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Abstract

Lazraq and Cléroux (Psychometrika, 2002, 411–419) proposed a test for

identifying the number of significant components in redundancy analysis.

This test, however, is ill conceived. A major problem is that it regards each

redundancy component as if it were a single observed predictor variable,

which cannot be justified except for the rare situations in which there is

only one predictor variable. Consequently, the proposed test leads to dras-

tically biased results, particularly when the number of predictor variables

is large, and it cannot be recommended for use. This is shown both theo-

retically and by Monte Carlo studies.

Key words: Reduced rank regression, PCA of instrumental variables, Par-

allel analysis, Permutation tests.
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Introduction

Redundancy analysis (van den Wollenberg, 1977) is a popular method of mul-

tivariate analysis for analyzing the relationship between two sets of variables (e.g.,

Reinsel and Velu, 1998). Unlike canonical correlation analysis which maximizes the

correlation between two sets of variables, redundancy analysis maximizes predictabil-

ity of one set of variables from the other. Whereas in canonical correlation analysis

it is sufficient to have one variable in one set having a large correlation with at least

one variable in the other set to obtain a large canonical correlation, it is necessary

in redundancy analysis that most, if not all, of the criterion variables are sufficiently

predictable from the predictor set to obtain a large value of redundancy index. The

latter thus captures the overall relationship between the two sets of variables more

accurately (e.g., Lambert, Wildt, and Durand, 1988).

There are several different formulations of redundancy analysis, resulting in dif-

ferent names for essentially the same analytic technique. Redundancy analysis is

called by at least two other names, reduced rank regression (Anderson, 1951) and

principal components of instrumental variables (Rao, 1964). Given matrices of crite-

rion variables and predictor variables, these techniques all extract a set of mutually

orthogonal components (called redundancy components) from the set of predictor

variables that can maximally predict the variability in the criterion variables. As in

other techniques with similar objectives that extract components based on some op-

timality criteria (such as canonical correlation analysis), the question of “how many

components to extract” is of paramount importance. Lazraq and Cléroux (2002)

recently proposed a procedure for testing the number of significant components

in redundancy analysis. This procedure, however, is ill-founded. A major problem

stems from the fact that it treats each redundancy component as if it were a single

observed predictor variable. This, however, can only be justified when the weights in
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the linear combination of predictor variables forming the redundancy components

are fixed, which is strictly true only when the number of predictor variables is one.

Consequently, the proposed test leads to drastically biased results, as the number

of predictor variables increases, and it cannot be recommended for use. This will

be shown in this paper both theoretically and by means of Monte-Carlo studies.

Some alternative methods are suggested for determining the number of significant

components in redundancy analysis.

A Summary of the Lazraq-Cléroux Procedure

In this section, we briefly overview the Lazraq-Cléroux procedure (2002). Let Y

(p by 1) and X (q by 1) be random vectors of the criterion and predictor variables,

respectively. It is assumed that




Y

X


 ∼ N(0, Σ), where the covariance matrix Σ

is partitioned into

Σ =




ΣY Y ΣY X

ΣXY ΣXX


 . (1)

Let s = min(p, q), and let T = [t1, . . . , ts]
′ denote the s-component vector of popu-

lation redundancy components defined by

T = A′X, (2)

where A = [α1, . . . , αs] (q by s) is the matrix of generalized eigenvectors of ΣXY ΣY X

with respect to ΣXX corresponding to its nonzero generalized eigenvalues. Each

successive th(h = 1, . . . , s) maximizes the proportion of variability in Y that can be

accounted for by th. It follows that




Y

T


 ∼ N(0, Σ∗) with

Σ∗ =




ΣY Y ΣY T

ΣTY ΣTT


 =




ΣY Y ΣY XA

A′ΣXY A′ΣXXA


 , (3)
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where it follows further that A′ΣXXA = Is, the identity matrix of order s. Let

ρI(Y, th) =
tr(ΣY thσ

−1
ththΣthY )

tr(ΣY Y )
(4)

denote the population redundancy index for predicting Y from th. This quantity

represents the proportion of the total variance in Y that can be accounted for by th.

