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GENERALIZED CONSTRAINED MULTIPLE CORRESPONDENCE ANALYSIS

HEUNGSUN HWANG AND YOSHIO TAKANE

MCGILL UNIVERSITY

A comprehensive approach for imposing both row and column constraints on multivariate dxscrete
data is proposed that may be called generahzed constrained multiple correspondence analysis (GCMCA).
In this method each set of discrete data is first decomposed into several submatrices according to-its row
and column constraints, and then multiple correspondence analysis (MCA) is applied to the decomppsed
submatrices to explore relationships among them. This method subsumes existing constrained and un-
constrained MCA methods as special cases and also generalizes various kinds of linearly constrained
correspondence analysis methods. An example is given to illustrate the proposed method.
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lar value decomposition.

1. Introduction

el

Multiple correspondence analysis (MCA) is a useful technique to examine relanonshlps
among more than two sets of discrete variables (Benzécri, 1973; Greenacre, 1984, Lebart,
Morineau, & Warwick, 1984, Nishisato, 1980). MCA is primarily a descriptive qmthod de-
signed to assign scores to rows (representing the subjects) and the columns (repr’esénting the
response categories of the discrete variables), yielding a graphical representation of tﬂe rows or
the columns of the dummy-coded discrete variables. This graphical display may facilitatc the
understanding of the interdependency among the data sets.

In practice, each set of discrete variables is often accompanied by some additional infor-
mation about the subjects and/or categories. For example, subjects’ demographic information
(e.g., age, gender, level of education, etc.) and their group membership may be avallable as aux-
iliary information. Any relationships among variables (e.g., no interaction betweén 'variables,
equality among variables, group membership of variables, etc.) may also be a priori known.
Such additional information can be incorporated in the form of linear constraints (Bﬁékenholt &
Bockenholt, 1990; Nishisato, 1984; Takane & Shibayama, 1991; Takane, Yanai, & Mayekawa
1991; ter Braak, 1988; van Buuren & de Leeuw, 1992; Yanai, 1986; Yanai, 1998; Yanal&Maeda,
2000). By imposing row and/or column constraints we may obtain simpler 1nterpretations since
the data to be analyzed are already structured by the constraints (Béckenholt & Bdéckenholt,
1990). We may also explore relationships among multivariate discrete data sets from diverse
perspectives, analyzing a variety of submatrices of each discrete data matrix prescribed by the
constraints. In addition, if the constraints are consistent with the data, more reliable estimates of
parameters are obtained.

In this paper, we propose a comprehensive approach for incorporating both row and column
constraints into the discrete data sets under a single algebraic framework. This method may be
called generalized constrained multiple correspondence analysis (GCMCA). GCMCA includes
existing constrained MCA (e.g., Gifi, 1990; Nishisato, 1984; van Buuren & de Leeuw, 1992;
Yanai, 1998; Yanai & Maeda, 2000) as special cases. Takane and Shibayama (1991) provided a
comprehensive framework for incorporating linear constraints on a data matrix in the context of
principal components analysis (PCA). We follow a similar approach here: In GCMCA, each data
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set is first decomposed into several submatrices according to its row and/or column information,
and then MCA is applied to a set of the decomposed submatrices, selected from each data set, in
order to explore associations among them. Technically, the former amounts to projection of the
data matrix onto the space spanned by a matrix of linear constraints, while the latter involves the
generalized singular value decomposition (GSVD) of a certain matrix.

The present paper is organized as follows: Section 2 describes the proposed method in de-
tail. Decompositions of data matrices according to row and/or column constraints are discussed.
Various types of constrained MCA methods are then presented, depending on which decomposed
submatrix is analyzed. This section shows that our method consists of existing column-wise or
row-wise constrained MCA methods as special cases. It turns out that our method includes mul-
tivariate extensions of various kinds of linearly constrained correspondence analysis methods.
In section 3, an example is given to illustrate the proposed method. The final section briefly
summarizes the previous sections and discusses further prospects of the proposed method.

