Bdckenholt and Bocken-
holt, 1990), which are both constrained versions of correspondence analysis
(CA; Greenacre, 1984), which in turn is a special case of CANO; GMANOVA
(Potthoff and Roy, 1964) and its extensions (Khatri, 1966; Rao, 1965; 1985);
CPCA with components within row and column spaces of data matrices (Gutt-
man, 1944; Rao, 1964); and relationships among CPCA, CANO and related
methods. We close this section with some historical remarks on the develop-
ment of CPCA.
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5.1 CCA and CALC

We show that both CCA and CALC are special cases of CPCA. For illustration,
we discuss the case in which there are only row constraints, G, although CALC
was originally proposed to accommodate both row and column constraints, and
CCA, though not presented as such, can readily be extended to accommodate
both.

Let F denote a two-way contingency table. CA of F obtains “optimal”
row and column representations of F. Technicaily, it amounts to obtaining
GSVD(DRFD;)p,,p.» where Dy and D¢ are diagonal matrices of row and
column totals of F, respectively. (All the g-inverses in this section may be
replaced by the Moore-Penrose inverses.) Let UDV’ denote the GSVD. The
row and column representations of F are obtained by simple rescaling of U
and VD. In CA, a component corresponding to the largest singular value is
eliminated as being trivial. This component can a priori be eliminated from the

solution by replacing F by QIIR/DRFQIC/DC = Q’IR/DRF = FQ,_,p., Where
Q1 /px = Iz — 1g13Dr/N, 39

and

Qi./p. =Ic —1c1cDc/N. (40)
Here, N = 13Dglgr = 1:Dc1¢ = 13F1c is the total number of observations,

Iz and I are identity matrices of orders R and C, respectively, and 1z and 1¢
are R-element and C-element vectors of ones, respectively.

Suppose some external information is available on rows of F. Let X denote
the row constraint matrix. CCA by ter Braak (1986) obtains U under the re-
striction that U = XU*, where U* is a matrix of weights. This amounts to
GSVD((X'DpX)"X'FD_)x'pex,p. from which U* is obtained (and then, U
is derived by U = XU*), or to GSVD(X(X'DzX)"X'FD_) p,,p. from which
U is directly obtained (Takane, Yanai, and Mayekawa, 1991). When X'DrX
is singular, U* is not unique, but U is. CCA of F with row constraint matrix
X will be denoted as CCA(F, X), or simply CCA(X). Thus, CCA(F, X) =
GSVD(X(X'DrX) " X'FD_) p,, D -

CALC by Bockenholt and Béckenholt (1990) is similar to CCA, but
instead of restricting U by U = XU, it restricts U by R'U = 0, where R
is a constraint matrix. That is, CALC specifies the null space of U. CALC
obtains GSVD(Dz (I — RR'DZR)"R'DR)FD()p,, ., Which will be denoted
as CALC(F, R) or simply CALC(R).

To eliminate the trivial solution in CCA we replace X by Q;,/p,X. InCALC
we simply include Dg1y in R. Once X or R is adjusted this way, there is no
longer any adjustment needed on F.

Takane et.al. (1991) have shown that CCA and CALC can be made equiva-
lent by appropriately choosing an R for a given X or vice versa. More
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specifically, CCA(X) = CALC(R) if X and R are mutually orthogonal, and
together they span the entire column space of F. That is, Sp(X) = Ker(R')
(or equivalently Sp(R) = Ker(X')). For a given R, such an X can be ob-
tained by a square root decomposition of I — R(R'R)"R’ (i.e., X such that
I - R(R'R)"R’' = XX/). Similarly, an R can be obtained from a given X by
I - X(X’X)"X' = RR'. Neither X nor R are uniquely determined given the
other. Only Sp(X) or Sp(R) can be uniquely determined from the other.