We are interested in testing whether ρI(Y, th) = 0 for h = 1, . . . , s. This is carried

out separately (but sequentially) for each h.

In practical data analysis situations, the population covariance matrix is usually

unknown, and it should be estimated from data. Suppose a random sample of size

n,




Y1

X1


 , . . . ,




Yn

Xn


, were drawn from N(0, Σ). Then, Σ is estimated by the

unbiased sample covariance matrix, S, partitioned in the same way as Σ,

S =




SY Y SY X

SXY SXX


 , (5)

where SY Y =
∑n

i=1(Yi − Ȳ )(Yi − Ȳ )′/(n − 1), SY X = S ′XY =
∑n

i=1(Yi − Ȳ )(Xi −
X̄)′/(n − 1), SXX =

∑n
i=1(Xi − X̄)(Xi − X̄)′/(n − 1), Ȳ =

∑n
i=1 Yi/n, and X̄ =

∑n
i=1 Xi/n. The population redundancy index in (4) is estimated by the correspond-

ing sample redundancy index

RI(Y, th) =
tr(SY ths

−1
ththSthY )

tr(SY Y )
, (6)

where SY th , and sthth are sample estimates of ΣY th , and σthth , respectively. Under

the hypothesis that ρI(Y, th) = 0, the following statistic,

φh ≡ RI(Y, th)

1−RI(Y, th)
, (7)

can be expressed as the ratio of the trace of two independent Wishart variables

generated from N(0, ΣY Y ),

V1 = (n− 1) · tr(SY ths
−1
thth

SthY ) (8)
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over

V2 = (n− 1) · tr(SY Y − SY ths
−1
thth

SthY ). (9)

Then, for any non-negative quantity v (Meaningful choices of the value of v will be

discussed below.),

Prob(φh ≤ v) = Prob(
V1

V2

≤ v) = Prob(V1 − vV2 ≤ 0), (10)

where V1− vV2 is known to follow the distribution of a random variable defined as a

weighted sum of squares of p(n− 1) independent standard normal variables (Lazraq

and Cléroux, 1988), where the weights are obtained by the p eigenvalues of ΣY Y and

the p eigenvalues of −vΣY Y repeated n − 2 times. Note that these weights depend

only on ΣY Y , and consequently the probability in (10) depends only on ΣY Y (and

the value of v). A good approximation of this probability is obtained by substituting

SY Y for ΣY Y .

The probability in (10) is evaluated (approximated) for a specific value of v, say,

the observed value of φh to obtain 1 minus the p-value. The p-value may then be

compared with a selected significance level α. Alternatively, the critical value, gα,

may be obtained such that Prob(RI(Y, th)/(1−RI(Y, th)) ≤ gα) = 1−α. The value

of gα is then compared with the observed value of φh.

The Problem

The proposed procedure looks mathematically elegant. However, there is a pitfall

in the above derivation. The most serious problem is that the population redundancy

components are tacitly equated to sample redundancy components. The former is

obtained by (2), but A in (2) is usually unknown and has to be estimated from a

sample. Let Â denote an estimate of A. It is obtained by the generalized eigenvec-

tors of SXY SY X with respect to SXX . Sample redundancy components, T̂ , are then
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obtained by T̂ = [t̂1, . . . , t̂s]
′ = Â′X. In the part of the above derivation pertaining

to the sampling distribution of RI(Y, th) and φh, th should have been replaced by t̂h.