2. The Method
2.1. Decompositions of Data Matrices by Linear Constraints

LetZ = [Z1,Z,, ..., Zg] denote an n by r superindicator matrix consisting of K indica-
tor matrices, where Z; is an n by r; data matrix of dummy variables and r = )_; r;. Usually
matrix Z; represents a set of subjects’ responses to item i, whose rows correspond with subjects
and columns with response categories in item i. Let G = [Gy, G2, ..., Gk] denote an n by b
supermatrix consisting of X row constraint matrices, where G; is an n x b; (< n) row constraint
matrix corresponding to Z; and b = Y _; b;. Matrix G; may take a variety of forms. For example,
it may be an n-component vector of ones or a matrix of dummy variables indicating subjects’
group membership, or demographic information. Matrix Gi may also be a block diagonal matrix
to reflect any groupings of rows of Z;. Let H = [H; @ H, & - - - ® Hg] denoté an r by ¢ super-
matrix consisting of K column constraint matrices (& denotes the direct sum), where H; is an
ri X ¢;(< r;) column constraint matrix for Z;, and ¢ = Y, ¢;. Matrix H; may be an r;-component
vector of ones or any matrix capturing relationships among columns of Z; (e.g., a design matrix
for pair comparisons, an additivity constraint matrix, an equality constraint matrlx, etc.). Matri-
ces Z and G are assumed to be columnwise-centered. (Notice that if Z is centered, H does not
need to be so.) When no row and/or column constraint matrix is available for Z;, we ,may simply
set G; and H; equal to the identity matrices of appropriate size.

Following Takane and Shibayama (1991), each data matrix, Z;, can be decomposed into
four submatrices according to G; and H; as follows:

Z; = (®; +3)Z;(¥; + ;)

=D, Z;V; + B, Z;Q; + 3,Z;V; + 3,2;Q;, " (1)
where ‘
D, =ZZ;,
®; = Gi(G/Gy) G
3 =1-®,
¥; = H;(H;D;H;) " HD;,
Q;, =1-%,;.

Here, I is the identity matrix. Matrix ®; is the orthogonal projection operator (we call simply
projector hereafter) onto the space spanned by the column vectors of G;, denoted by Sp(G; ), and
matrix ¥; is its orthogonal complement (the orthogonal projector onto Ker(G}), where Ker(A")
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denotes the null space of A/, that is, the set of vectors m such that A'm = 0). Matrix¥; is the
projector onto Sp(H;) along Ker(H;D;), and matrix {}; is the projector onto Kcr(ﬂ’ D,) along
Sp(H;). The Dy is called a metric matrix, which is nonnegative definite.

The decomposition of Z; is unique, and each submatrix in (1) can be givena speclﬁc inter-
pretation (Takane & Shibayama, 1991). The first term represents the portion of Z; explained by
both G; and H;, the second term by G;, but not by H;, the third term by H;, but not by. G;, and
the last term by neither G; nor H;. The four submatrices in (1) are either columnwise:er rowwise
orthogonal in their respective metric matrices. (The metric matrix for ®; and %; is am identity
matrix.) This implies , O

SS(Z;) = SS(®; Z;W;) + SS(P: Z; ;) + SSZ: W) + SS(Eiziﬂ‘z{)‘:f“ @

where SS(Y) = tr(Y’'Y) (see Takane & Shibayama, 1991). That is, the sum of squaféé i‘df Z; can
be defined as the sum of sums of squares of the four decomposed submatrices in (1).

Then, the decompositions of all discrete data matrices can be expressed in terms of Z as
follows.

Z=(D+IZ(¥+Q)

= IV + ®ZQ + 3Z¥ + 370, 3)
where .
=202 & & L],
= [®, P, ..., Px], )
3 =21, 2,..., 2], \
V=T ooVoq &¥k] f
and LS

[01 6902 ®--- & Qkl.

In this paper, the supermatrices of the projectors (i.e., ®, %, ¥, and {2) are assumed ¢onsisting
of only the same form of the projectors of row or column constraint matrices. For instance, ®
comprises the projectors onto Sp(G;) (i = 1, ..., K), and the counterpart supermatrix, 3, con-
tains their ortho-complements, and so on. However, we could also contemplate the situations in
which the supermatrices include both forms of projectors. For example, suppose K --“3 Then
@ may include ®;, ®-, and 23, and then I = [%, 7, ®3]. Note that once the proj}gctor sub-
matrices of ® are chosen, those of 3 are automatically decided as their orthogonal complement
matrices. It is the case for ¥ and £). This allows the decompositions in (3) to remain orthogonal.
The expression of (3) can therefore be quite versatile, by which various kinds of combinations
among the decomposed submatrices selected from each data matrix can be derived foranalysis.

