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Generalized Constrained Canonical Correlation Analysis

“Yoshio Takane and Heungsun Hwang
McGill University

A method for generalized constrained canonical correlation analysis (GCCANO) is
proposed that incorporates external information on both rows and columns of data
matrices. In this method each set of variables is first decomposed into the sum of several
submatrices according to the external information, and then canonical correlation analysis is
applied to pairs of derived submatrices, one from each set, to explore linear relationships
between them. Technically, the former amounts to projections of the data matrix onto the
spaces spanned by matrices of external information, while the latter involves the
generalized singular value decomposition of a matrix with certain metric matrices.
GCCANO subsumes a number of existing methods as special cases. It generalizes-various
kinds of linearly constrained correspondence analysis as well as multivariate analysis of
variance/canonical discriminant analysis. Permutation tests are applied to test the
significance of canonical correlations obtained from GCCANO. Examples are given to
illustrate the proposed method.

Introduction

Canonical correlation analysis (CANO) is used to explore linear
relationships between two sets of multivariate data. Technically CANO
amounts to extracting a series of linear combinations, called the canonical
variates, from two sets of data, which are mutually orthogonal within each
data set while are maximally correlated between the data sets.

Each data set is often accompanied by external information on its rows
(corresponding to “cases” or “subjects”) and columns (corresponding to
“variables”). For example, subjects’ demographic information (e.g., gender,
age, level of education, etc.) may be available. Some relationships among
variables may also be known in advance (e.g., no interaction between variables,
equality of scaled variable scores, group membership of variables, etc.).
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When such information is incorporated into CANO, we may obtain simpler
interpretations since the data to be analyzed are already structured by the
external information. We may also look at the relationships between two sets
of data from diverse perspectives, relating a variety of pairs of decomposed

- submatrices supplied by the external information. For more details about
potential advantages of incorporating external information, see Takane,
Kiers, and de Leeuw (1995). » ’

In this article, we propose a method for generalized constrained
canonical . correlation analysis (GCCANO) that incorporates external
information into CANO. The external information can be incorporated into
both rows and columns of each data set. In GCCANO, each data set is first
decomposed into several submatrices according to the external information,
and then CANO is applied to pairs of the decomposed submatrices, one from
each set, to explore linear relationships between them. Technically, the
former amounts to projections of the data matrix onto the spaces spanned by
matrices of external information, while the latter involves the generalized
singular value decomposition (GSVD) of a matrix with certain metric
matrices.

Takane and Shibayama (1991) proposed constrained principal
component analysis (CPCA) that incorporated external information in
dimension reduction within a single data set. They provided a comprehensive
framework to incorporate external information in the form of linear
constraints. We follow a similar approach for analyzing the relationship
between two sets of data.

To illustrate further, suppose an investigator is interested in finding out
the relationships between various kinds of food intake and the mortality rate
by various kinds of cancer. She finds statistics from the UN reporting
average intake of various food items by people living in various countries, and
similar statistics on the mortality rates by various kinds of cancer. It is
suspected that food variables are affected by the degree of economic
development of the countries (i.e, how wealthy the countries are as
measured by GDP per capita, average income, etc.) because what people
can afford to eat depends on it, and similarly, the cancer mortality rates are
affected by the overall health status of those countries as measured by the
average life span, infant mortality rate, etcetera. In analyzing the
relationships between food variables and the cancer mortality rates, we may
wish to eliminate the effects of these variables from the corresponding data
sets. This allows us to focus on more intrinsic aspects of the relationships
between the food variables and the cancer mortality rates, not mediated by
the extraneous variables. Furthermore, the food variables may be classified
into several groups according to their nutritional profiles, and various kinds
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of cancer may also be grouped into several categories according to the
closeness of their loci. We may incorporate this kind of prior information to
simplify the analysis of the relationships between the two sets of variables.
GCCANO is precisely designed to enable such an analysis by using the
economic development and the health status variables as the row
information, and the grouping variables for food and the cancer variables as
‘the column information matrices. : ’

This article is organized as follows. “The Method” section describes the
proposed method in detail. It includes data requirements, data
decompositions according to external information, and CANO of the
decomposed submatrices of the data. Relations to other existing CANO
methods are also discussed, including partial CANO (Rao, 1969), bipartial,
and semi-partial (or part) CANO (Cohen, 1982; Timm & Carlson, 1976), and
canonical correlation analysis with linear constraints (Yanai & Takane,
1992). The proposed method also generalizes various kinds of linearly
constrained correspondence analysis (CA) and multivariate analysis of
variance. (MANOVA)/canonical discriminant analysis (CDA). The
“Generalized Constrained Correspondence Analysis (GCCA) and
Multivariate Analysis of Variance (MANOVA)/Canonical Discriminant
Analysis (CDA)” section deals with relations to other CA methods, such as
canonical correspondence analysis (ter Braak, 1986)/canonical analysis
with linear constraints (Bockenholt & Bockenholt, 1990), partial
correspondence analysis (Yanai, 1986), and MANOVA/CDA. The
“Permutation Tests for Testing the Number of Significant Canonical
Correlations” section presents permutation tests for testing the significance
of canonical correlations obtained from GCCANO. The permutation tests
in particular allow us to test the significance of individual canonical
correlations. In the “Applications” section, two examples are given to
illustrate the proposed method. The final section briefly summarizes the
previous sections and discusses further prospects.

The Method

The Data

We denote an N-row by r-column data matrix by X and an N-row by c-
column data matrix by Y. Assume that there are two kinds of external
information matrices for each data matrix, one on the row side and the other
on the column side of the data matrix. We denote an N x a (= N) row
information matrix on X by G, and an N x b (= N) row information matrix
on Y by G,. We also denote an r x d (=< r) column information matrix on
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X by H, and a ¢ X f(= c¢) column information matrix on Y by H,. As hasbeen
alluded to earlier, these external information matrices can take a variety of
forms. For the row information matrix, we may, for example, use a matrix
of subjects’ attributes (age, gender, levels of education, interactions among
these attributes, etc.), a matrix of dummy variables indicating subjects’ group
membership, or any other demographic information about the subjects. For
the column information matrix, we may use an r --or c-component vector of
ones, or any matrix capturing relationships among the columns of a data
matrix (e.g., a design matrix for pair comparisons, an additivity constraint
matrix, or an equality constraint matrix, a matrix of stimulus attributes, etc.).
When no row and/or column information is available, we may simply set G,
G,, H,, and H, equal to the identity matrices of appropriate size.