To avoid confusion, we put a hat on these quantities to indicate that th is replaced

by t̂h, namely,

φ̂h =
R̂I(Y, t̂h)

1− R̂I(Y, t̂h)
, (11)

where

R̂I(Y, t̂h) =
tr(SY t̂h

s−1
t̂h t̂h

St̂hY )

tr(SY Y )
. (12)

Two peculiar things occur:

1) The Lazraq-Cléroux test does not depend on the number of predictor vari-

ables, q. The size of the largest generalized eigenvalue of SXY SY X with respect to

SXX , however, tends to increase as q increases. The test statistic, φ̂1, for testing the

significance of the most dominant component is a simple monotonic function of the

largest generalized eigenvalue.

2) The test does not depend on h, where h is the index (order) of redundancy

components. A smaller value of h indicates a more dominant component correspond-

ing to a larger generalized eigenvalue. The size of generalized eigenvalues naturally

decreases as h increases.

These peculiar characteristics stem from the fact that Lazraq and Cléroux set

T̂ = T . As indicated in the previous section, T follows the iid standard normal dis-

tribution. On the basis of this, Lazraq and Cléroux treat each t̂h as if it were a single

observed predictor variable that follows the iid standard normal distribution. How-

ever, this can only be justified for the population redundancy components, where

the weights applied to X are fixed constants. This is not generally true for sample

redundancy components, except for q = 1. The weights used to obtain sample re-
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dundancy components, being derived from a sample, are not fixed constants, but

are functions of the random variables whose linear combinations are taken to obtain

the sample redundancy components. (Linear combinations of X is taken to obtain

T̂ , i.e., T̂ = Â′X, but Â itself is a function of X.) Under these circumstances the

linear composites (the sample redundancy components) do not follow the presumed

normal distribution (Lancaster, 1963).

We formalize the above observation in the following theorem, and show that

φ̂1 is stochastically larger than any random variable defined analogously by a fixed

linear combination of X, if q > 1. The proof is similar to that of Lancaster’s (1963),

who proved that n (the sample size) times the largest eigenvalue from canonical

analysis of contingency tables was stochastically larger than a chi-square variable

with specified degrees of freedom.

Theorem. Let Y and X be as introduced in the previous section. Let u be a linear

combination of X with fixed weights (i.e., u = b′X for some fixed vector b). Define

ψ(u) =
δ(u)

tr(SY Y )− δ(u)
, (13)

where

δ(u) = tr(SY us
−1
uuSuY ). (14)

Then, φ̂1 = ψ(t̂1) > ψ(u) with probability 1, if q > 1, where t̂1 is the most dominant

sample redundancy component.

Proof. Let

λ̂1 = max
a

a′SXY SY Xa

a′SXXa
(15)

denote the largest generalized eigenvalue of SXY SY X with respect to SXX , and let

â1 be the corresponding eigenvector. Then, t̂1 = â′1X, and thus, λ̂1 = δ(t̂1) ≥ δ(u) =

δ(b′X) for any fixed q-component vector b. Since λ̂1 is a continuous random variable,
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the probability of λ̂1 = δ(u) is infinitesimally small (i.e., the chance of â1 = b is nil) if

q > 1, and λ̂1 > δ(u) with probability 1. Since ψ(u) is a strictly monotonic function

of δ(u), φ̂1 = ψ(t̂1) > ψ(u) with probability 1, if q > 1. When q = 1, b is a scalar,

and no matter what its value is, u = t̂1. QED

Corollary. φ̂1 > ψ(xi) with probability 1 for any single observed predictor variable

xi, if q > 1.

Proof. Set b = ei, where ei is the q-component vector with a one in the ith position

and zeros elsewhere. (i.e., u = e′iX = xi). QED

The above theorem and corollary suggest that the Lazraq-Cléroux test is too liberal

for the test of significance of the most dominant redundancy component.