The four terms in (3) correspond with four sets of K decomposed submatrices, given in
(1). Notice however that the four terms can be derived only when both sets of row #fid column
constraint matrices are available. We may, more generally, consider the following decomposed
subsets:

Si 82 S3 S4+ S5 S6 S7 Sg S @
2 ®7Z 37 ¥ 7Q ®I¥ @ZQ 3IV 3I0 ..,

In (4), S; simply indicates a set of the unconstrained data matrices. The next two decomposed
subsets, denoted by S and S3, can be derived when only G is incorporated. The S cprresponds
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with the portions of Z that can be explained by G while S3 indicates the residuals after the
effects due to G are eliminated. Similarly, S4 and S5 are derived when only H is incorporated.
The last four decomposed subsets (Sg through So) correspond with the four terms in the full
decompositions in (3), when both G and H are incorporated.

In (3), it is assumed that each item has its corresponding column constraint matrix. It in-
dicates that each column constraint matrix is used to specify relationships among the categories
within the same item. However, it is also possible to consider a column constraint matrix that rep-
resents relationships among categories across different items. We can easily add the across-item
column constraint matrix to (3). For instance, suppose an across-item column constraint matrix
for items 1 and 2, denoted by Hj, and the corresponding projectors, denoted by W2 and €215.
Then, ¥ and Q in (3) are given as W = [V, @W3@. - - ®@Wg], and Q) = [Q1,003®- - - & Qk ],
with which the decompositions of Z are derived as in (3). This implies nothing but we combine
Z, and Z, as a single data matrix, say Z;; = [Z;, Z,], and specify the relanonshxps among the
variables in Z, by Hj;. In this case, we still use

Dp = [ ]?)1 1;'2 ] , where Dy = Z|Z;, and D, = Z,Z,, and define

Wy = Hi2(H,D12H12) "H,D12.

The zero-centroid property (that the coordinates of category points add up to zero within each
item when weighted by the marginal frequencies of responses to the categories) is satisfied for
the categories of the two items together.

The row and column constraints may be specified by either the reparametrization or the null-
space method (Bockenholt & Takane, 1994; Takane et al., 1991). The former method specifies
the space spanned by column vectors of a constraint matrix, while the latter specifies the ortho-
complement space. In this paper, as (1) and (3) imply, all linear constraints are imposed by the
reparametrization method, that is, the space spanned by a set of constraints is directly specified,
onto which a data matrix is projected. However, it is sometimes easier to specify constraints in
the null-space form (e.g., equality among categories). In this paper, the constraints expressed
in the null-space form are transformed into the reparametrization form. The transformation is
straightforward. For instance, assume an equality constraint matrix, say L/, spec1ﬁed by the null-
space method as follows .

L'u=0, RN

where u is a vector of parameters. If we assume that the first and the last elements of uare equal,
for example, L’ comes down to a vector whose first element is 1, the last element is =1, and the
other elements are zeros. We may reparametrize (5) into .

u = Hu* ' (6)

for some u*, where H = I — L(L’L)~L’. This implies that Ker(L') = Sp(H). (see Seber, 1984,
pp. 403-405; Takane et al., 1991). The derived H can now be used for the decompositions of (3).
In the example section, a column constraint representing equality of categories acrpss items is
specified in the null-space form, and it is turned into a reparametrized constraint. ;.-

2.2. Multiple Correspondence Analysis of the Decomposed Submatrices

Once Z is decomposed, MCA can be applied to any decomposed subset, given in (4), to
explore associations among the decomposed data matrices in the subset. MCA amounts to the
correspondence analysis (CA) of a decomposed subset or the CA of the Burt table of the decom-
posed subset. Computationally, thus, MCA comes down to the generalized singular value de-
composition (GSVD) of the decomposed subset with certain metric matrices (Greenacre, 1984,
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pp- 138-143). The GSVD of matrix W with metric matrices M and N (assumed posmmdeﬁmte)
is defined as A4,

W =UAV/, Q)

where UMU = I and V'NV =1, and A is diagonal and positive definite (e.g., Greenacre, 1984,
Appendix A). It is denoted as GSVD(W) s, . The GSVD(W) 1, v can be obtained as follows.
Let M = TT' and N = FF’ be arbitrary square root decompositions of M and N, respectwely
Let the ordinary singular value decomposition (SVD) of T'WF be denoted by

T'WF = PAQ/, S @®)

where P'P = Q'Q = L. Then, the U and V in (7) are obtained by U = (T')"'Pand V = (F)~1Q,
respectively, and A = A. The GSVD of a matrix always exists (Takane & Shlbayama, 1991).
It is unique if M and N are nonsingular (as has been assumed). If they are not, we ma use any
g-inverses in the above formulas. It is convenient to use the Moore-Penrose inverses m above
formulas to obtain a unique solution. :