To illustrate further, consider the following example. This data set will
be analyzed later (“The Friendship Data” section) to demonstrate the use of
GCCANO. The data were originally collected by Koh, Mendelson, and Rhee
(1998) (see Appendix C), who asked 420 South Korean college students (210 -
males and 210 females) positive and negative feelings toward their best
same-sex friends. The degree of positive feelings for a friend was assessed
by eight items based on a 6-point rating scale while that of negative feelings
was described on eighteen items using a 9-point scale. We may use the eight
items on positive feelings as one data set, X, and the eighteen items on
negative feelings as the other data set, Y. Besides the items relevant to
positive and negative feelings, there are also five demographic items
available, so that we may use the demographic items for a single row
information matrix, G, common to both sets (that is, G, = G, = G). Matrix
G includes items indicating the year in college (1 = freshman, 2 = sophomore,
3 = junior, 4 = senior), gender (1 = male, 2 = female), age, the number of
failures to enter university (1 = no experience, 2 = once, 3 = twice, 4 = more
than twice), and experience in military service (1 = not finished, 2 = not
applicable, 3 = finished). Each demographic item is treated as a continuous
variable with equally spaced levels. According to Koh et al. (1998), the eight
items in X were used to assess two aspects of positive feelings toward a
friend, satisfaction and affection. The eighteen items in Y were used to
assess four aspects of negative feelings toward a friend, such as feelings of
lack of closeness, feelings of conflict, feelings of worry, and feelings of
incompetence. For simplification, we modify the original order of the eight
items in X, so that satisfaction was assessed by the first four items and
affection by the following four items, and also modify the order of the
eighteen items in Y in such a way that the first three items measured the
degree of feelings of lack of closeness, the next eight items that of feelings
of conflict, the next three items that of feelings of worry, and the last four
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items that of feelings of incompetence. We may then use two matrices of
dummy variables, which indicate group membership of items, as the column
information matrices, H, and H,. Matrices H, and H, can be specifically
defined as

_ 1111000 0]
H,=| Y.
00001111
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The first column of H, indicates items assessing the degree of satisfaction -
toward a friend while the second column those measuring the degree of
affection with a friend. The first column of H, indicates items on feelings
of lack of closeness, the second column those on feelings of conflict, the third
column those on feelings of worry, and the last column those on feelings of
incompetence.

In this article we assume that X, Y, G, and G, are already columnwise-
centered. In contrast, H, and H, do not have to be centered, once X and Y
are centered. The reason is as follows: In the case of continuous X, H, is
usually not centered because row means of X are often interesting aspects
of the data to be included in the analysis. When X is a matrix of dummy
variables, the columnwise centering of X entails a rowwise centering of X in
the metric of X'X. Let X be an N by r matrix of dummy variables (without
missing data). Then, X1 =1,, where 1_and 1, are r-component and N-
component vectors of ones. Consequently, Q, X=Q, XQ, ,yx =XQ, ,xx,
where Q,, =(I-1,1;/N), and Q, 5y =[I-1,(LX’XL,)" 1;X’X]. This
implies that when the columnwise centered X is postmultiplied by H,, H, is
tacitly columnwise centered. This means that H, does not have to be
explicitly centered whether the data matrices are continuous or discrete. A
similar argument holds for H,.

Observed data almost always contain a sizable amount of measurement
errors. The effect of measurment errors in CANO has been investigated by
Meredith (1964), who proposed a factor analysis like communality
estimation procedure. If desirable, a similar approach can be taken in
GCCANO as well. A simpler solution would be to apply PCA (principal
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component analysis) or FA (factor analysis) to screen out measurement
errors from the data, which are then subjected to GCCANO (Gleason, 1973).
Errors-in-variables regression (Gleser, 1981), in which the matrix of
regression coefficients is either rank-reduced or confined to lie in a specific
subspace, offers another interesting possibility. Other regularization
techniques used in CANO (e.g., Ramsay & Silverman, 1997, chapter 12)
may also be useful in this regard. ,

Decomposition of Data Matrices
When both row and column information matrices are available, the data
matrices can be decomposed into four submatrices, following Takane and

Shibayama (1991):

X =(PGX +QGx )X(PHX +QHX )

o)) =P; XP, +P; XQ, +Q; XP, +Q; XQy, .
and
Y=(P;, +Qg )Y(P, +Qy )
(2) =P, YP, +P;YQ, +Q;YP, +Q;YQ, ,
where
3) P, =G, (G;G,) G,
4) ch :I"ch’
) P, =H, (H,XXH, ) H, XX,
and
(6) Q,, =I-P,, .
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1 669

Symbo in Equations 3 and 5 indicates a g-inverse. Note that
P Qg =1, P, +Qu =I, P, +Q; =I, and P, +Q, =I in
Equat10n1 Note also that P, isthe orthogonal projection operator (we call
simply projector hereafter) onto Sp(G,) (the space spanned by the column
vectors of G,), and QG is its orthogonal complement [the orthogonal
~ projector onto Ker(G,), where Ker(G,) denotes the null space of G, ], while
PHX is the projector onto Sp(H,) along Ker(H;X'X), and QH is the

projector onto Ker(H;X'X) along Sp(H,). Matrices P Qg » w, » and
Q,, are analogously defined. Matrices X'X in P, x and Y'Y in P are
called metric matrices. (Projectors P, , Q, , P, , and Qg mlght be

denoted as Py, x> Qu /xx> Py sy and Qu, vy > respectlvely, to explicitly
indicate the1r dependence on metric matrices, X'X and Y'Y. However, we
suppress the metric matrices in these projectors to avoid notational clutter.)
When they are not of full rank, the following rank conditions,

) rank[(X'X)"X'XH, ] = rank (X'XH,),
® rank[(Y'Y)'Y'YH, ] = rank (Y'YH )

have to be satisfied for PH , QHx ,» Py, ,and QH to be projectors without
regard to the kind of g-inverses used (Yanai, 1990). However, it can be
easily verified that these conditions are automatically satisfied in the present
case. Equation 1 is obtained by setting the row information matrix in CPCA
to G, with metric I, and the column information matrix in CPCA to X'XH,
with metric (X'X)~. Similarly, Equation 2 is obtained by setting the row
information matrix to G, with metric I,, and the column information matrix
to Y'YH, with metric (Y'Y)". More detailed derivations of the
decompositions are given in Appendix A.

The decompositions in Equations 1 and 2 are either columnwise or
rowwise orthogonal in their respective metric matrices, and each term in
Equations 1 and 2 can be given a specific interpretation (Takane &
Shibayama, 1991). In Equation 1, the first term represents the portion of X
that can be explained by both G, and H,, the second term by G,, but not by
H,, the third term by H,, but not by G,, and the final term by neither G, nor
H,. Similar interpretations can also be given to the four terms in Equation 2.

The four terms in Equations 1 and 2, however, can be derived only when
both row and column information matrices are available. We may, more
generally, consider the following submatrices of X and Y:
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(X,) X (Y,) Y
(Xz) PGXX (Yz) PG,Y
(X,) QX (V) QY
(X,) XP, . (Y) YR,

© (X)) XQ, (Y) YQ
(X)) P, XP,  (Y) B,YP,
(X,) P, XQ, (Y,) P,YQ,
(X)) Qg XP, (%) Qo YP,
(X5) Qg XQy, (Y,) QgYQy,

- Matrices X, and Y, simply indicate the unconstrained data matrices. The
next two sets of submatrices, denoted by X, Y,, X3 and Y,, can be derived
when only the row information matrices are incorporated. Matrices X, and
Y, indicate the portions of X and Y that can be explained by their respective
row information matrices, while X, and Y, indicate the residuals after the
effects due to the row information matrices are eliminated. Similarly, X, Y,
X, and Y, are derived when only the column information matrices are
incorporated. The last four submatrices (X and Y, through X, and Y,)
correspond with the four terms in the full decompositions, Equations 1 and
2, when both row and column information matrices are incorporated.