One may still argue that the above results are only for finite n, and that the

difference between ψ(t̂1) and ψ(u) diminishes as n goes to infinity. In particular,

S−1
XXSXY SY X converges in probability to Σ−1

XXΣXY ΣY X , Â to A, and T̂ to T . That

is, T̂ may be replaced by T for n sufficiently large, and the usual asymptotic the-

ory holds. Unfortunately, this is not so due to a violation of one of the regularity

conditions typically assumed in the asymptotic theory. Under the null hypothesis

that ρI(Y, t1) = 0, A is not uniquely determined (being eigenvectors of a zero ma-

trix), and hence T is not identifiable. The usual asymptotic theory does not hold in

this case (e.g., Wilks, 1938). This is similar to the “singularity” problem associated

with the likelihood ratio tests involving some hierarchical models, where some of

the model parameters postulated under the alternative hypothesis are not identifi-

able under the null hypothesis. Such models include not only redundancy analysis

but also virtually all models that require dimensionality selection (Takane, van der

Heijden, and Browne, 2003).
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Monte-Carlo Studies

To confirm our theoretical assertions in the previous section, and to show the

severity of the problem with the Lazraq-Cléroux procedure (which was not indicated

by the theory), we have conducted a series of small Monte-Carlo studies. The scope

of the studies is limited to the demonstrations of the seriousness of the problem

with the Lazraq-Cléroux procedure. There is no intention to develop alternative

criteria or correction formula for the Lazraq-Cléroux procedure. The first study

intends to show that Lazraq and Cléroux’ result holds for q = 1. However, the

second study shows that their result is incorrect for q > 1, and that the bias of the

test gets larger as q gets larger. The third study investigates the behavior of non-

dominant redundancy components, and the fourth study questions the adequacy

of the complete independence assumption between Y and X in investigating the

behavior of non-dominant redundancy components.

The design of the studies is similar to that of “parallel analysis” (Horn, 1965)

often used to determine the number of significant components in principal compo-

nent analysis. In our adaptation of parallel analysis, we repeatedly generated data

according to the assumption of multivariate normality and under the hypothesis

that ρI(Y, t1) = 0 (except in the fourth study) and examined the distribution of

the test statistic, φ̂h, as functions of various factors. We specifically look for the

critical values, gα, for the significance level α as functions of n (the sample size), p

(the number of criterion variables), and h (index of redundancy components). We

also look at the probability of Type I error committed by the Lazraq-Cléroux test.

All the computations were done by MATLAB 6.1. In all cases, reported results are

based on 10,000 Monte Carlo samples.

The first study was designed to see that Lazraq and Cléroux (2002)’ theory holds

for q = 1. We generated data with q = 1, but varying the values of n and p in exactly
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the same way as in Lazraq and Cléroux. That is, n = 25, 50, 75, 100 and 200, and

p = 2, 3, 4 and 5. We generated each data set, {Yi, xi} for i = 1, . . . , n, according

to xi following iid standard normal, Yi iid multivariate normal with zero means

and prescribed variances, and xi and Yi independent of each other. The variances

of Y were identical to those assumed by Lazraq and Cléroux, i.e., σyiyi
= i2 for

the ith criterion variable, yi. (Covariances can all be assumed zero without loss of

generality.) Redundancy analysis was applied to each contrived data set to obtain

the distribution of the test statistic, φ̂1. Table 1 reports the critical value, gα, of φ̂1

for selected values of the significance level α obtained by the Monte Carlo study.

(The combinations of the values of p, n and α for which gα is reported in Table 1

coincide with those of Lazraq and Cléroux.) For comparison, the exact critical value,

as reported by Lazraq and Cléroux, is also provided in parentheses. In all cases, the

reported critical values agree very well with the exact critical value, suggesting that

the Lazraq-Cléroux procedure is more or less correct when q = 1. However, this is

not the typical situation in which redundancy analysis is applied.

———————————–

Insert Table 1 about here

———————————–

In the above study, the number of predictor variables, q, was set to unity. The

second Monte Carlo study examines the effect of q on the critical value for selected

values of n and p (n = 75, 200, and 5000, and p = 2 and 5). (Some of the values of

n and p used by Lazraq and Cléroux were not included in this study. The included

ones were, however, deemed sufficient to reveal general tendencies.) The value of

q was varied over five levels: 1, 2, 5, 10, and 20. The data were generated in a

manner similar to the first study except that when q > 1, elements of Xi were
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also assumed independent. Table 2 reports the critical value of φ̂1 associated with

α = .05. As before, the critical value tends to decrease as both n and p increase.