The ordinary (unconstrained) MCA is the CA of S;. This amounts to calculating

GSVD(S](’:")';I)I,@)1 , ®

where ©1 = KS’ S; = K[D; &D; @ - - - ® Dk (Greenacre, 1984, pp. 138-139). The 51 isa
block diagonal matrix with each submatrix of S; as elements. (In this case, therefore, 81 Z)
The @ is a diagonal matrix whose elements are row (or column) marginals of S 151;:called the
Burt table. The CA of the Burt table provides the same solutions as MCA(S) (Gmmgcre, ppP-
140-143). The singular values obtained from the analysis of the Burt table are the sguares of
those obtained from (9). We denote (9) by MCA(S;) here. R
MCA(S1) can be alternatively defined as K-set canonical correlation analys1s or. homo-
geneity analysis of S; (e.g., Gifi, 1990; Yanai, 1998). This amounts to minimizing the. fOIIOng

criterion .

K 5y
f=K"1 ZSS(X —Z:V)), Go(10)
i=1 e

with respect to V; for a given X, where X is the matrix of object scores, subject to X}X =LIn
(10), the estimate of V; is given by

Vi = (Z;Z))"ZX. Ceoan
Putting (11) in (10) leads to A
K
fr=K"1) SSX-TiX), C
i=1 e,

where I'; = Z; (Z; Z,~)_Z§. Minimizing (12) thus reduces to maximizing

tr( ’[iri]x), (13)

with respect to X. This amounts to calculating the eigenvalue decomposition of Z:_l I‘ (Yanai,
1998), which in turn is equivalent to GSVD of S1@)1_1 (Gifi, 1990, pp. 107-109). o

We note that when K = 2, that is, Z = [Z1, Z3], MCA(S;) reduces to ordinary CA (OCA)
of Z, Z,. In this case, the difference between MCA and OCA is in rescaling of principal coordi-
nates (Greenacre, 1984, pp. 130-133; Gifi, 1990, pp. 272-273). The inertias or squared singular
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values obtained from OCA are related to those from MCA as follows: let p and A denote inertias
obtained from OCA and from MCA, respectively. Then,

1\2
=4 r-= 14
p ( 2) | (14)
(Greenacre, 1984, p. 131). 3

We may consider various types of constrained MCA methods by replacmg 81 (and §)) in
(9) with any other decomposed subsets of Z. For example, we may consider MCA(S4), which
amounts to obtaining

GSVD(840; )16, e (15)

where 4 = K§, §4 = K(W\D1¥, & --- ® ¥ DgWg). This analyzes the portions of data
matrices accounted for by theu' correspondlng column constraint matrices. This may be called
constrained multiple correspondence analysis (CMCA). This is equivalent to congtramed homo-
geneity analysis of dummy variables (Gifi, 1990, p. 332; van Buuren & de Leeuw, 1992), which
amounts to minimizing

K K
F=K') SSX-ZH V) =K1Y SSX-Z}V), .. (16)
i=1 i=1

with respect to V; for a given X, where Z} = Z;H;. As in MCA(S), minimizing (16) amounts to
obtaining the eigenvalue decomposition of ZiK=1 I‘;.*, where I’y = Z*(Z¥'Z})~Z}. This is also
equivalent to the eigenvalue decomposition of Z,_l IL;, where II; = Z;W;(VZ; Z‘\F,) viZ,
which in turn is equivalent to calculating (15) (see Appendix 1 for the equxvalence between I’}
and IT;).

In addition, MCA(S4) (or the constrained homogeneity analysis) is equivalent to general-
ized canonical correlation analysis with linear constraints (GCCAC) for sets of dummy variables
(Yanai, 1998). The only difference is that in MCA(Sy) linear constraints are imposed by the
reparametrization method whereas in GCCAC they are imposed by the null space method. One
form of linear constraints can be transformed to the other form, as explained in the previous sec-
tion. When K = 2, furthermore, MCA(S4) subsumes canonical correspondence analysis (CCA)
by ter Braak (1986), which amounts to the CA of W|Z)Z, W, (Béckenholt & Takane, 1994;
Takane & Hwang, 2000). It thus includes canonical analysis with linear constraints (CALC) by
Bockenholt & Bockenholt (1990), which is equivalent to CCA (Takane et al., 1991).

In MCACS,), if H is used to impose equality of categories across items, there exists an
alternative method, where the relevant columns of Z; (i.e., the categories to be assumed equal
across items) are summed, they are replaced by the sum, and a CA on the resultant data matrix
is performed (Greenacre, 1984, p. 95; van Buuren & de Leeuw, 1992). However, this method is
limited to imposing across-item equality constraints only.