Canonical Correlation Analysis of Pairs of the Decomposed Matrices

Once each data set is decomposed according to the external information,
CANO can be applied to any pair of a submatrix from X and one from Y,
given in Equation 9, to explore relationships between them. It is well known
that computationally CANO amounts to the generalized singular value
decomposition (GSVD) of a matrix with certain metric matrices. The GSVD
of matrix Z with metric matrices, A and B (temporarily assumed pd), is
defined as

(10) Z=UDV’,
where U'AU =1 and V'BV =1 and D is diagonal and pd (e.g., Greenacre,

1984; Takane & Shibayama, 1991). It is denoted as GSVD(Z) B and can
be obtained as follows. Let A =R R and B=R_R) be arbitrary square root
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decompositions of A and B, respectively. Let the ordinary singular value
decomposition (SVD) of R'ZR be denoted by

(11) R'ZR, = UD'V",

where U"U* = V"'V* =1, and D’ is diagonal and pd. Then, U, V, and D in
Equation 10 are obtained by U = RO, V=R)'V',andD=D". GSVD
of a matrix always exists (Takane & Shibayama, 1991). Itis unique if A and
B are nonsingular. If they are singular, we may use any g-inverses of A and
B in the above formulae, but then the uniqueness of the solution is destroyed.
If we still want to obtain a unique solution, we may use the Moore-Penrose
inverses. , »

Let us briefly discuss some examples of applying CANO to pairs of the
decomposed submatrices of X and Y, given in Equation 9. First, consider
CANO(X|, Y,), CANO of the pair of X, and Y. This is simply the ordlnary
CANO between X and Y, which amounts to obtalmng -
(12) GSVD[X'X) X'Y(Y'Y)]

Xxyy

Consider next CANO(X, Y,), which amounts to obtaining

(13) GSVD[(H,X'XH,)H.X'YH (H)Y'YH )]

H X'XH, H,Y'YH

or

(14)  GSVDH,MHX'XH)HX'YH MY YH )H],. ..
Let the GSVD in Equation 13 be denoted by UVD’ and that in Equation 14
by UDV’. The two GSVD’s are related by U=(XX)" (X’X)H,U,
V=(Y'Y) (YY)H,V, and D=D, or U=(H,XXH,) H, X'XU
V=(H,YYH,) H, Y'YV and D=D. CANO(X,, Y)isa CANO of the
portions of X and Y accounted for by H, and H,, respectively. This is
equivalent to CANOLC proposed by Yanai & Takane (1992). A detailed
derivation of how CANO(X,, Y,) reduces to the GSVD given in Equatijon 13
is given in Appendix B. '

We can also pair X, and Y, for CANO. These decomposed submatrices
represent the residual portions of X and Y after partialing out the effects of
the row information matrices. If there is a single row information matrix
common to X and Y, that is, G, = G,, CANO(X,, Y,) amounts to partial
CANO (Rao, 1969). On the other hand, if two distinct row information
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matrices are used for X and Y, that is, G, # G,, CANO(X, Y,) amounts to
bipartial CANO (Timm & Carlson, 1976).

We can also apply CANO to the pair of X and Y, orof X, and Y,. That
is, one of the pair is the unconstrained data matrix, and the other is the
residual after removing the effect of the row information matrix. CANO(X,
Y, or CANO(X,, Y ) amounts to part CANO (Timm & Cgrlson, 1976) or
semi-partial CANO (Cohen, 1982). '

All the analyses mentioned above reduce to existing techniques.
However, a combination such as X and Y, is also possible, leading to a new
technique which might be called (bi)partial CANOLC. In the example
section we demonstrate the use of partial CANOLC. Let us reiterate that,
in principle, any combination of X through X  and Y, through Y, is possible,
although some combinations such as X, and Y, with G, = G, may not be
empirically meaningful.

Generalized Constrained Correspondence Analysis(GCCA) and
Multivariate Analysis of Variance (MANOVA)/Canonical
Discriminant Analysis (CDA)

When both X and Y consist of discrete data CANO reduces to
correspondence analysis (CA) of contingency tables. GCCANO, in this
case, generalizes a variety of linearly constrained correspondence analysis
techniques. It also subsumes MANOVA/CDA and their constrained
counterparts which are also special cases of CANO.

Generalized Constrained Correspondence Analysis (GCCA)

Let X and Y be N by r and N by ¢ matrices of dummy variables. Let G,,
G,, H,, and H, denote the external information matrices as in “The Method”
section. The data matrices can be decomposed according to the external
information in a manner similar to Equation 3. As before, CANQ can be
applied to any pair of the components. All these analyses lead to special kinds
of correspondence analysis. '

Let F = X'Y denote a two-way contingency table with both row and
column marginal effects removed. CANO(X, Y)) amounts to obtaining
(15) GSVDIX'X)F(Y'Y) 1,y py
CANO(X, Y,) amounts to the unconstrained correspondence analysis of F.
It is well known that in GCCA X'X and Y'Y can be replaced by D, and D,
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where D, and D_ are diagonal matrices of row and column sums of the
original contingency table (without the marginal effects removed).

CANO(X,, Y,) amounts to obtaining

HX'XHy HyY' YH,?

(16) GSVD[(H,X'XH,)"H,FH (H,Y'YH,) ]
or - .

(17) .GSVD[HX(H)’(X’XHX)“H)’{FHY(H’YY’YHY)‘H’Y]X,X,Y,Y.
It is a CANO of the portions of X and Y explained by H, and H,. It is
analogous to canonical correspondence analysis (CCA) by ter Braak (1986)
and canonical analysis with linear constraints (CALC) by Béckenholt and
Bockenholt (1990).

CANO(X,, Y,) amounts to

(18) GSVD[(X'Q XX 'Q GXQ GyY(Y’Q 6, Y ]y QXYY
Itis a CANO of the residuals obtained after the effects due to G, and G, are
removed from X and Y. It may be called bipartial correspondence analysis,
following the name, bipartial CANO. If G, = G, CANO(X,, Y,) reduces to
partial correspondence analysis by Yanai (1986). CANO(X,, Y,) or
CANO(X,, Y,) can be called semi-partial or part correspondence analysis.

As in the case of continuous data, we can also consider many other
combinations of X, through X, and Y, through Y, yielding a variety of new
techniques for relating two sets of discrete data. In the example section, we
demonstrate the use of CANO(X,, Y,) with G, = G, = G, which might be
called partial CCA. (ter Braak, 1986, uses the same terminology in a slightly
different context, however.)

