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Abstract

An improved method for generalized constrained canonical correlation analysis (GC-
CANO) is proposed. In the original GCCANO, data matrices were first decomposed
into the sum of several matrices according to some external information on rows
and columns of the data matrices. Decomposed matrices were then subjected to
canonical correlation analysis (CANO). However, orthogonal decompositions of data
matrices do not necessarily entail orthogonal decompositions of projectors defined
by the data matrices. This latter property is crucial in additive partitionings of the
total association between two sets of variables. Consequently, no additive partition-
ings of the total association was possible in the original GCCANO. In this paper two
orthogonal decompositions of projectors were proposed that allow additive parti-
tionings of the total association. Terms in the decompositions have straightforward
interpretations. An improved method for GCCANO is developed based on the de-
compositions, while preserving the most important features of the original method.
An example is given to illustrate the proposed method.
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1 Introduction

Canonical correlation analysis (CANO) is often used to investigate the rela-
tionship between two sets of variables. Let X be an n (cases) by pX (vari-
ables) matrix, and let Y be an n by pY matrix. Both matrices are assumed
to be columnwise centered. CANO between them amounts to the generalized
singular value decomposition (GSVD) of (X ′X)−X ′Y (Y ′Y )− with metric ma-
trices, X ′X and Y ′Y , where (X ′X)− and (Y ′Y )− are generalized inverses of
X ′X and Y ′Y . It can also be formulated as the singular value decomposi-
tion (SVD; GSVD with identity metrics) of PXPY , where PX = X(X ′X)−X ′

and PY = Y (Y ′Y )−Y ′ are orthogonal projectors onto the spaces spanned
by column vectors of X and Y , respectively. The former obtains (canonical)
weights to be applied to X and Y to derive canonical variates (scores), while
the latter SVD obtains canonical variates (scores) directly. Let the GSVD
of (X ′X)−X ′Y (Y ′Y )− with metrics X ′X and Y ′Y be denoted by M∗D∗V ∗′,
and let the SVD of PXPY be denoted by MDV ′. Then, they are related by
U = XU∗, V = Y V ∗, and D = D∗, or U∗ = (X ′X)−X ′U , V ∗ = (Y ′Y )−Y ′V ,
and D∗ = D (e.g., Takane & Hunter, 2001). Throughout this paper we pri-
marily use the latter formulation. Canonical variates are invariant over spe-
cific bases vectors used to characterize the relevant subspaces, while canonical
weights are not. However, as shown above one can easily transform solutions
in one form to the other. (See also Section 3.)

The total association between X and Y (the sum of squared canonical correla-
tion coefficients) is given by tr(PXPY ), which is equal to tr(D2) = tr(D∗2) (the
sum of squared singular values of PXPY , which in turn is equal to the sum
of generalized singular values of (X ′X)−X ′Y (Y ′Y )− with metrics X ′X and
Y ′Y ). This implies that CANO is a technique that decomposes the total asso-
ciation between two sets of variables into the sum of part associations (squared
canonical correlations), each purported by a pair of canonical variates. Pairs
of canonical variates are orthogonal across pairs, representing non-overlapping
portions of the total association between the two data sets. The total associ-
ation, as defined above, is symmetric (X and Y can be exchanged), and it is
invariant over the linear transformations of X and Y of the form, X∗ = XA
and Y ∗ = Y B, where A and B are square nonsingular matrices of orders,
pX and pY , respectively. The total association is s = min(rank(X), rank(Y ))
times the average association called generalized coefficient of determination
(G.C.D.) introduced by Yanai (1974).
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It seems customary in psychometrics to call symmetric measures of the re-
lationship “association”, and asymmetric ones “redundancy” (Cramer and
Nicewander, 1979). Along the latter line, Stewart and Love (1968) introduced
a redundancy index defined as tr(Y ′PXY )/tr(Y ′Y ) or tr(X ′PY X)/tr(X ′X)
depending on whether Y is the criterion variables (the former) or X is the cri-
terion variables (the latter). The former reduces to tr(Y ′PXY )/pY (the average
squared multiple correlation for predicting Y from X) if Y is standardized, and
the latter to tr(X ′PY X)/pX if X is standardized. The redundancy indices are
asymmetric and not invariant over the linear transformations of the criterion
variables. They indicate the average predictability of the criterion variables
from the predictor set. Redundancy analysis (Van den Wollenberg, 1977) is
designed to maximize the proportion of the total variance in the criterion set
that can be explained by each successive redundancy component. See Lam-
bert, Wildt, and Durand (1988) for an extensive discussion on relative merits
and demerits of CANO and redundancy analysis for analyzing the relationship
between two sets of variables.