We may also consider MCA(S3), obtained by

GSVD(8303 )0, an

where @3 = K§’3§3 = K(Z{31Z:®- - -®Z 2k Zx). This is the MCA of the residuals obtained
after the effects due to G are removed from Z. If there is a single row constraint matrix common
to all data matrices (i.e., G* = G| = - - - = Gg), MCA(S3) is equivalent to partial MCA, which
amounts to minimizing

K Ty
f=K1) SSX-3*Z;V)), (18)
i=1 ’
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with respect to V; (Yanai & Maeda, 2000), where 3* = I — G*(G*G*)~G". Partial MCA can
be also viewed as a special case of Nishisato’s (1984) forced classification (see Nishisato, 1994,
p. 245). As K = 2, MCA(S3) subsumes partial correspondence analysis (Daudin, 1980 Yanai,
1986) as a special case, which is the CA of Z’ 3*Z,.

Partial MCA can be also performed in a different way: we replicate G* over all Z;’s, and
apply K -set canonical correlation analysis or homogeneity analysis to the enlarged data sets, for
example, Z; = [Z;, G*] (Gifi, 1990, p. 248; Yanai & Maeda, 2000). In this method, however,
there are g = rank(G™) trivial solutions, and the (g + 1)-th or higher singular valnes and the
corresponding singular vectors are only considered.

If there are K distinct row constraint matrices available (i.e., G; # Gy, where | =
1,....,K —1and ' =1+ 1,..., K), MCA(S3) may be called multi-partial MCA; inspired
by the terminology of bipartial canonical correlation analysis (Timm & Carlson, -1976). This
case reduces to bipartial correspondence analysis when K = 2, which is the CA of £§2122Z2
(Takane & Hwang, 2000). Also, we may suppose that row constraint matrices are available
only for some, say K* (< K), data matrices (i.e., G # Gy, wheret = 1,...,K* — 1 and
Y =t+1,...,K*).If (18) is applied to the residual matrices obtained after removing the
effects of G from K* corresponding data matrices and the remaining X — K™ unconstrained
data matrices, this case may be called multi-part MCA, borrowing from the terminology of part
canonical correlation analysis (Timm & Carlson, 1976). This reduces to part correspondence
analysis (Takane & Hwang, 2000) for the pair of the unconstrained data matrix and the residual
matrix after partialling out the effect of the row constraint matrix, which amounts tb the CA of
z 22Z2 orZ/ 21Z2

We may also apply MCA to Sg, the portions of data matrices explained by men' column
constraint matrices, but not by their row constraint matrices. This is analogous to solvmg

GSVD(S50; 1) /.65, a9

where @5 = KS, Sg = K(‘l” 73,2, V& - - W, Z) % xZx V). This may 1nclude avanety
of constrained MCA For mstance suppose H; # H[/ Then if G; # Gy, this case may be called
multi-partial CMCA. This case subsumes bipartial CCA by Takane and Hwang (2000), which is
the CA of ¥/ Z’12122Z21I'2 On the other hand, if G* = G; = = Gk, this may be cailed
partial CMCA. This case is the multivariate extension of partial CCA (Takane & meig 2000),
which is the CA of ¥ Z] E*Zg\lfz If G, # Gy, in addition, this case may be called multl-part
CMCA.

To sum up, after Z is decomposed into several subsets by G and/or H, we may apply MCA to
any decomposed subsets of Z according to our empirical interests. This often yields new types of
constrained MCA methods (e.g., MCA(Sg)), which may allow us to explore associations among
variables from more diverse perspectives. Some of the constrained MCA may be regarded as
multivariate extensions of existing linearly constrained correspondence analysis methods. In the
next section, we demonstrate the use of (15), (17), and (19) with an example.

3. Example: The French Worker Data

The present example is part of the French Worker Survey (Adam, Bon, Capdevielle, &
Mouriaux, 1970). The survey was conducted in July 1969 on a sample of French workers to
explore the political attitudes and social behavior of the working class. From 70 survey items,
we only used the four items reported in Le Roux and Rouanet (1998). Although each of the four
items originally consisted of eight response categories, we only used four categories for each
itern, removing rarely chosen categories and/or combining similar categories. The four items and
their four response categories are provided in Appendix 2. Categories in items 1 and 2 indicate
different French trade unions. In both items, Category 1 (CGT) is known to be strongly linked
with Communist party, Category 2 (CFDT) is loosely connected with the noncommunist-left,
Category 3 (Autonomous) is inclined toward right wing, and Category 4 (Nonaffiliated) indicates
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no union to support (Item 1) or no union to belong to (Item 2). Categories in Item 3 correspond
with presidential candidates from different political parties. Category 1 (Jacques Duclos) is the
candidate from Communist party, Category 2 (Gaston Defferre) is from Socialist party, Cate-
gory 3 (Alain Poher) is the candidate representing the political center, and Category:4 (Georges
Pompidouy) is the Gaullist candidate, who won the election. The Gaullist candidate speaks for
right wing politically. Categories in Item 4 correspond with different political parties. Fifty four
response patterns were observed and the sample size was 274.