Multivariate Analysis of Variance (MANOVA)/Canonical Discriminant
Analysis (CDA)

In MANOVA/CDA, one set of variables is discrete while the other set
is continuous. Let X* be an N by r matrix of raw dammy variables and let
Y be an N by ¢ matrix of (columnwise-centered) continuous multivariate
observations. Assume that there is no additional information on both X* and
Y (ie.,G,=G,=Iand H, = H,=1). In this case, we columnwise-center
only Y. Technically, MANOVA/CDA of X' and Y amounts to

GSVD[(X’X")X"Y(Y'Y)]

XX Y'y*
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MANOVA/CDA is equivalent to CANO(X", Y).

It is of interest to introduce external constraints into MANOVA/CDA.
GCCANO provides a general framework for constrained and/or partial
MANOVA/CDA including such familiar techniques as MANOCOVA
(multivariate analysis of covariance), profile analysis (Morrison, 1990),

GMANOVA (growth curve models), etcetera.

Permutation Tests for Testing the Number
of Significant Canonical Correlations

It is important to be able to identify the number of significant canonical
variates. We use permutation tests for testing the significance of canonical
correlations obtained from GCCANO. The permutation tests have certain
desirable properties for our purposes. First, they do not rely on any
distributional assumptions on the data, so that they can be used even when
the parametric (often the multivariate normality) assumptions fail. Secondly,
they can be used for any kind of canonical correlation analysis realized by
GCCANO, while parametric procedures are often designed only for a subset
of analyses. The permutation tests can be applied for testing the
independence model (i.e., independence between X and Y, which implies
that all canonical correlations are zero) against the saturated model (which
implies that not all canonical correlations are zero). However, models with
a specific number of canonical variates can also be tested against the
saturated model by eliminating the effects of previous canonical correlations
from the data sets (see Legendre & Legendre, 1998; ter Braak, 1990).

Following Manly’s (1997) procedure, the permutation method for testing
the independence model against the saturated model can be stated as
follows:

1. From the original data sets, X and Y, compute the observed value of
Bartlett’s (1938) statistic, given by

—[(N—l)—%(r+c+1)]ilog(1—)\f ),

i=1

where J = min(r, ¢), and the A, are the sample canonical correlations in
descending order. We denote the observed value by ¢, .

2. Construct a “permutation” sample only for one data set, say Y, by
randomly permuting the cases (or randomly selecting one case at a time
without replacement). We denote the sample by Y .

3. Apply GCCANOtoX and Y, , and calculate the Bartlett’s (1938)
statistic, denoted by ¢ '

perm’
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4. Steps 2-3 are repeated B times (e.g., B = 1,000), yielding the null
distribution of Dorm (the distribution of 4,., under the independence
assumption).

5. Compute the so-called permutation achieved significance level
(ASL,,,.) defined to be the probability that Dperm is greater than or equal to
q,,. that is, ASLperm = #‘{qpm =gq,4B.

- If ASL,  isless than.05, the null hypothesis of independence is rejected
at a 5% level. To test the model with one canonical variate against the
saturated model, we eliminate the effects of the largest canonical correlation
from both X and Y. This can be done for X by X =XQ,_ ..., where w, is the
vector of canonical weights used to derive the first canonical variate for X,
and where le xx = 1 - w(wX'Xw)'wX'X. Essentially, the same
procedure can be used for Y as well. The second largest canonical
correlation then becomes the largest one, and the same permutational
procedure can be used to test the null hypothesis that all the remaining
canonical correlations are zero against the alternative hypothesis that it-is
false. The same strategy is applied until an unrejectable null hypoethsis is
encountered, or the saturated model is found to be better than any other
models. This procedure is essentially the same as that proposed by Legendre
& Legendre (1998).

Although the above procedure employs Bartlett’s (1938) statistic, other
statistics such as Roy’s max lambda (VA2) criterion can be used to construct
similar permutation tests. We have tried this also. However, despite the
known difference in power between the two tests under different conditions
(Haberman, 1981), we have reached essentially the same conclusions in the
examples to be presented in the next section. Consequently, we only report
the results of Bartlett’s tests.

Applications

We have written a MATLAB program implementing GCCANO. We
applied GCCANO to actual data sets for empirical evaluation of the
procedure. In this article, we present two examples of analysis. The first
example deals with continuous data. The second example involves discrete
data, which demonstrates that our method generalizes various kinds of
linearly constrained correspondence analysis methods.

The Friendship Data

The first example pertains to Koh et al.’s (1998) Friendship data
described in “The Data” section. The reader is encouraged to refer back to
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that section to remember the basic features of the data set as well as the
kinds of external information available for G = G, = G,., H,, and H..

GCCANO was first applied with G=Iand H, =H =1, thatis, CANO(X ,

Y ), which is equivalent to the unconstrained CANO. The estimated squared

- canonical correlations and the corresponding empirical significance levels
(ALS,, ) calculated by the permutation method with 1,000 permuted samples,
are given in the first two columns of Table 1. It seems that the first three
squared canonical correlations are significant at the 5% level. The empirical
significance level of the smallest squared canonical correlation, A}, happens to
be less than that of the second smallest one, A2. This may be due to the fact
that they are very close to each other (i.e., \2=.023 and \2=.021), so that their
order may have been reversed.

To interpret the three significant canonical variates, we looked at both
pattern (the weights applied to the observed variables to derive the canonical
variates) and structure (the correlations between the canonical variates and
the observed variables). To increase their interpretability we also applied the
normal varimax rotation method to both the pattern and the structure
matrices (Cliff & Krus, 1976; a MATLAB code for the varimax rotation was
kindly provided by Jim Ramsay).

Interpreting the pattern is like trying to characterize the canonical
variates in terms of how they are constructed from the observed variables,
while interpreting the structure is like explaining the nature of the canonical
variates in terms of how they are related to the observed variables. The two
modes of interpretation are often complementary, although it may also

Table 1

The Squared Canonical Correlations and the Corresponding Empirical
Significance Levels in the Parenthesis Obtained from CANO(X,, Y),
CANO(X,, Y ), CANO(X,, Y,), and CANO(X,, Y,) of the Friendship Data

CANOKX, Y) CANO(X,, Y) CANO(X,, Y,) CANO(X,, Y,)

339 (.000) 273 (.000) 344 (.000) 278  (.000)
111 (.001) 022 (.025) .116 (.000)  .021 (.030)
105 (.006) 0 0 .105  (.000) 0 0
081 (.104) 0 0 071  (.150) 0 0
056 (.429) 0 0 060 (.410) 0 0
036 (.712) 0 0 042 (.750) 0 0
023 (.798) 0 0 023 (.920) 0 0
021  (.626) 0 0 .014  (.930) 0 0
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happen that one is more interpretable than the other in some situations. It has
turned out that the rotated structure matrix is the most interpretable in the
present case. This matrix is presented in Table 2, along with the
corresponding standard errors obtained by the bootstrap method (Efron,
.1979; Efron & Tibshirani, 1998) with 100 bootstrap samples.