More importantly, however, the critical value gets larger in all cases, as q gets larger.

This is understandable because as q gets larger, the chance of any of the predictor

variables, which happens to be correlated with any of the criterion variables by

chance, gets larger, inflating the critical value. This is thus as expected but contrary

to Lazraq and Cléroux’ theory. Note that this tendency does not disappear even for

the sample size as large as 5000. Table 3 reports the probability of Type I error by

the Lazraq-Cléroux procedure in testing the most dominant redundancy component.

Results for n = 5000 use approximate critical values obtained by the Monte Carlo

study, since Lazraq and Cléroux do not provide the “exact” critical value for this

case. This probability goes up rather quickly, as q goes up for all the sample sizes

examined, suggesting that the Lazraq-Cléroux test is seriously biased for large q.

In particular, note that the probability of Type I error becomes nearly one when

q = 10 even for n = 5000.

———————————————

Insert Tables 2 and 3 about here

———————————————

The third Monte Carlo study examines the behavior of φ̂h for h > 1. The sample

size (n) and the number of criterion variables (p) were varied in the same way as in

the second study. The number of predictor variables was also varied in the same way

as in the second study, but excluding the case in which q = 1. Otherwise, the data

were generated in exactly the same way as in the second study. Table 4 reports the

critical value of φ̂h(h = 1, ..., s) for α = .05 as functions of n, p, and q. It is observed

that for all combinations of n, p and q, the critical value decreases as h increases.
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This is quite natural, since components are ordered by size, but is contrary to Lazraq

and Cléroux’ assumption that the distribution of φ̂h is independent of h. Again, this

tendency does not disappear even for n = 5000. Table 5 reports the probability

of Type I error by the Lazraq-Cléroux procedure to test the significance of non-

dominant redundancy components. As in the test of the most dominant component

(Table 3), the probability of Type I error increases as q increases. This tendency

is partially offset by the reverse tendency observed as h increases. However, it does

not seem practical to figure out for what combinations of n, p, q, and h the Lazraq-

Cléroux test gives correct significance levels.

——————————————–

Insert Tables 4 and 5 about here

——————————————–

In the third Monte Carlo study (as well as in all other simulation studies reported

above), data were generated under the hypothesis that Y and X were completely in-

dependent (i.e., ρI(Y, t1) = 0). This is consistent with the Lazraq-Cléroux procedure

in which the distributions of φh for different components are all derived under the

assumption of complete independence between Y and X. However, with the Lazraq-

Cléroux procedure the second component is never tested unless the first component

is significant. (It is impossible to find a significant second component unless the first

component is significant. The observed value of φ̂2 is necessarily smaller than that

of φ̂1, and an identical critical value is used for testing both.) This means that by

the time we test the significance of the second component, we know that the first

component is significant. Then, it might be more appropriate to derive the distri-

butions of φ̂h for non-dominant components under non-null values of ρI(Y, t1). The

fourth simulation study investigates the effects of non-null values of ρI(Y, t1) on the
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distribution of the test statistics for subsequent components. The data for the crite-

rion variables were generated in the same way as before. The data on the predictor

side were generated according to

Xi = (1− c)Zi + cYi11q, (16)

where Zi was assumed iid standard normal (independent also across elements of

Xi; Zi is like Xi in the second and third Monte Carlo studies), Yi1 is the first

element in Yi, and 1q is the q-component vector of ones. This incorporates varying

degrees of rank-one dependency between Y and X, the size of which are modulated

by the value of c, without affecting the variance-covariance structure of Y . The

value of c was varied over four levels: .05, .1, .2, and .5. Stronger dependency was