The data matrices, X and Y , are often accompanied by auxiliary information.
For example, subjects (or “cases”) representing rows of the data matrices may
have some demographic information. Variables representing columns of the
data matrices may also have some specific structure or relationships among
themselves. In such situations, it may be desirable to incorporate the addi-
tional information in the analysis of the relationship between the data sets.
Additional structures supplied by the external information may provide sim-
pler interpretations of the analysis results.

For illustration, suppose an investigator is interested in finding the relation-
ship between intake of various kinds of food and susceptibility to various kinds
of cancer. She finds relevant statistics reporting supplies of various food cate-
gories per capita in different countries of the world. She also finds information
on the mortality rates by various kinds of cancer in these countries. She plans
to apply CANO to investigate the relationship between the two sets of vari-
ables. However, she also suspects that part of the relationship between the two
sets of variables is mediated by other variables such as the extent of economic
development and the overall health status in these countries. After all, what
people can afford to eat depends on how wealthy they are, and the chance of
dying by cancer depends on how long people tend to live in these countries. In
analyzing the relationship between the food variables and the cancer variables
the investigator wishes to take into account the effects of these extraneous
variables. This allows her to focus on more intrinsic aspects of the relation-
ship between the two sets of variables. Furthermore, the food variables may be
classified into several groups according to their nutritional profiles, and simi-
larly various kinds of cancer may be grouped into several categories according
to the proximity of their loci. This type of information may also be incorpo-
rated in the analysis of the relationship between the two sets of variables. (In
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the example section, data arising from a similar situation will be analyzed by
the proposed method.)

Generalized constrained CANO (GCCANO; Takane & Hwang, 2002) has been
developed with this kind of situations in mind. (The word “generalized” in
CANO is often used to refer to multiple-set CANO. However, in this paper
we use the term to refer to a generalization of constrained CANO that can
incorporate constraints on both rows and columns of a data matrix.) It allows
CANO between two sets of variables incorporating external information on
both the cases and the variables in the data sets. In GCCANO, data matrices
are first decomposed into the sum of several matrices according to the external
information on rows (corresponding to the cases) and columns (representing
the variables) of the data matrices. Decomposed matrices are then subjected
to CANO. In this way, we can look at the relationships between two data sets
from diverse perspectives, relating a variety of pairs of matrices supplied by
the external information.

Let G (n × q) and H (p × r) denote respectively the row and the column
information matrices on X. Since similar decompositions are applied to both
X and Y , only those for one, say X, need to be discussed in detail. Conse-
quently, we do not distinguish G and H for X and those for Y until necessary
(Section 3). Let PG = G(G′G)−G′ denote the orthogonal projector onto Sp(G)
(the range space of G), and let QG = I − PG denote its orthogonal comple-
ment. Let PH/X′X = H(HX ′XH)−H ′X ′X denote the orthogonal projector
onto Sp(H) in metric X ′X, and let QH/X′X = I − PH/X′X be its orthogo-
nal complement. The original GCCANO (Takane & Hwang, 2002) used the
following decomposition of X (Takane & Shibayama, 1991):

X = PGXPH/X′X + PGXQH/X′X + QGXPH/X′X

+ QGXQH/X′X (1)

= PGPXHX + PGQXHX + QGPXHX + QGQXHX. (2)

The two expressions of the above decomposition are term by term equal. The
first term in the decomposition represents the portion of X that can be ex-
plained by both G and H, the second term to the portion that can be explained
by G but not by H, the third term explained by H but not by G, and the last
term by neither G nor H. An analogous decomposition was also applied to
Y , and by combining the two decompositions, one for X and the other for Y ,
various kinds of CANO were devised, including constrained CANO (Yanai &
Takane, 1992) and partial CANO (Timm & Carlson, 1976). Any term in the
decomposition of X and that of Y can be paired, and CANO can be applied
between them.