Table 2
Rotated Canonical Structure and the Corresponding Standard Errors in the
Parenthesis Obtained from CANO(X, Y)) of the Friendship Data

Item Dim=1 Dim=2 Dim =3

X, D, 637  (.110) 379 (.142) 476 (.127)
x, P, 804  (.174) 333 (.243) 115 (.215)
x, p, 783 (.151) 311 (.208) 279 (.205)
x, P, 451 (.1179) 754 (.233) 381 (.221)
X, P, 630 (.139) 246 (.187) 597 (.155)
X, P, 187 (.215) 468  (.258) 711 (.280)
x, p, . 356 (.197) 740 (.272) 269 (.250)
X, P, 326 (.211) 619  (.262) 487 (.229)
y, n -508 (.144) =310 (.204) -285 (.215)
y, n -570  (.127) -252 (.144) -401  (.159)
y, n, -.335 (.169) -436  (.202) -.103  (.190)
y, n, -244  (.168) -106  (.201) =544 (.217)
ys n, -126  (.180) 086 (.240) -440  (.260)
Ve N, =370  (.140) -116  (.195) -166  (.169)
y, n, -.698 (.187) 065  (.254) -192  (.235)
Yy, N, -.144  (.135) -.189  (.160) -406  (.153)
Y, h, -263  (.146) 003  (.157) -026 (.180)
Yo My -.189  (.172) -016 (.195 -504  (.215)
Y, 1, -170  (.154) -094 (.178) -237  (.185)
Y, N, -004  (.160) 097  (.192) 203 (.175)
V5 N, -206  (.176) -218  (.219) 46 (\173)
Vi 1, -031 (.176) 356 (.230) 049  (.221)
Yis 1y, 274 (.167) 010  (.205) 109 (.218)
Yie My 163 (\171) 083  (.206) 055 (.210)
Y, 1y, 153 (.169) -063 (.173) -246  (.244)
Vi M, 179 (.231) -376  (.265) =177 (.322)
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In the table, among the eight items in X the four items on satisfaction are
labeled as pls, and the other four items on affection as p2s. Among the
eighteen items in Y, the three items on feelings of lack of closeness are
labeled as nls, the eight items on feelings of conflict as n2s, the three items
on feelings of worry as n3s, and the four items on feelings of incompetence
as nds. The rotated solution seems to indicate that the first canonical variate
i$ closely related to satisfaction with a friend in X, and feelings of lack of
closeness, and to a lesser extent, féelings of conflict in Y. The second and
the third canonical variates are difficult to interpret, however, in terms of the
a priori groupings of variables.

"GCCANO was also applied with G =1, H, # I, and H, # [ [CANO(X "
Y]. The squared canonical correlations and their empirical significance
levels estimated under CANO(X, Y,) are given in the third and the fourth
columns of Table 1. It is found that all two nonzero squared canonical
correlations are significant. The rotated canonical structure obtained from
CANO(X,, Y ) isreported in Table 3, along with the corresponding bootstrap
standard errors. Those standard errors tend to be smaller than those found
in the unconstrained CANO [CANO(X, Y )] due to the constraints, H, and
H,, incorporated.

The rotated structure matrix shows that the first canonical variate is
more highly correlated with the four items related to the friendship
satisfaction in X, and the items on feelings of lack of closeness and feelings
of conflict in Y, while the second with the four items related to affection in
X, and the items on feelings of worry in Y. It is noted that the relationships
between the canonical variates and the items are much clearer in the
constrained case than in the unconstrained case, leading to more confident
interpretations.

We also applied GCCANO with H, = H =1, and eliminating the effect
of G # I [CANO(X,, Y,)]. This case is equivalent to partial CANO that
obtains the set of canonical variates independent of the information in G. The
squared canonical correlations and the corresponding empirical significance
levels derived from partial CANO are presented in the fifth and the sixth
columns of Table 1. The first three squared canonical correlations are found
to be significant, as in CANO(X,, Y,). The rotated three-dimensional
canonical structure derived under CANO(X,, Y,) is presented in Table 4.
The canonical structure is similar to that obtained in CANO(X,, Y)), though
the corresponding canonical correlations are a bit smaller. This indicates that
the effect of G on both X and Y is only minor. Thus, essentially the same
interpretations of the canonical variates as in CANO(X,, Y,) can be given.

Finally, GCCANO was applied with H, # I, H, # I, and eliminating the
effect of G # I [CANO(X,, Y,)]. This is called partial CANOLC. In this
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analysis, the relationship between the portions of X and Y explained by H,
and H, respectively, but not by G, is analyzed. The squared canonical
correlations and their significance levels are presented in the last two
columns of Table 1. It indicates that all two nonzero squared canonical

Table 3 ,
Rotated Canonical Structure and the Corresponding Standard Errors in the
Parenthesis Obtained from CANO(X,, Y,) of the Friendship Data

Item Dim=1 Dim =2
x, P, 630  (.055) 580  (.064)
x, P, 861  (.067) 320 (.107)
x, P, 840  (.060) 365 (.099) _
x, P, 688  (.054) 539 (.072)
x, p, 511 (.080) 712 (.064)
X, P, 319 (121) 860 (.099)
X, p, 463 (.098) 764 (.080)
X, D, 354 (117) 857  (.094)
y, n =757  (.087) -159 (.122)
y, n 770 (.074) -287  (.121)
y, n -683 (.112) -005 (.155)
y, n, =515 (.117) -236  (.161)
ys on, -292  (.151) -.184  (.206)
Yo N, -394 (.125) -218  (.168)
y, n, -486  (.115) -.188  (.168)
Yo R, -426  (.138) -.188 (.192)
y, n, -353 (.134) =215 (.187)
Yo M, -394 (.137) -099 (.189)
Y N, -314 (.162) -044  (.232)
Y, M, =222  (.183) 656  (.221)
Vs Ny -464  (.152) -411  (.204)
Yie N =370  (.175) 699  (.228)
Yis N, 055  (.169) 261 (.215)
Yie N, 067 (.186) 271 (.253)
y,, n, -079  (.194) - 137  (.258)
Yig M, =220 (.177) 103 (.235)

MULTIVARIATE BEHAVIORAL RESEARCH 179



Y. Takane and H. Hwang

correlations are significant as in CANO(X,, Y,). Table 5 presents the
rotated canonical structure on the two dimensions. The pattern of
correlations is very similar to thatin CANO(X,, Y,), again indicating that the

Table 4 )
Rotated Canonical Structure and the Corresponding Standard Errors in the
Parenthesis Obtained from CANO(X,, Y.) of the Friendship Data