We used the first three items as data matrices, indicating that Z = [Z,, Z3, Z3]. We then
chose the last item as a row constraint matrix, since we were interested in seeing how preferences
for political parties were related with workers’ responses to other items, particularly their voting
behavior revealed by item 3. It was common to all Z;’s (i = 1, 2, 3), implying that G| = G, =
G3. We also considered a column constraint matrix to represent equality of categories across
items 1 and 2, denoted by L’lz, as follows.

0
0
1
0

-0 0O
(=N = i ]
-0 OO

-1 0
0 -1
0 0 -
0 0

SO =O

1
r 0
12 — 0
0

The first row of L, indicates the equality of the first categories of items 1 and 2, the second row
the equality of the second categories, the third row the equality of the third categories, and the last
row the equality of the fourth categories. Such equality assumptions among the four categories
in items 1 and 2 may make sense because the same categories were repeated in two similar (or
comparable) items regarding trade unions, and similar interpretation of the categories may be
possible (see van Buuren & de Leeuw, 1992). The L’12 was transformed into the reparametrized
constraint matrix, denoted by H5, by the procedure described in section 2.1. On the other hand,
we did not consider a column constraint matrix for item 3, since it was difficult to come up with
any specific relationships among the candidates due to their politically distinct backgrounds.
Therefore, we had H = [Hjs @ I). o

MCA was applied to the subsets obtained after Z was decomposed according to G and H.
Here we present four cases, MCA(S;), MCA(S4), MCA(S3), and MCA(Sg), corresponding to
the unconstrained MCA, CMCA, partial MCA, and partial CMCA, respectively. The inertias or
squared singular values estimated from each case are presented in Table 1. In MCA, however, the
total inertia (i.e., the sum of the inertias) is inflated since MCA amounts to fitting both diagonal

TABLE 1.
The inertias obtained from MCA(S;), MCA(S4), MCA(S3), and MCA(Sg)

MCA(S;) MCA(Ss) MCA(S3;)  MCA(Sg)

6863 6763 .6195 .6084
5911 5631 5122 .5044
4784 4378 4283 4216
3557 3332 3582 3313
2629 .2459 3244 3147
2114 .1979 .2836 2793
.1938 .0000 2271 .0000
1335 .0000 1521 .0000
.0868 .0000 .0945 .0000

Total 3.0000 2.4543 3.0000 2.4597




HEUNGSUN HWANG AND YOSHIO TAKANE 219

TABLE 2.
The adjusted inertias and their percentages of the total inertia in the parenthesis obtained from MCA(S;), MCA(S4),
MCA(S3), and MCA(Sg)

MCA(S;) MCA(S4) MCA(S3) MCA(Sg)

.2803 (58.60) .2646 (64.85) .1843 (66.30) .1703 (67.13)
.1495 (31.26) .1188 (29.13) 0720 (26.90) .0659 (25.97)

.0473 (9.90) .0246 (6.02) .0203 (7.30) 0175 (6.90)
.0011 0.24) .0014 (0.50) '
Total 4783 4080 2780 2536

and off-diagonal blocks of the Burt table, given by S;S;. It leads that the proportions of the total
inertia explained by inertias are underestimated. One way of dealing with this problem is to
adjust the inertias according to Benzécri’s (1979) formula, quoted in Greenacre (1984, p. 145).
Let X denote the adjusted inertia corresponding to A. Then, the formula is given by

. K \? 1\’

A_(K——l) (A K) . 20)
Note that A turns out to be equal to p in (14) when K = 2. Thus, we see that A is the inertia
obtained from when the diagonal blocks of the Burt table are set to zero matrices. The above
formuia is applied only for the inertias greater than 1/K. In this example, therefore, the inertias
greater than 1/3 were adjusted. The adjusted inertias estimated from each case are presented in
Table 2, along with their percentages of the recalculated total inertia (i.e., the sum of the adjusted
inertias).