It can easily be shown that CCA and CALC are both special cases of CPCA.
When H = I, decomposition (13) reduces to

Z=PsxZ+Qq/xZ, 1)

where, as before, Pg/x = G(G'’KG)"G'K and Qg ¢ = I — Pg/x. Note that
the first term in (41) can be rewritten as

P¢/xZ = G(GKG)"G'(KZL)L", (42)

which is equal to X(X'DrX)"X'FD_, if G = X, K = Dg, L = D¢, and
Z = D FD_. This means that under these conditions, GSVD(Pg/kZ)k,. =
CCA(F, X).

The residual matrix, Qg,x Z, can be rewritten as

Qg/xZ = (I - G(G'’KG)"GK)Z
=K (I-KG(G'KK KG)"G'’KK )(KZL)L", (43)

which is equal to D (I — R(R'DzR)"R'DL)FD, if R = KG, K = Dg,
L = D¢, and Z = DFD . Thus, GSVD(Qg,xZ)x,. = CALC(F, R) under
these conditions.

The above discussion shows that both CCA and CALC are special cases
of CPCA, and that CCA(X) and CALC(DgX) analyze complementary parts of
data matrix Z. CALC(DzX), in turn, is equivalent to CCA(X*), where X* is
such that Sp(X*) = Ker(X'Dg). The analysis of residuals from CCA(X*) is
equivalent to CALC(DgX™), which in turn is equivalent to CCA(X), where X
is such that Sp(X) = Ker(X*'Dg). Such an X can be the X in the original CCA.
This circular relationship is illustrated in Fig. 1.

5.2 GMANOVA

GMANOVA (growth curve models; Potthoff and Roy, 1964) postulates
Z =GMH +E. 44)

This is a special case of model (1) in which only the first term is isolated from
the rest. Under the assumption that rows of E are iid multivariate normal, a
maximum likelihood estimate of M is obtained by
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residuals
CCA(X) CALC(DgX)
Sp(X) = Ker(X*'Dg) Sp(X*) = Ker(X'Dp)
residuals
CALC(DzX*) CCA(X")

Fig. 1. Complementality and equivalence of CCA and CALC

M= (GG) " GZS 'HH'S 'H)~ (45)

(Khatri, 1966; Rao, 1965), where S = Z/(I — G(G'G)~G')Z which is assumed
nonsingular. This estimate of M is equivalent to an LS estimate of M in (5)
withK=TandL =S

In GMANOVA, tests of hypotheses about M of the following form are
typically of interest, rather than PCA of the structural part of model (44):

R'MC = 0, (46)

where R and C are given constraint matrices. We assume that R = G’ KWg
for some Wy, and similarly C = H'LW( for some W¢. These conditions are
automatically satisfied if G and H have full column ranks. An LS estimate of M
under the above hypothesis can be obtained as follows: Let X and Y be such that
R’X = 0 and Sp[R|X] = Sp(G'), and C'Y = 0 and Sp[C|Y] = Sp(H'). (These
conditions reduce to Sp(X) = Ker(R’) and Sp(Y) = Ker(C'), respectively,
when G and H have full column ranks.) Then, M in (46) can be reparameter-
ized as

M = XMyxyY' + MyY + XMy, @7

where Myy, My and My are matrices of unknown parameters. This represen-
tation is not unique. For identification, we assume

X'G'’KGMy =0, (48)
(where K = I in GMANOVA), and
Y'HLHM) =0, 49)

(where L = S~! in GMANOVA). These constraints are similar to (2) and (3).
Putting (47) in model (44), we obtain

Z = GXMyyYH + GMyY'H + GXMyH' + E. (50)

Note that this is an instance of higher-order structures discussed in Section 4.2.
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LS estimates of My, My and My subject to (48) and (49) are obtained by

Myy = (X'G'KGX)"X'G’KZLHY(YH'LHY)", (Y
My = Pgokc)-r/k ZHLY(YHLHY)™, (52)

and
My = (X'G'’KGX)"X'GKZPYy 1 py-c/1» (53)

where because of (32), Pgc'kc)-r/k = Pe/xk — Pex/x and Pyray-c/L =
Pn;. — Phy/L. These are analogous to (5), (10) and (11). Putting (51) through
(53) into (50) leads to

Z = Pex/kLPyy;; + Poak6)-r/kLPyy, + Pox/k ZPywimy-c/L +(l;:;‘)

where E is defined as Z minus the sum of the first three terms in (54).