Item Dim=1 Dim =2 Dim =3

X, p, 601 ((129) 395 (.157) 490 (.114)
x, P, 807  (.203) 327 (.273) A37 0 (1197)
X, P, 823 (.163) 299 (.194) 278  (.173)
x, P, 470 (.174) 743 (.231) 382 ((172)
X, D, 595 ((139) 270 (.185) 605 (.156)
X, P, 184  (.245) 468  (.264) 730 (.254)
X, P, 358 (.21 738 (.267) 280 (.212)
X, P, 310 (214) 661  (.282) 482 (.210)
y, n, -508 (.166) -274  (.185) =302 (.174)
y, n -.549  (.137) -224  (.183) -445  (.251)
y, n, -354  (.158) -441  (.192) -097 (.175)
y, n, -253  (.181) -078  (.229) =574  (.201)
Yy, n, =152 (.206) 100 (.242) -464  (.230)
Ye N, -368  (.165) -080 (.202) =200 (.167)
y, n, -714  (.206) 086  (.229) -195  (.208)
Yy N, -155 (.1142) -195  (.187) -407  (.161)
Y, n, -270  (.151) 012 (.190) -.039  (.162)
Yo M -.194  (.173) -044  (.202) -498  (.210)
Y, ", 167  (.163) -093 (.189) -255 (.184)
Y, 1, -028 (.170) 099  (.200) 203 (.167)
Vs Ny -214  (.158) =223 (.197) A35  (.191)
Vi 1, -041  (.203) 394 (.241) 029  (.196)
Vs N, 299 (.191) 084  (.234) 078  (.213)
Ve My 126 (\182) d14 (221) 057 (.204)
Y N, 132 (.186) =045 (.222) =242 (.218)
Yis M d65  (.212) =331 (.283) -191  (.263)

180 MULTIVARIATE BEHAVIORAL RESEARCH



Y. Takane and H. Hwang

effect of G is quite minor, although the two canonical correlations are clearly
smaller than those obtained in CANO(X,, Y,). We can thus interpret the
canonical variates in a manner similar to CANO(X, Y ).

Table 5
Rotated Canonical Structure and the Corresponding Standard Errors in the
Parenthesis Obtained from CANO(X,, Y,) of the Friendship Data

Item Dim=1 Dim=2
x, P, 634  (.054) 582  (.058)
x, P, .871  (.083) 318  (.118)
x, D, 850  (.075) 363 (L110)
x, P, 693  (.055) 539  (.067)
X, P, 511 (.090) 716 (.080)
X, D, 315 (.145) 867 (.119)
x, p, 462 (.110) 769 (.099)
X, D, 350 (.137) 864 (.134)
y, n =724 (.109) -197  (.145)
y, n, -754  (.076) =311 (\120)
y, n, -671  (.119) -.028 (.174)
y, n, -.528 (.104) -237  (.158)
y, n, =293  (.126) -198  (.194)
Vg N, -401  (.107) -225 (.168)
y, n, -488  (.101) -200 (.163)
Y N, -423  (.116) -206 (.178)
Yo N, -360  (.108) =223 (1174
Yo ™ -410 (.102) -099 (.172)
Y, N, =323 (.129) -053 (.212)
Vi, N =246 (.173) 670 - (.202)
Vi3 P -481  (.142) 418  (.200)
Vi N, -.381  (.181) 703 (.232)
Vs N, d11 (.155) 200 (.209)
Vi Ny, .138  (.187) 295 (.248)
Y, n, 012 (.192) 061  (.252)
Yis M4 -171  (.166) 043 (.227)
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The 1997 Canadian Election Data

The second example comes from a large-scale survey data set collected
by the Institute for Social Research at York University to investigate political
opinions of Canadians during the 1997 federal election campaign. Telephone
interviews were given to randomly selected Canadian citizens of voting age,
which began no later than four days after the election writs were issued and
terminated at the last day of the campaign.

" Three items were selected from the data set for our analysis. Item 1
asked the province where respondents live, item 2 asked what federal party
respondents would vote for in the election, and item 3 asked the educational
level of respondents. For simplicity, we removed rarely chosen categories
from the items. Item 1 consisted of 10 Canadian provinces from East to West
(1 = Newfoundland, 2 = Prince Edward Island, 3 = Nova Scotia, 4 = New
Brunswick, 5 = Quebec, 6 = Ontario, 7 = Manitoba, 8 = Saskatchewan,
9 = Alberta, 10 = British Columbia). Item 2 comprised 5 federal parties -
(1 =Liberal, 2 =Progressive Conservative, 3 = New Democrats, 4 = Reform,
and 5 = Bloc Quebecois). They may be ordered from politically right to left
as follows: Reform (extreme-right), Progressive Conservative (right),
Liberal (center), and New Democrats (central-left). However, it is difficult
to classify Bloc Quebecois in terms of its political orientation since it is only
organized to achieve sovereignty of Quebec from Canada. (Note that a large
proportion of Quebec residents support independence of Quebec.) Item 3
included 13 different levels of education from no schooling to Ph.D. The
sample size was 2121.

We used item 1 as X and item 2 as Y in order to explore relationships
between respondents’ provinces and their preference for federal parties.
We used item 3 as G to investigate the effect of educational levels on the
relationship between X and Y.

In Canada, political orientations are often geographically linked.
Residents of the Western provinces are known to be more inclined toward
(extreme) right wing, while those of the East Coast provinces tend to lean
toward liberals or political left. We thus presumed that the Western
provinces might be grouped into a single category because they tend to share
similar political attitudes. Likewise, the East Coast provinces might be
combined into a single category. Then, we specified an equality constraint
matrix for X, denoted by H,, as follows
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. The first column of H, indicate the equality among four East Coast
provinces (i.e., Newfoundland, Prince Edward Island, Nova Scotia, and
New Brunswick) whereas the last column indicates the equality between
two Western provinces (i.e., Alberta and British Columbia). Columns 2 to
5 indicate that the four remaining provinces (Quebec, Ontario, Manitoba, and
Saskatchewan) are distinct. It was difficult to come up with any specific
relationships among the parties due to their distinct political orientations. We
therefore did not consider any constraint matrix for Y, that is, HY"= I

The two sets of data were decomposed according to their external
information. CANO was then applied to a number of pairs of components
from each data set. Asin Example 1, we present four cases, CANO(X, Y),
CANO(X,, Y ), CANO(X,, Y,), and CANO(X,, Y,), corresponding to the
unconstrained CA, CCA, partial CA, and partial CCA, respectively. The
squared canonical correlations estimated from each case are presented in
Table 6, along with their significance levels obtained from the permutation
method.