In Table 2, the first two adjusted inertias explain about 90% or more than 90% of the adjusted
total inertia in all cases. Thus a two-dimensional solution seems sufficient to account for the
variations among item categories for all the cases.

The two-dimensional configuration for the estimated category points in MCA(Sy) is pre-
sented in Figure 1. (Note that the two-dimensional principal coordinates were rescaled according
to their corresponding adjusted inertias.)

The estimated category points of Item 1 are labeled as cgl, cfl, aul, and nal, those of Item
2 as cg2, cf2, au2, and na2, and those of Item 3 as COM, SOC, CTR, and GAU. The order of the
labels is equivalent to that of the categories in each item. In the figure, the right middle portion
seems to represent a politically communist-left position, characterized by cgl, cg2, and COM. It
thus may be safe to say that the French workers voting for a list sponsored by CGT or affiliated
to CGT were more likely to vote for the communist candidate, Jacques Duclos (COM). On the
other hand, the middle bottom portion seems to stand for a politically more rightist position,
distinguished by aul, au2, GAU. It is found that a group of workers voting for an independent list
or belonging to no union, represented by nal and na2, seemed to show similar political attitudes
to the rightist group of workers, and both groups of workers were more likely to vote for the
Gaullist candidate, Georges Pompidou, labeled as GAU. The top left portion in the figure seems
to express a noncommunist-left or socialist position, featured by cf1 and cf2. It may indicate that
a group of French workers voting for or belonging to CFDT tended to vote for the candidate from
Socialist party, Gaston Defferre, labeled as SOC. Also, the Socialist candidate may be found to
be more similar to the politically central candidate, Alain Poher, labeled as CTR. It seems to
make sense because socialism may be seen to be ideologically closer to the central-left.

Figure 2 displays the two-dimensional configuration of the estimated category points
obtained from MCA(Sy). This case implies that H # I and G = I, which is analogous to the
columnwise constrained MCA. The response categories with the same category number in items
1 and 2 were assigned the same value, due to imposing the across-item constraint. In-Figure 2,
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FIGURE 1. ‘
The two-dimensional category point configuration of the French worker data derived from MCA(S)).
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FIGURE 2.
The two-dimensional category point configuration of the French worker data derived from MCA(Sy).
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the pairs of the same-valued categories are displayed under a single label, that is, cgl and cg2
are combined as cgt, cf1 and cf2 as cfd, aul and au2 as aut, and nal and na2 as naf. We may say
that the single-labeled category points stand for preference/support for different trade unions.
Interpretations of the figure seems to be essentially the same as the unconstrained MCA. This
may indicate that the equality restrictions do not dramatically change the solution. This may
help us simplify our interpretations, significantly reducing the number of parameters. Although
they are not presented to make the figure more concise, the 95% confidence regions (Ramsay,
1978) obtained by the bootstrap method (Efron, 1979) were either very similar to or smaller
than those from the unconstrained MCA. This gives the additional piece of information that our
assumptions regarding the column structure of the data seem to be reasonable.

MCA was also applied with H = I and G # I (i.e., MCA(S3)). This case may be called
partial MCA, since the effect of a common row constraint matrix was removed from Z. Figure 3
presents the two-dimensional display of the category points estimated under partial MCA.

In Figure 3, it seems to be striking that after eliminating the effects of item 4, asking pref-
erence for political parties, a group of French workers who voted for or joined CGT seemed to
show similar political attitudes to a group of workers without any union to uphold or belong to,
and both groups were more likely to vote for the Gaullist candidate, or they tended to support
the Gaullist candidate as much as the Communist candidate. This implies the party preferences
might be little related to true voting behavior of some groups of French workers. '

Finally, we also examined the case of MCA(Sg), which may be called as partial CMCA.
Figure 4 shows the two-dimensional configuration of the estimated category points obtained
from partial CMCA.

In the display, the response categories belonging to the same category number in items 1
and 2 were assigned the same values due to H, and were labeled in the same way as Figure 2.
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FIGURE 3. o
The two-dimensional category point configuration of the French worker data derived from MCA(S3)
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FIGURE 4.
The two-dimensional category point configuration of the French worker data derived from MCA(Sg).

Due to eliminating the effect of G, also, the categories representing CGT and nonaffiliation (i.c.,
cgt and naf) are closely located. This may indicate that the political attitudes of the CGT workers
were akin to those of the independent workers. This is consistent with the results of partial MCA.