The above partition suggests that Sp(Z) is split into three mutually orthogo-
nal subspaces (in metric K) with associated projectors, Pgx,x, Pg(c'x6)-r and
Qg/x- The Sp(Z’) can be similarly partitioned. By combining the two partiti-
onings we obtain the nine-term partition listed in Table 2. The first three terms
in (54) correspond with (a), (b) and (d) in the table. The fourth term in (54), E,
represents the sum of all the remaining terms ((c), (¢), (f), (g), (h) & (i)) in Table
2. It will be interesting to obtain fixed-rank approximations (Internal Analysis)
of not only the last term in (54), as was done by Rao (1985; to be described
shortly), but also the first three terms in (54). Rao (1985) considered a slightly
generalized version of the hypothesis (47), namely

M = XMyyY + MyY + XMy + E*, (55)

where E* is assumed to have a prescribed rank, and is such that

X'G’KGE* =0, (56)

Table 2. Decomposition in GMANOVA

Decomposition Decomposition of Sp(Z')

of Sp(Z)

Pyvit  Puwimy-cir Qui
Pox/k (a) ) (c)
Pox6)-r/k (G (e) ®

Qq/x (® (h) )]
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and
E*HLHY = 0. (57

Under (55), LS estimates of Myy, My, and My given in (51), (52) and (53) are
still yglid. The estimate of E*, on the other hand, can be obtained as follows:
Let E be such that

GE'H = PGy Rk LPymLmy-c/10 (58)

which is the LS estimate of GE*H’ under no rank restriction on E*. Th1s cor-
responds with term (e) in Table 2. The fixed-rank approximation of GE'H is
obtained by the GSVD(GE N ¢ )k.1- Let W represent the fixed-rank approx-
imation of GE H'. Then, a fixed-rank approximation, E’, of E* is obtained
by

= (G'’KG)"GKWLHH'LH)", (59)
or directly by the GSVD of
E' = (GKG) R®R'(GKG) R)"R(G'KG) G'KZ
x LHH'LH)~C(C'(H'LH)~C)~C'(H'LH)~ (60)

with metrics G'’KG and H'LH. Rao’s hypothesis, (55), can be expressed in the
form of a conventional GMANOVA hypothesis (like (47)) as
R'(M - E*C =0, (61)

where E* is, as before, assumed to have a prescribed rank.

5.3 Lagrange’s Theorem

It is well known (e.g., Yanai, 1990) that
(AZ; =ZB(A'ZB)” (62)
and
B, , = (AZB)"A'Z (63)
are reflexive g-inverses of A’ and B, respectively, under
rank(A’ZB) = rank(A’) (64)
and

rank(A’ZB) = rank(B), (65)
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respectively. A reflexive g-inverse X~ of X satisfies XX X = Xand X XX~ =
X™. Define

Qzpa =1-(A)Z5A, (66)

and

QZ'A,B = I - BBZrz- (67)

Then, Q5 4 is the projector onto Ker(A') along Sp(ZB), and Q4 p onto
Ker(A'Z) along Sp(B). Define

2, =Qz34Z=12Qz 4 3. (68)
Then, under both (64) and (65),

rank(Z,) = rank(Z) — rank(A’ZB). (69)

This is called Lagrange’s theorem (Rao, 1973, p. 69). Note that (64) and (65)
are sufficient, but not necessary, conditions for (69).