Table 6 shows that all four canonical correlations are significant in all
four cases, despite the fact that the last two squared canonical correlations

Table 6

The Squared Canonical Correlations and the Corresponding Empirical
Significance Levels in the Parenthesis Obtained from CANO(X , Y)),
CANO(X,, Y,), CANO(X,, Y,), and CANO(X,, Y,) of the 1997 Canadian
Election Data

CANO(X,, Y) CANO(X, Y) CANOX,Y,) CANOKX, Y,

436 (.000)  .435 (.000) 436 (.000) 432 (.000)
.110  (.000) .103  (.000) 111 (.000) .104  (.000)
.036 (.000) 024 (.000) .036 (.000) 023 (.000)
.020 (.000) 011 (.000) .019 (.000) .011 (.000)
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look quite small. This is likely due to a large sample size. In fact, the first
two squared canonical correlations explained about 90% or more of the sum
of squared canonical correlations in all cases. This indicates that a two-
dimensional solution captures the most of the important variations among
item categories in all cases.

In CA, the structure of the associations between two sets of variables,
which correspond with rows and columns of a contingency table, is
conventionally examined with a graphical display of the rows and columns.
The two-dimensional configuration for the estimated category points in
CANO(X|, Y)) is presented in Figure 1.

2.5 T T T T 1 T T

1.5r ]

0.5

05|

_1 -5 1 L 1 i 1 1
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 1
The Two-dimensional Category Point Configuration of the 1997 Canadian Election Data
Derived from CANO(X, Y)). Along with 95% Confidence Regions
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This case implies G=1,H, =1, and H, =1. The estimated category points
of X are labeled as NF, PE, NS, NB, QC, ON, MA, SK, AB, and BC, and
those of Y as lib, pcs, ndp, ref, and bqgc. The order of the labels is equivalent
to that of the categories in items 1 and 2.

The upper right-hand portion of the configuration seems to indicate con-
federalism, represented by QC and bqc. It may be safe to say that residents
of Quebec are more likely to vote for Bloc Quebecois than other parties in
the election. The upper left-hand poition seems to represent a politically
federalistic and extreme-rightist position, characterized by ref. Residents of
Alberta (AB) are most likely to vote for the party. Those of British Columbia
(BC) are also more likely to support this party than other parties. We may
say that Reform party is mainly preferred by the Western provinces. On the
other hand, the lower left-hand portion seems to stand for a federalistic and
more central or central-left position, featured by pcs, lib, and ndp. Ontario
(ON) (that plays a crucial role in deciding a majority party due to its largest
population in Canada) seems to support the three parties equally, while -
Manitoba (MA) seems to lean slightly more toward New Democrats party.
Other East Coast provinces, such as Newfoundland (NF), Prince Edward
Island (PE), Nova Scotia (NS), and New Brunswick (NB), also show fair
support for the three parties.

Figure 2 displays the two-dimensional configuration of the estimated
category points from CANO(X,, Y,).

This case implies that G =1, H, # I, and H =1 In the figure, due to
the imposition of the equality constraints on X, such categories as NF, PE,
NS, and NB were assigned the same value, and they were displayed under
a single label, that is, EC (that stands for East Coast). Similarly, AB and BC
were single-labeled as WE (that stands for West). Interpretations of the
figure seem to be essentially the same as the unconstrained case. This
indicates that the equality restrictions do not dramatically change the
solution. This may help us simplify our interpretations, significantly reducing
the number of parameters. In addition, 95% confidence regions (Ramsay,
1978) obtained by the bootstrap method (Efron, 1979) on average tended to
be smaller than those from the unconstrained case. This provides additional
evidence that our assumptions regarding the column structure of X seem to
be reasonable. '

GCCANO was also applied with H =1 H =1 and G # I [ie,
CANO(X,, Y,)]. This case is equivalent to partial CA. Figure 3 presents the
two-dimensional display of the category points estimated under partial CA.

It is found that Alberta and British Columbia show loyalty to Reform
party, and Quebec to Bloc Quebecois, regardless of educational levels. We
may say that educational backgrounds have little effects on party
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Figure 2
The Two-dimensional Category Point Configuration of the 1997 Canadian Election Data
Derived from CANO(X,, Y,), Along with 95% Confidence Regions

preferences of the residents of those provinces. East Coast provinces such
as Nova Scotia and New Brunswick, on the other hand, turn out to be more
inclined toward Liberal and Progressive Conservative parties, after
eliminating the effect of levels of education. Itimplies that party preferences
of the residents of some East Coast provinces are more closely related to
their educational levels.
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Figure 3
The Two-dimensional Category Point Configuration of the 1997 Canadian Election Data
Derived from CANO(X,, Y,), Along with 95% Confidence Regions

Finally, we applied GCCANO with H, # I, H =T and G # I[CANO(X,,
Y,)]. Figure 4 shows that the two-dimensional configuration of the estimated
category points obtained from CANO(X,, Y,).

In the display, the categories corresponding to AB and BC were assigned
the same values due to H,, and were labeled in the same way as CANO(X "
Y,). It was the case for the categories corresponding to NF, PE, NS, and
NB. Due to the partialing out of the effect of G, in addition, the single-labeled
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Figure 4
The Two-dimensional Category Point Configuration of the 1997 Canadian Election Data
Derived from CANO(X,, Y,), Along with 95% Confidence Regions

category point to represent the East Coast provinces are more closely
located with Liberal and Progressive Conservative parties than New
Democrats party. This is consistent with the results of partial CA.
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Discussion

In this article, we proposed GCCANO, a method for CANO that could
incorporate external information on both rows and columns of two data
matrices. This method is quite general, and subsumes a broad range of
existing methods. The usefulness of the method was demonstrated with two
examples. ' . ) :

As in the usual CANO, the interpretation of the canonical variates
obtained from GCCANO can be difficult, and a simple structure rotation of
either the canonical pattern or the structure matrix (e.g., by varimax) may
be useful to make it easier to interpret. We can also combine other
techniques, such as canonical ridge regression (Vinod, -1976),
complementary uses of PCA or factor analysis for CANO (e.g., Stevens,
1996), etcetera with GCCANO in order to obtain more interpretable and
reliable solutions.

GCCANO is primarily a descriptive method to examine the association
between two sets of variables. However, certain types of statistical
inferences (e.g., hypothesis testing, assessment of stability, etc.) are
possible with the use of the bootstrap method. For instance, interaction
effects between variables, which are ignored in the usual CA,; can be
empirically tested under the additivity hypothesis, as illustrated in the second
example of the “Applications” section. Permutation tests can be applied to
test the significance of canonical correlations obtained from GCCANO,
without any distributional assumptions on the data sets. It allows us to
determine the number of significant canonical correlations. When certain
distributional assumptions such as multivariate normality, independence of
observations, etcetera, are met by the data, traditional parametric methods
exist for such significance tests (e.g., Wilks’ A based on the LR statistic,
Roy’s max A, trace criterion, etc.). However, these parametric procedures
are still limited, even if the distributional assumptions are satisfied, in that
they can only be applied to a subset of analyses of GCCANO (e.g.,
Suzukawa, 1997).