effected by larger values of c. In this study, p was fixed at 5, although q and n

were varied in the same way as in the third study. (The cases of n = 5000 were

not reported in Table 6, but basically the same tendency holds.) Table 6 reports

the 5% critical value, g.05, of the test statistic, φ̂h, for h = 1, 2, and 3. Quite

naturally, we find larger values of φ̂1 than in the corresponding cases of complete

independence between X and Y . More importantly, however, the critical value of

φ̂2 also tends to get larger as c (and consequently, the strength of dependency) gets

larger. (Compare the third and the sixth columns of Table 6 against the fourth

column in the second and the third row blocks of Table 4, respectively, which give

the results for c = 0.) This increasing trend levels off beyond certain values of

c, more slowly for smaller n, and more quickly for larger n. The distribution of

φ̂3, on the other hand, is much less affected by the non-null rank-one dependency

between Y and X. This study indicates that non-null values of ρI(Y, t1) do affect

the distributions of subsequent sample redundancy indices, and that the assumption

of complete independence among variables in traditional parallel analysis is at best

controversial in testing the significance of non-dominant components. Table 7 gives
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the power (h = 1), and the probability of Type I error (h = 2, 3) of the Lazraq-

Cléroux procedure in the non-null cases.

———————————————

Insert Tables 6 and 7 about here

———————————————

Conclusion

It is clear from the above that the Lazraq-Cléroux procedure is ill conceived

and cannot be recommended for use. Monte-Carlo studies indicate how serious the

problem is. One natural question to ask is: What alternative procedures are there?

It seems difficult to obtain general distributional results on φ̂h from the kind of

“parallel” analysis employed in the present study, since it presupposes a complete

specification of ΣY Y . Although this matrix can be taken as a diagonal matrix without

loss of generality (so that only its diagonal elements have to be specified), quite a

bit of freedom is still left to one’s discretion. The choice is non-trivial, and it is

almost impossible to cover the range of all possible variance-covariance structures

of interest. Of course, in the specific contexts of redundancy analysis where ΣY Y

is known reasonably accurately, parallel analysis is always feasible and presents an

attractive procedure for testing the significance of the most dominant redundancy

component. As has been noted earlier, it is extremely difficult to develop a general-

purpose procedure for testing non-dominant components based on parallel analysis.

There is a well established procedure for dimensionality selection in redundancy

analysis when parameters in the model are estimated by the maximum likelihood

method (Reinsel and Velu, 1998) based on the multivariate normality assumption

on Y , but with fixed X (as in the standard multiple regression analysis). This case

is equivalent to canonical correlation analysis under the assumption of joint mul-
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tivariate normality on Y and X. The number of significant components in redun-

dancy analysis can be tested by the same procedure used in canonical correlation

analysis to determine the number of significant canonical variates. The likelihood

ratio tests (Wilks’ λ test and Bartlett’s (1951) approximation thereof) are avail-

able for testing the significance of the difference between the model with specific

dimensionality (the number of components) and the saturated model. The logic

underlying this procedure is described in detail by Reinsel and Velu (1998). The

significance of non-dominant components can also be tested sequentially using a

step-down technique (Bartlett, 1951). These tests are also based on an asymptotic

rationale. However, they avoid the “singularity” problem (like the one encountered

by the Lazraq-Cléroux procedure) by forming a likelihood ratio between the model

of specific dimensionality (H0: ρI(Y, th) = 0) and the saturated model (H1: ΣXY

unconstrained). (One gets into the singularity problem, if one forms the likelihood

ratio between H0: ρI(Y, th) = 0 and H1: ρI(Y, th) 6= 0 (Takane, et al., 2003).)