Rao (1964, Section 11) considered extracting components within Sp(Z) but
orthogonal to a given G. This amounts to SVD of

2Qz;c =Z(1-Z'G(G'2Z7G)"G'Z)

= (- 2Z'G(G'ZZG)"G)Z = Qg7 Z. (70)

This reduces to Z; in (68) by setting A = G and B = Z'G. It is obvious that
this is also a special case of ZQy with H = Z'G, and of Qg /x Z withK = ZZ'.
Rao’s method is thus a special case of CPCA in two distinct ways. (It can easily
be verified that ZQ,; and G are mutually orthogonal, and that Sp(ZQz ;) is
in Sp(Z).)

Guttman (1944, 1952; also, see Schonemann and Steiger, 1976) consid-
ered obtaining components which are given linear combinations of Z, as, for
example, in the group centroid method of factor analysis, and used Lagrange’s
theorem to successively obtain residual matrices. Let the weight matrix in the
linear combinations be denoted by W. Let A = ZW and B = W in (68). PCA
of the part of data matrix Z that can be explained by ZW amounts to SVD of
PzwZ = ZPy,zz and that of residual matrices to SVD of QzwZ = ZQy,z 7.
Both are special cases of CPCA (PCA of PGZ = ZPy/, and that of QgZ =
2Qy, ) withG =ZWorwithH=WandL = Z'Z.

A major difference between CPCA and the methods discussed in this sec-
tion is that in the former, components are often constructed outside Sp(Z’) or
Sp(Z), whereas in the latter they are always formed within the spaces.
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5.4 Relationships among CPCA, CANO and Related Methods

A number of methods have been proposed for relating two sets of variables with
or without additional constraints. In this section we show relationships among
some of them: CPCA, canonical correlation analysis (CANO), CANOLC
(CANO with linear constraints; Yanai and Takane, 1990), CCA (ter Braak,
1986), and the usual (unconstrained) correspondence analysis (CA;
Greenacre, 1984). A common thread running through these techniques is the
generalized singular value decomposition (GSVD) described in Section 3.2.

We first briefly discuss each method in turn, and then establish specific
relationships among the methods.

(i) CPCA: As has been seen, there are five matrices involved in CPCA, and
it is more explicitly written as CPCA(Z, G, H, K, L), where Z is a data
matrix, G and H are matrices of external constraints, and K and L metric
matrices. Row and column representations, U and V, of Z are sought under
the restrictions that U = GU* and V = HV*, where U* and V* are weight
matrices. Matrices U* and V* are obtained by GSVD((G'’KG)"G'’KZLH
MH'LH) )G k6, H'LH-

(ii)) CANOLC: Four matrices are involved in CANOLC, and hence it is written
as CANOLC(X, Y, G, H). Canonical correlation analysis between X and
Y is performed under the restrictions that canonical variates, U and V, are
linear functions of G and H, respectively. Thatis, U = GU*and V = HV*,
where U* and V* are weight matrices obtained by GSVD((G'X'XG)~G'X’
YHM'Y'YH) )o'x'xc.ry'yn. Note that there is a symmetry between a
pair of matrices, X and Y, and the other pair of matrices, G and H, so that
their roles can be exchanged. We then have CANOLC(G, H, X, Y).

(iii) CCA: When there are constraints on both rows and columns of a contingen-
cy table, five matrices are involved in CCA, and it is more explicitly written
as CCA(F, G, H, Dy, D), where F is a two-way contingency table, G and
H are matrices of external constraints, and Dg and D¢ diagonal matrices
of row and column totals of F, respectively. Row and column representa-
tions, U and V, of F are obtained under the restrictions that U = GU* and
V = HV*, where U* and V* are weight matrices. Matrices U* and V* are
obtained by GSVD((G'DxG)"G'FHMH'DcH) )¢ p,c.1'pon- CCA dis-
cussed in the main text of this paper (Section 5.1) is a simplified version,
where H = I is assumed.