Orthogonal decompositions of data matrices, however, does not necessarily
lead to the corresponding decomposition of projectors defined by the data
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matrices. This is true even when the terms in the decompositions of the data
matrices are columnwise orthogonal. This can be easily understood from the
following observation: Let A = B + C be an orthogonal decomposition of
A (i.e., B′C = 0). In general, however, PA 6= PB + PC , where P ’s are the
orthogonal projectors defined by matrices A, B and C. This should not be
confused with the situation in which A = [B, C], and B′C = 0. In this case,
PA = PB +PC indeed holds. (In fact, this latter relationship will be extensively
used in this paper in the derivations of orthogonal decompositions of projec-
tors. See two Lemmas below.) This means that the above decomposition of
the data matrix does not entail the corresponding orthogonal decomposition
of projectors, or that of the total association between two data sets. This in
turn implies that in the original GCCANO we may inadvertently be analyzing
the same portions of the total relationship over and over again. In this paper,
we propose two orthogonal decompositions of projectors that allow additive
partitionings of the total association. This guarantees that we only analyze
non-overlapping portions of the relationship between two sets of variables (if
we so wish), and when we intentionally analyze overlapping portions, we know
exactly which portions are overlapping. Furthermore, terms in the proposed
decompositions have simple straightforward interpretations. We develop an
improved method for GCCANO based on the new decompositions and apply
the method to an example data set.

As alluded to earlier, CANO decomposes the total association between two
sets of variables into additive components. When external information is avail-
able, we may first decompose the total association according to the external
information, and then apply CANO to each part. This notion of partitioning
the total association is analogous to (and as important as) the partitionings of
the sum of squares (SS) in ANOVA, in which the total variability in the data
is decomposed into additive components that can be attributed to distinct
sources. The proposed decompositions offer a comprehensive framework for
the decompositions of the total association into non-overlapping portions, in
which any kinds of linear CANO (both existing and those yet to be explored)
can be placed in relation to other CANO’s that might have been applied.

2 Two New Decompositions of Orthogonal Projectors

In this section, we derive two orthogonal decompositions of P[X,G], orthogonal
projector defined by matrix [X, G], obtained by juxtaposing X and G side by
side. While both of these decompositions can be derived by combinations of
some known decompositions (Lemmas 1 and 2 below), they possess a prop-
erty particularly attractive in the context of canonical correlation analysis
(CANO).
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Throughout this paper, Sp(Z) indicates the range space of Z, and Ker(Z)
indicates the null space of Z. As before, we use PZ to indicate the orthogonal
projector onto Sp(Z), and QZ = I−PZ to indicate its orthogonal complement,
i.e., the orthogonal projector onto Ker(Z ′). The two projectors are mutually
orthogonal in the identity metric (i.e., metric I). We use PZ/M and QZ/M to
indicate orthogonal projectors in metric M . Metric matrix M is assumed to
be non-negative definite (nnd). However, for PZ/M = Z(Z ′MZ)−Z ′M and
QZ/M = I − PZ/M to be projectors (onto Sp(Z) along Ker(Z ′M), and onto
Ker(Z ′M) along Sp(Z), respectively) for any choice of g-inverse, (Z ′MZ)−,
the following rank condition, rank(MZ) = rank(Z), must hold. This condition
is automatically satisfied if M is positive definite. It may fail, however, if M
is only positive semi-definite, in which case we may use a reflexive g-inverse
for (Z ′MZ)−. This always ensures that PZ/M and QZ/M are projectors (onto
Sp(PZ/M) along Ker(PZ/M), and onto Ker(PZ/M) along Sp(PZ/M), respectively,
because in this case Sp(PZ/M) ⊂ Sp(Z), and Ker(Z ′M) ⊂ Ker(PZ/M).)

The following decompositions are well known (e.g., Rao & Yanai, 1979) and
are useful in deriving the proposed decompositions.

Lemma 1.

Let X and G be as introduced above. Then,

P[X,G] = PG + PQGX (3)

= PX + PQXG, (4)

where PQGX and PQXG denote the orthogonal projectors defined by QGX and
QXG, respectively. The two terms in each of the above decompositions are
mutually orthogonal.

Decomposition (3) splits Sp([X,G]) into Sp(G) and Sp(QGX) (the subspace
obtained by projecting Sp(X) onto Sp(QG) = Ker(G′)). Likewise, (4) de-
composes the same space into Sp(X) and Sp(QXG) (the subspace obtained
by projecting Sp(G) onto Sp(QX) = Ker(X ′)). If X and G are orthogonal
to begin with, we have a unique decomposition: P[X,G] = PX + PG, that is,
QGX = X and QXG = G. However, X and G are usually not orthogo-
nal. To “orthogonalize” them, either X is projected onto Sp(QG) or G is
projected onto Sp(QX). We then have G′QGX = 0 and X ′QXG = 0, and
Sp([X, G]) = Sp([QGX, G]) = Sp([X, QXG]). We use the simple decompo-
sition formula given above for two orthogonal matrices to obtain P[X,G] =
P[QGX,G] = PG + PQGX , and P[X,G] = P[X,QXG] = PX + PQXG.