A permutation test similar to the one used by Takane and Hwang (2002; see

also Legendre and Legendre (1998) and ter Braak and Šmilauer (1998)) in general-

ized constrained canonical correlation analysis, can be easily adapted to redundancy

analysis when the multivariate normality assumption fails. The permutation test can

also be applied to successively test the significance of non-dominant redundancy

components by eliminating the effects of previous components, and reapplying the

permutation tests on the residual data matrices. Legendre and ter Braak (in prepa-

ration) have recently conducted extensive numerical studies that demonstrate the

validity and usefulness of this approach. They have also succeeded in finding a cor-

rection formula for possible biases in testing non-dominant components based on

residuals from the sample estimates of more dominant components. The permuta-

tion test presupposes a specific data set to be analyzed. It is straightforward to apply
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the method, however, once the specific data set is at hand.
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Table 1.

Approximate (and exact) critical values, gα, of φ̂1 for q = 1 as functions of p, n, and α.

p = 2 p = 3 p = 4 p = 5

α = .05 α = .01 α = .10 α = .05

n = 25 .1443 .1899 .0908 .1063

(.144) (.195) (.091) (.107)

n = 50 .0668 .0911 .0439 .0512

(.066) (.090) (.043) (.050)

n = 75 .0438 .0564 .0282 .0330

(.043) (.058) (.028) (.033)

n = 100 .0317 .0433 .0213 .0240

(.032) (.043) (.021) (.024)

n = 200 .0158 .0211 .0102 .0120

(.016) (.021) (.010) (.012)
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Table 2.

Approximate critical values, g.05, of φ̂1 as functions of p, q, and n.

q = 1 q = 2 q = 5 q = 10 q = 20

n = 75

p = 2 .0434 .0653 .1158 .1976 .3794

p = 5 .0322 .0448 .0712 .1102 .1875

n = 200

p = 2 .0153 .0233 .0408 .0670 .1178

p = 5 .0117 .0164 .0259 .0389 .0634

n = 5000

p = 2 .0006 .0009 .0016 .0025 .0043

p = 5 .0005 .0006 .0010 .0015 .0024
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Table 3.

Probabilities of Type I error by the Lazraq-Cléroux test for the first redundancy component as

functions of p, q, and n. The “∗” indicates that the critical value is not exact, but is a numerical

approximation obtained by the Monte Carlo study reported in Table 2.

q = 1 q = 2 q = 5 q = 10 q = 20 “exact” g.05

n = 75

p = 2 .0515 .1490 .6240 .9816 1.0 .043

p = 5 .0500 .1500 .6727 .9930 1.0 .033

n = 200

p = 2 .0498 .1469 .6062 .9748 1.0 .016

p = 5 .0504 .1532 .6660 .9917 1.0 .012

n = 5000

p = 2 .0500 .1434 .6051 .9733 1.0 .00063∗

p = 5 .0500 .1504 .6620 .9819 1.0 .00047∗
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Table 4.

Approximate critical values, g.05, of φh(h = 1, . . . , s) as functions of p, q, and n.

p = 2, n = 75 p = 2, n = 200 p = 2, n = 5000

h = 1 h = 2 h = 1 h = 2 h = 1 h = 2

q = 2 .0628 .0104 .0238 .0038 .0009 .0001

q = 5 .1162 .0323 .0416 .0121 .0016 .0005

q = 10 .1964 .0694 .0679 .0248 .0025 .0010

q = 20 .3801 .1417 .1187 .0483 .0043 .0019

h = 1 h = 2 h = 3 h = 4 h = 5

p = 5, n = 75

q = 2 .0440 .0136

q = 5 .0717 .0323 .0147 .0055 .0012

q = 10 .1111 .0580 .0323 .0167 .0072

q = 20 .1880 .1079 .0667 .0398 .0201

p = 5, n = 200

q = 2 .0163 .0053

q = 5 .0255 .0117 .0054 .0021 .0004

q = 10 .0388 .0207 .0117 .0062 .0027

q = 20 .0636 .0383 .0240 .0143 .0073

p = 5, n = 5000

q = 2 .0006 .0002

q = 5 .0010 .0005 .0002 .0001 .0000

q = 10 .0015 .0008 .0005 .0002 .0001

q = 20 .0024 .0015 .0009 .0006 .0003
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Table 5.