In the present method, only one set of linear constraints is incorporated
into each side (row and column) of a data matrix. However, it may be useful
to impose different sets of constraints on different dimensions (DCDD).
This type of constraints may, in some cases, yield more meaningful analyses
since it often better captures the essence of original empirical hypotheses.
Takane et al. (1995) presented the use of the DCDD type of constraints in
principal component analysis, which may be extended to CANO. GCCANO
follows a similar approach to CPCA in analyzing the relationship between
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Appendix A

We derive decomposition Equation 1. Consider estimating M, B, C and
E in the following model,

(A1) X = GMHX'X + G,B + CHX'X +E

by minimizing f= tr[E'E(X'X)] under the identification restrictions

(A2) B(X’X)‘X’XHX =0
and
(A3) G, C=0.

By differentiating f with respect to M and setting the result equal to zero, we
obtain

1o

=3 =6 (X-G,MH, XX -G, B - CH, X'X)(X'X)” X'’XH,, =0
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This leads to

= (GG, ) G, X(X'X) X'XH, [ H,X'X(X’X) X'’XH, |

(A4) ’ - ’ 4 -
~ =(G4Gy) _GXXHX (H,X'XH, ) .

Similarly,
10f _ VIH, X'X ~ G, B— CH, X'X)(X'X)” X'XH
.——2-8—B=GX(X—GXMHXX -G,B-CH, X'X)(XX) X'XH, =

which leads to

(A5) B=(G,G,) G,XQ, ,
where Q, =1-P, withP, =H (H;X'XH,)H X'X. (As in the main texts,
the metri¢ matrix 3( X was suppressed from P, X and QHX/X )+ Similarly,
(A6) C=Q, XH, (H,XXH, ) .
and

E=X-G,MH,XX-G,B-CH, XX
(AT)

=X-P; XP, -P; XQ, -Q; XP, .
If we put Equations A4 through A7 in Equation A1, we obtain Equation 1.
Equation 2 can be derived similarly.

Appendix B

CANO(X,, Y,) amounts to GSVD[(X ;X Ny X LYY ) ]XX We
show that this GSVD reduces to the GSVD given in Equatlorf ié The
following results are useful in the sequel.

Let P, = A(A'KA) A’K be the projector onto Sp(A) along Ker(A'K),
where A is a matrix of predictor variables, and K is an nnd (non-negative
definite) metric matrix satisfying the condition analogous to Equations 7 and

8. Then,
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(A8) P/IAIKKPA - P/’A/KK = KPA/K
(A9) A/K € {PA/I(} and P A/K € {(PA/K) }
(A10) (P! K) = KPP/, and (KP, ) =P, K,

where ~ denotes a generahzed inverse.

Equations A8 and A9 are trivial. Equation A10 may require a proof. A
necessary and sufficient condition for (BC)" = CB~ is that B BCC- is
idempotent (Searle, 1971, p.28). We check to see if B=P;,  and C =K
satisfies this condition:

(Al1) (P! KK-)?

WK KA(A'KA) A’KKKA(A'KA)-A'KK"~
KA(A'KA)A'KK-
P’ KK-.

AlK

It can be easily shown that

(A12) XX )X Y(Y,)Y) =(X'X)yP; , X'YP, (YY),

HJY'Y

(A13) X'X, = X'XH (H/X'XH ) H X'XH (H,X'XH,)H,X'X,

and

(Al4) YY,=YYHMHYYH)HYYHMHYYH)HY'Y,
using the above results. The GSVD[(XX )XY (Y;Y,)] KXY, reduces to
that of

(A15) HX'XH,) H X'X(X'X)X'XH, (H X'XH )H X'YH,

x (H)Y'YH,) H)Y'Y(Y'Y)Y'YH(H,Y'YH,)
= (HX'XH,)H,X'YH (H)Y'YH,)",

with metric matrices H/ X'XH, and H)Y'YH,. This is obtained by including
parts of the metric matrices, X X, and Y.,Y,, in the matrix whose GSVD is
to be obtained. Similarly, when both X and Y consist of discrete data,
GSVD[(X X)) XY, (Y,Y,)] KR TLY, reduces to the GSVD in Equation 16 (and
Equation 17).
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Appendix C
The Items Used in the Friendship Data (Koh, Mendelson, & Rhee, 1998)

The following items concern your CLOSEST SAME-SEX FRIEND. To
begin with, please select your closest same-sex friend and write the friend’s
number from the list here . Throughout the form, read ” as the

-name of your closest friend.

This part concerns your POSITIVE FEELINGS for your CLOSEST
SAME-SEX FRIEND. On the scale to the right of each item circle the
number that indicates how much you experience the feelings described in the
item. The feelings for friends differ from person to person, so just honestly
describe your feelings.

not a quite a very as much
really little abit lot much as possible

x, p, I am happy with my :
friendship with . 0 1 2 3 4 5

x, p, Ifeel my friendship with
is a great one. 0 1 2 3 4 5
x; p, lam satisfied with my
friendship with . 0 1 2 3 4 5
x, p, 1think my friendship with
is strong. 0 1 2 3 4 5
x; p, llike a lot. 0 1 2 3 4 5
x; p, 1 want to stay friends with
for a long time. 0 2 3 4 5
x, p, lfeelclose to . 0 1 2 3 4 5
x, p, Ihope and I will
stay friends. 0 1 2 3 4 5

Individuals may also experience some NEGATIVE FEELING for a
friend. On the scale to the right of each item circle the number that indicates
how often you have that NEGATIVE FEELING for your CLOSEST SAME-
SEX FRIEND. Remember, adult’s feelings for friends differ from person
to person and from time to time, so just honestly describe your feelings.
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once in fairly
never rarely  awhile often  often
y, n, Ifeelaloof from . 0 1 2 3 4 5 6 7 8
y, n, Ihaveambivalent feelings
about : 0 1 -2 3 4 5 6 7 8
¥, n, Iam uncertain about 0 1 '2 3 4 5 6 7 8
y, n, Ifeel bothered by . 0 1 2 3 4 5 6 7 8
ys n, Ifeel controlled by . 0 1 2 3 4 5 6 7 8
Ys. 1, Iamdisagreeable with 0 1 2 3 4 5 6 7 8
¥, .n, Iam dissatisfied with 0 1 2 3 4 5 6 7 8
¥, n, Ifeelinhibited by . 6 1 2 3 4 5 6 7 8
y, n, Ifeel insulted by . 0 1 2 3 4 5 6 7 8
Yo 1, Ifeel quarrelsome with 0 1 2 3 4 5 6 7 8
Y, 1, Ifeel restricted by . 0o 1 2 3 4 5 6 7 8
¥,, n, Ifeelresponsible for 0o 1 2 3 4 5 6 7 8
¥, n, Ifeel sorry for 0 1 2 3 4 5 6 7 8
Y. #; Iam worried about . 0 1 2 3 4 5 6 - 7 8
¥,s n, Ifeel dependent on . 0 1 2 3 4 5 6 7 8
Yi¢ ", Iam envious of 0 1 2 3 4 5 6 7 8
¥, n, Ifeelinferior to . 0 1 2 3 4 5 6 7 8
¥;s 1, Iam jealous of 0 1 2 3 4 5 6 7 8
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