Lemma 2.

Let X and H be as introduced earlier. Let K be a matrix such that Sp(K) =
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Ker(H ′X ′X). Then,

PX = PXH + PXK . (5)

The two terms on the right hand side of (5) are mutually orthogonal.

Proof. It is obvious that XK is columnwise orthogonal to XH. It remains to
be seen that rank(XK) = rank(X)−rank(XH). From Corollary 6.2 (Eq. 3.14)
of Marsaglia and Styan (1974), we have

rank(XK) = rank(X)− dim(Sp(X ′) ∩Ker(K ′)). (6)

We also see Ker(K ′) = Sp(X ′XH), so that the space in the argument of dim
is equal to Sp(X ′XH). We thus have dim(Sp(X ′XH)) = dim(Sp(XH)) =
rank(XH). One possible form of K is K = QX′XH = I −X ′XH(H ′(X ′X)2

H)−H ′X ′X. QED.

Decomposition (5) splits Sp(X) into two orthogonal subspaces, Sp(XH) and
Sp(XK). Lemma 2 generalizes Theorem 2.1 of Yanai and Takane (1992; see
also Lemma 3(v) of Takane and Yanai (1999)). In these papers, XK is pa-
rameterized as X∗H̃, where X∗ = X(X ′X)− is a matrix of dual bases of X,
and H̃ = X ′XK, and hence Sp(H̃) = Ker(H ′). This parameterization was
motivated by the following consideration: Let Wo represent the weight matrix
applied to X. Matrix H imposes constraints on Wo by reparameterizing it by
Wo = HWr. Matrix H̃, on the other hand, specifies the same constraints in
the form of H̃ ′Wo = 0 (Takane, Yanai, & Mayekawa, 1991).

We now present the first decomposition of P[X,G].

Theorem 1. Decomposition (A) of P[X,G]:

Let X, G, and H be as introduced earlier. Further, let A,B, and W be such
that

Sp(A) = Ker(H ′X ′PGX), (7)

Sp(B) = Ker(H ′X ′QGX), (8)

and

Sp(W ) = Ker(X ′G). (9)

Then, the following decomposition holds:
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[9] P[X,G]

[7] PG [8] PQGX

[6] PPGX [5] PGW [3] PQGXH [4] PQGXB

[1] PPGXH [2] PPGXA
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Fig. 1. The derivation of Decomposition (A). Numbers in square brackets indicate
term numbers used in the improved method of GCCANO.

P[X,G] = PPGXH + (PPGX − PPGXH) + PQGXH

+ (PQGX − PQGXH) + (PG − PPGX) (10)

= PPGXH + PPGXA + PQGXH + PQGXB + PGW . (11)

The five terms in the above decomposition are mutually orthogonal, and the
two expressions of the decomposition are term by term equal.

Proof. Orthogonalities among the five terms in the decomposition can be
readily seen by tracing its derivation (see Figure 1). Projector P[X,G] is first
split into PG and PQGX using (3). Then, PG is split into PPGX and PG −
PPGX = PGW using (9) and Lemma 2. (Set X = G, H = (G′G)−G′X, and
K = W in (5), and note that Sp(W ) = Ker(X ′G(G′G)−G′G) = Ker(X ′G).)
Finally, PPGX is split into PPGXH and PPGX − PPGXH = PPGXA using (7)
and Lemma 2 (set X = PGX, and K = A in (5)), and PQGX is split into
PQGXH and PQGX −PQGXH = PQGXB using (8) and Lemma 2 (set X = QGX,
and K = B in (5)). All of these decompositions are orthogonal, so that the
resulting terms are all mutually orthogonal. The successive decompositions of
projectors described above to derive Decomposition (A) is depicted in Figure
1. QED.