Probabilites of Type I error by the Lazraq-Cléroux test for non-dominant redundancy

components as functions of p, q, and n.

p = 2, n = 75 p = 2, n = 200

g.05 = .043 g.05 = .016

h = 1 h = 2 h = 1 h = 2

q = 2 .1560 .0001 .1429 .0001

q = 5 .6285 .0144 .5884 .0119

q = 10 .9816 .3126 .9741 .2974

q = 20 1.000 .9648 1.000 .9567

h = 1 h = 2 h = 3 h = 4 h = 5

p = 5, n = 75, g.05 = .033

q = 2 .1531 .0007

q = 5 .6685 .0436 0.0 0.0 0.0

q = 10 .9922 .6296 .0409 0.0 0.0

q = 20 1.0 1.0 .9134 .1837 .0001

p = 5, n = 200, g.05 = .012

q = 2 .1539 .0004

q = 5 .6648 .0429 .0001 0.0 0.0

q = 10 .9912 .6188 .0426 .0001 0.0

q = 20 1.0 .9998 .9124 .1818 .0001
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Table 6.

Approximate critical values, g.05, of φh(h = 1, . . . , 3) when the first component is non-null (p = 5).

n = 75 n = 200

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

c = .05

q = 2 .0634 .0169 .0325 .0072

q = 5 .1093 .0378 .0161 .0589 .0154 .0063

q = 10 .1698 .0669 .0347 .0970 .0264 .0132

q = 20 .2769 .1217 .0707 .1596 .0449 .0261

c = .1

q = 2 .1127 .0207 .0752 .0082

q = 5 .1987 .0435 .0171 .1406 .0167 .0065

q = 10 .3013 .0740 .0363 .2208 .0271 .0134

q = 20 .4341 .1303 .0723 .3261 .0466 .0262

c = .2

q = 2 .2634 .0221 .2075 .0086

q = 5 .4106 .0457 .0174 .3376 .0168 .0065

q = 10 .5223 .0748 .0363 .4350 .0275 .0134

q = 20 .6090 .1322 .0732 .5087 .0462 .0263

c = .5

q = 2 .6196 .0231 .5360 .0084

q = 5 .6631 .0464 .0177 .5769 .0168 .0066

q = 10 .6830 .0753 .0369 .5925 .0273 .0135

q = 20 .6927 .1320 .0732 .5984 .0465 .0265
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Table 7.

Powers (h = 1) and actual significance levels (h = 2, 3) of the Lazraq-Cléroux test when the first

component is non-null (p = 5).

n = 75, g.05 = .033 n = 200, g.05 = .012

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

c = .05

q = 2 .3559 .0014 .0465 0.0

q = 5 .8850 .1002 0.0 .5077 .0001 0.0

q = 10 .9999 .7537 .0712 .9691 .0088 0.0

q = 20 1.0 .9997 .9300 1.0 .3723 .0037

c = .1

q = 2 .7945 .0051 .7528 0.0

q = 5 .9975 .1707 .0004 .9996 0.0 0.0

q = 10 1.0 .7990 .0870 1.0 .0113 0.0

q = 20 1.0 1.0 .9365 1.0 .3816 .0035

c = .2

q = 2 .9997 .0085 1.0 0.0

q = 5 1.0 .1938 .0008 1.0 .0002 0.0

q = 10 1.0 .8139 .0972 1.0 .0124 0.0

q = 20 1.0 .9999 .9388 1.0 .3980 .0037

c = .5

q = 2 1.0 .0139 1.0 0.0

q = 5 1.0 .1919 .0010 1.0 .0002 0.0

q = 10 1.0 .8057 .0978 1.0 .0109 0.0

q = 20 1.0 1.0 .9471 1.0 .3998 .0040