(iv) CANO: Canonical correlation analysis between G and H denoted as CANO
(G, H) amounts to GSVD(G'G)"GHMHH) )¢ nH-

(v) CA: The usual (unconstrained) correspondence analysis of a two-way con-
tingency table, F, is written as CA(F, Dy, D¢), where Dy and D are, as
before, diagonal matrices of row and column totals of F, respectively.
CA(F, Dg, Dc¢) reduces to GSVD(DRFD_) p,, p-
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Specific relationships among these methods are depicted in Fig. 2. In the
figure, methods placed higher are more general. By specializing some of the
matrices involved in more general methods, more specialized methods result:

CPCA — CANOLC:

CPCA — CCA:
CPCA —> CANO:
CPCA — CA:

CANOLC — CCA:
CANOLC — CANO:
CANOLC — CA:

CCA — CANO:
CCA — CA:
CANO — CA:

SetZ = (X'’X)"XY(YY),K=XYX, and
L=YY.

Set Z = DgFD;, K =Dg,and L = Dc.

SetZ=LK=LandL =1

SetZ=DyFD;,G =1, H=I K =Dg, and
L=Dc.

Set XY =F, XX =Dz, and YY =D¢.

SetX=LandY=L

SetGH=F,X=LY=1GG =Dg,and
HH=Dc.

SetF=LDr=LandD¢c =1

SetG=LandH=1

Set GH =F, G'G = Dg,and HH = D¢.

Note that the relationship between CPCA and CANO implies relationships be-
tween CPCA and MANOVA and between CPCA and canonical discriminant
analysis, as both MANOVA and canonical discriminant analysis are special

cases of CANO.

CCA

CA

CPCA

CANOLC

CANO

Fig. 2. Relationships among CPCA, CANOLC, CCA, CANO and CA
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5.5 Historical Remarks on CPCA

Special cases of partition (20) have been proposed by many authors (Gabriel,
1978; Rao, 1980). These authors proposed models in which in additionto K =1
and L = L, either the first and the second terms, or the first and the third terms
in (20) are not separated. These models are written as

Z =PcL+ QgZPy + QzZQy

=ZPy +PcZQy + QcZQy, (71)

where Pg = G(G'G)"G,Qg =1—-Pg, Py =HMHH) H and Q; =I-Pg
are I-orthogonal projectors. Gollob’s (1968) FANOVA is a special case of
CPCA in which G = 1y and H = 1,,. Yanai (1970) proposed PCA with ex-
ternal criteria, where G represented a matrix of dummy variables indicating
subjects’ group membership. Okamoto (1972) set G = 1y and H = 1,, as in
Gollob, and proposed PCA’s of four matrices, Z, Qg Z, ZQ; and Q;ZQy;.

In all the above proposals, PCA’s of residual terms are recommended. Sev-
eral lines of development in PCA of the structural parts have also taken place.
Rao (1964) gave a solution to a constrained generalized eigenvalue problem,
which is closely related to GSVD. He also proposed PCA of instrumental vari-
ables, also known as reduced-rank regression (Anderson, 1951) and redundancy
analysis (van den Wollenberg, 1977). This method amounts to SVD(PsZ) or
GSVD((G'G)~G'Z) ¢/, ;. Golub (1973) gave a solution to the problem of max-
imizing a bilinear form x’Ay/||x| - ||y|| subject to linear restrictions of the form,
C’x = 0 and R’y = 0. Ter Braak (1986; CCA) and Bockenholt and Béckenholt
(1990; CALC) proposed similar methods for analysis of contingency tables (see
Section 5.1). Nishisato and his collaborators (Nishisato, 1980; Nishisato and
Lawrence, 1989) also proposed similar methods called ANOVA of categorical
data. Carroll et al. (1980) two-way CANDELINC applies PCA to only the first
term in model (1). GMANOVA also fits only the first term in model (1), and
optionally applies PCA to residuals (see Section 5.2).