The first term in the above decomposition pertains to the space defined by
the projection of Sp(XH) onto Sp(G) (the space in Sp(G) correlated with
Sp(XH)), and the second term to the portion of Sp(PGX) (the space de-
fined by the projection of Sp(X) onto Sp(G)) orthogonal to the first term
(i.e., the space in Sp(G) related to Sp(X) but orthogonal to Sp(XH)). These
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G

GW

PGX

PGXH

PGXA

X

XH

QG

QGX

QGXH

QGXB

Fig. 2. The decomposition of Sp([X,G]) corresponding to Decomposition (A) of
P[X,G].

subspaces are both in Sp(G). One possible form of A is: A = QX′PGXH =
I −X ′PGXH(H ′(X ′PGX)2H)−H ′X ′PGX. The third term in the decomposi-
tion pertains to the space defined by the projection of Sp(XH) onto Sp(QG) =
Ker(G′) (the subspace of Sp(QG) correlated with Sp(XH)), and the fourth
term to the portion of Sp(QGX) (the space defined by the projection of Sp(X)
onto Ker(G′)) orthogonal to the third (i.e., the subspace of Sp(QG) related to
Sp(X) but orthogonal to Sp(XH)). These two subspaces are both in Sp(QG).
One form of B is: B = QX′QGXH = I−X ′QGXH(H ′(X ′QGX)2H)−H ′XQGX.
The fifth term represents the space in Sp(G) orthogonal to Sp(X) (Rao, 1964,
section 11). One form of W is: W = QG′X = I − G′X(X ′GG′X)−X ′G. Note
that the second term in the decomposition will be null if rank(PGXH) =
rank(PGX), the fourth term will be null if rank(QGXH) = rank(QGX), and
the fifth term will be null if rank(X ′G) = rank(G).

The relationships among the various subspaces described above are diagram-
matically depicted in Figure 2. To avoid cluttering of symbols, we omitted
the symbol Sp and the parentheses enclosing matrices. Thus, for example,
X in the figure indicates Sp(X). Subspaces represented by distinct regions
within ellipses (marked by lines or by inscribed ellipses) are assumed to be
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orthogonal. Subspaces belonging to different ellipses are assumed to subtend
the angles as shown in the figure (either orthogonal or nonorthogonal). The
only exception to this rule is the relationship between Sp(GW ) and Sp(X)
which are orthogonal despite their look.

In Decomposition (A) of P[X,G], the subspaces generated by the first four terms
in the decomposition are either in Sp(G) or in Ker(G′) = Sp(QG). Neither of
them usually reside in Sp(X). The projections took X out of Sp(X). In the
second decomposition we propose, the subspaces all remain in Sp(X) except
the last term.

Theorem 2. Decomposition (B) of P[X,G]:

Let X, G, and H be as defined in Theorem 1, and let K be as defined in
Lemma 2. Further, let U and V be such that

Sp(U) = Ker(G′XH), (12)

and

Sp(V ) = Ker(G′XK). (13)

Then, the following decomposition holds:

P[X,G] = PXHPG/PXH
+ PXHQG/PXH

+ PXKPG/PXK

+ PXKQG/PXK
+ PQXG (14)

= PPXHG + (PXH − PPXHG) + PPXKG

+ (PXK − PPXKG) + PQXG (15)

= PPXHG + PXHU + PPXKG + PXKV + PQXG. (16)

The five terms in the above decomposition are mutually orthogonal, and the
three expressions of the decomposition are term by term equal.

Proof. Orthogonalities among the five terms in the above decomposition can
be easily seen by tracing its derivation. (See Figure 3.) Projector P[X,G] is first
split into PX and PQXG (the last term) by (4). Then, PX is split into PXH

and PXK by Lemma 2. Then, G is projected onto both Sp(XH) and Sp(XK).
The former splits PXH into PXHPG/PXH

= PPXHG and PXHQG/PXH
= PXH −

PPXHG = PXHU , which are orthogonal by (12) and Lemma 2. (Set X, H, and
K in (5) equal to XH, (H ′X ′XH)−H ′X ′G, and U , respectively, and note that
Sp(U) = Ker(G′XH(H ′X ′XH)−H ′X ′XH) = Ker(G′XH).) The latter splits
PXK into PXKPG/PXK

= PPXKG and PXKQG/PXK
= PXK − PPXKG = PXKV ,

which can again be shown to be orthogonal by (13) and Lemma 2. (Set X, H,
and K in (5) equal to XK, (K ′X ′XK)−K ′X ′G, and V , respectively, and note
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[9] P[X,G]

[10] PX [17] PQXG

[11]PXH [12] PXK

[13] PPXHG [14] PXHU [15] PPXKG [16] PXKV
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Fig. 3. The derivation of Decomposition (B). Numbers in square brackets indicate
term numbers used in the improved method of GCCANO.

that Sp(V ) = Ker(G′XK(K ′X ′XK)−K ′X ′XK) = Ker(G′XK).) The succes-
sive decompositions of projectors described above leading to Decomposition
(B) are depicted in Figure 3. QED.