4. Discussion

In this paper, we provide extensions of MCA by imposing linear row and column constraints
in a unified way. They include existing constrained MCA as special cases, and also subsume
multivariate versions of a variety of constrained correspondence analysis methods. The method
enables us to easily incorporate prior knowledge or additional information into the analysis.
Given in the exemplary application, this often leads to parsimonious interpretations of the data.
This also allows us to explore the data structure from a broader range of perspectives. The prior
knowledge or additional information may stand for a structural hypothesis concerning the data
(e.g., equality of variables, etc.). By comparing the unconstrained and constrained solutions, the
adequacy of the hypothesis can be empirically investigated.

In this paper, only the nine subsets, given in (4), are considered, which consist of the same
form of the decomposed submatrices. However, our analysis does not need to be necessarily
restricted to those nine subsets. In principle, we could create a number of additional subsets in
various ways. For example, we may include more than one of the nine subsets as submatrices
or we may choose certain submatrices from each S;, and concatenate them into a subset. Such
supplementary analyses may not be directly derived from the orthogonal decompositions of the
data matrix by row and/or column constraints, but from ad hoc combinations of the nine subsets
or their submatrices according to our empirical interests. Nevertheless they may further widen
the scope of GCMCA, allowing for studying more diverse aspects of the associations among the
data sets. For instance, we may apply MCA to a new subset such as Sip = [S1, 83]. From this
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we may examine the relationships between the part of Z structured by H and the resxdual part,
which are usually analyzed separately.

As mentioned in section 2.2, MCA is viewed as a special case of K-set canomcal corre-
lation analysis, which uses K sets of dummy variables as data matrices, instead of continuous
variables. Hence a similar approach can be readily applied to the continuous case. The con-
strained K -set canonical correlation analysis includes generalized constrained canonical correla-
tion analysis (Takane & Hwang, 1998) as a special case. In practice, however, it is usually more
difficult to find interesting examples in the continuous case than in the discrete case. We note
that K -set canonical correlation analysis subsumes PCA (when each set consists of one contin-
uous variable). This motivates extensions of PCA, where the effects of different constraints are
incorporated into different variables in the main data, and various aspects of the data may be
investigated. The resultant constrained PCA method subsumes constrained PCA of Takane and
Shibayama (1991) as a special case. In the present method, only one set of linear constraints is
incorporated in each side (row or column side) of a data matrix. However, it may be possible
to impose different sets of constraints on different dimensions (DCDD). This type of constraints
may, in some cases, yield more meaningful analyses since it often better captures the essence
of original empirical hypotheses. Takane, Kiers, and de Leeuw (1995) presented the use of the
DCDD type of constraints in PCA and classical multidimensional scaling. A similar approach
may be adopted in MCA to incorporate such types of constraints.

Appendix A

We show that T* = Z*(Z¥Z})~Z} is equivalent to II; = Z;¥; (W;D; ¥ )"\I” Z;. The
following results are useful in the sequel.

D, ¥; = ¥.D; = DV, L (1A)
W e (¥}, and Wje{(¥)), @A)
(W)D;)" =D; W, and (D;¥;)” =W¥;D;. .. (3A)

(1A) and (2A) are trivial. A proof of (3A) is given by Takane and Hwang (2000, Appendlx 2).
Using the above results, it is easily shown that t
I, = Z;W, (WD, W)~ W\Z, = Z,¥;D,"W,Z. O Ea
Then, .
Z;¥;D;,”V,Z, = Z;H;(H;D;H;)"H;D;D; " D;H; HD;H;)) HZ;
= Z;H;(H/D;H;)"HD;H; (H;D;H;) HZ; '
= Z;H; HD;H;) " H|Z; = Z}(Z}'Z))"Z} . S A

Appendix B S

The four items used in Le Roux and Rouanet (1998) from the French Worker S}t’ﬁley (Adam
etal., 1970).

1. In professional elections in your firm, would you rather vote for a list supported by:
(a) CGT ‘
(b) CFDT
(c) Autonomous
(d) Nonaffiliated
2. At the present time, are you affiliated to a Union, and in the affirmative, which onc
(a) CGT
(b) CFDT
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(¢) Autonomous s
(d) Not affiliated :

3. ‘On the last presidential election [1969], can you tell me the candidate for whom you have
voted? ‘
(a) Jacques Duclos
(b) Gaston Defferre
(¢) Alain Poher
(d) Georges Pompidou

4. Which political party do you feel closest to, as a rule?
(a) Communist [PCF} : ot
(b) Socialist [SFIO + PSU + FGDS] e
(¢©) RI
(d) Gaullist [UNR]
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