We also should not forget many interesting contributions by French data
analysts in related areas (e.g., Bonifas et al., 1984; Durand, 1993; Sabatier,
Lebreton and Chessel, 1989). The use of the term GSVD in this paper follows
their tradition (Cailliez and Pages, 1976; Escoufier, 1987; Greenacre, 1984).
Among North American numerical analysts, however, the same terminology
has been used to refer to a related, but different, procedure (Van Loan, 1976),
which is a technique to solve the generalized eigenvalue problem of the form
(A’A — AB'B)x = 0 without explicitly forming A’A and B'B. De Moor and
Golub (1991) recently proposed to call it QSVD (Quotient SVD) instead of
GSVD. QSVD has been extended to RSVD (Restricted SVD) which involves
not two, but three, rectangular matrices simultaneously.
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6 Discussion

CPCA is a versatile technique for structural analysis of multivariate data. It
is widely applicable and subsumes a number of existing methods as special
cases. Technically, CPCA amounts to two major analytic techniques, projec-
tionand GSVD, both of which can be obtained non-iteratively. The computation
involved is simple, efficient, and free from dangers of suboptimal solutions.
Component scores are uniquely defined (unlike in factor analysis, there is no
factorial indeterminacy problem), and solutions are nested in the sense that
lower dimensions are retained in higher dimensional solutions.

No distributional assumptions were deliberately made on the data so as not
to limit the applicability of CPCA. It may be argued, however, that this has
a negative impact on statistical model evaluation. Goodness of fit evaluation
and dimensionality selection are undoubtedly more difficult, although various
cross-validation approaches (Eastment and Krzanowski, 1982; Geisser, 1975;
Stone, 1974) are feasible. For example, the bootstrap method (Efron, 1979) can
easily be used to assess the degree of stability of the analysis results. There
are also some attempts to develop analytic distribution theories in some special
cases of CPCA (e.g., Denis, 1987; Rao, 1985).

It may also be argued that in contrast to ACOVS (e.g., Joéreskog, 1970),
CPCA does not take into account measurement errors. Although it is true that
the treatment of measurement errors is totally different in the two methods,
CPCA has its mechanism to reduce the amount of measurement errors in the
solution. Discarding components associated with smaller singular values in the
internal analysis has the effect of eliminating measurement errors (Gleason and
Staelin, 1973). Furthermore, information concerning reliability of measurement
can be incorporated into CPCA via metric matrices (see Section 2.3).

PCA and CPCA are generally considered scale variant, in contrastto ACOVS
which is scale invariant (e.g., Bollen, 1989) if the maximum likelihood or the
generalized least squares method is used for estimation. This statement is only
half true. While PCA and CPCA are not scale invariant with L = I, they can
be made scale invariant by specifying an appropriate non-identity L, as has
been discussed in Section 2.3. A crucial question is how to choose an appropri-
ate L. This seems to be a long neglected area of research that requires further
investigations (but see Meredith and Millsap, 1985).

One limitation of CPCA is that it cannot fit different sets of constraints im-
posed on different dimensions, unless they are mutually orthogonal or orthog-
onalized a priori. A separate method (DCDD) has been developed specifically
to deal with this kind of constraints in PCA-like settings (Takane et al., 1995).

Development of CPCA is still under progress. It will be interesting to ex-
tend CPCA to cover structural equation models, multilevel analysis, time series
analysis, dynamical systems, etc. Extensions of CPCA into structural equation
models may make CPCA similar to the PLS (Lohmédller, 1989) approach to
structural equation models. In both methods, models are fitted to data matri-
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ces rather than covariance matrices. However, solutions are analytic in CPCA,
while they are iterative in the latter. In view of the nature of solutions, PLS
is in fact more similar to DCDD, which is also iterative. Takane et al. (1995)
discussed similarities and distinctions between PLS and DCDD.

There are a few problems left undiscussed or only briefly discussed in this
paper. They include, among others, optimal data transformations, graphic dis-
plays, missing observations, and robust estimations. These, however, have to
await separate publications. Also, no illustrative examples are given in this pa-
per. They are given in a companion paper (Hunter and Takane, 2000).
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