The first term in the above decomposition pertains to the space defined by
the projection of Sp(G) onto Sp(XH) (the space in Sp(XH) correlated with
Sp(G)), and the second term to the portion of Sp(XH) orthogonal to the first
term (the space in Sp(XH) orthogonal to Sp(G)). These spaces are both in
Sp(XH). One form of U is: U = QH′X′G = I−H ′X ′G(G′XHH ′X ′G)−G′XH.
The third term pertains to the space defined by the projection of Sp(G) onto
Sp(XK) (the space in Sp(XK) correlated with Sp(G)), and the fourth term
to the portions of Sp(XK) orthogonal to the third (the space in Sp(XK)
orthogonal to Sp(G)). Both of these spaces are in Sp(XK). One form of V
is: V = QK′X′G = I − K ′X ′G(G′XKK ′X ′G)−G′XK. (The second and the
fourth terms are orthogonal to Sp(G) and are again special cases of the de-
composition given by Rao (1964, section 11).) All these four subspaces are in
Sp(X). The fifth term, on the other hand, pertains to the space defined by
the projection of Sp(G) onto Ker(X ′) (the subspace in Sp(QX) = Ker(X ′) re-
lated to Sp(G)), and hence is orthogonal to Sp(X). The second term will
be null if rank(G′XH) = rank(XH), and the fourth term will be null if
rank(G′XK) = rank(XK).

The relationships among the various subspaces described above and associ-
ated with the terms in Decomposition (B) are illustrated in Figure 4. Again
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QX

QXG
G

X

XH

XK

PXHG

XHU

PXKG

XKV

Fig. 4. The decomposition of Sp([X, G]) corresponding to Decomposition (B) of
P[X,G].

we omitted the symbol Sp. As in Figure 2, subspaces represented by distinct
regions within bigger ellipses (marked by lines or by smaller ellipses) are as-
sumed to be orthogonal. Subspaces belonging to different ellipses, on the other
hand, are assumed to subtend the angles as shown in the figure. Exceptions
are the relationship between Sp(G) and Sp(XHU), and that between Sp(G)
and Sp(XKV ), both of which are orthogonal, despite the fact that they do
not look orthogonal in the figure.

3 An Improved Method for GCCANO

We are now in a position to apply the results presented in the previous section
to develop an improved method for GCCANO. The idea is simple, now that
all important mathematical results have been laid out. We apply the decom-
positions described in the previous section to both sets of variables, combine
a term from each decomposition, and perform a CANO between them.

In what follows, we illustrate this process further. For this purpose, it is conve-
nient to distinguish various quantities for X and those for Y explicitly. We do
this by putting subscripts X and Y . Thus, GX (n× qX), HX (pX × rX), KX ,
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AX , BX , WX , UX and VX indicate G, H, K, A, B, W , U , and V , respectively,
for X, and GY (n× qY ), HY (pY × rY ), KY , AY , BY , WY , UY and VY denote
the same for Y .

When all relevant information is available, both Decompositions (A) and (B)
give five-term decompositions. In addition to these decompositions, we may
more generally consider all intermediary decompositions obtained in the pro-
cess of deriving these decompositions. This results in the following 17 terms
to be considered for each of the two sets of variables:

[1] PPGX
XHX

[1] PPGY
Y HY

[2] PPGX
XAX

[2] PPGY
Y AY

[3] PQGX
XHX

[3] PQGY
Y HY

[4] PQGX
XBX

[4] PQGY
Y BY

[5] PGXWX
[5] PGY WY

[6] PPGX
X [6] PPGY

Y

[7] PGX
[7] PGY

[8] PQGX
X [8] PQGY

Y

[9] P[X,GX ] [9] P[Y,GY ]

[10] PX [10] PY

[11] PXHX
[11] PY HY

[12] PXKX
[12] PY KY

[13] PPXHX
GX

[13] PPY HY
GY

[14] PXHXUX
[14] PY HY UY

[15] PPXKX
GX

[15] PPY KY
GY

[16] PXKXVX
[16] PY KY VY

[17] PQXGX
[17] PQY GY

Terms [1] through [5] correspond with those in Decomposition (A), while [13]
through [17] correspond with those in Decomposition (B). Terms [6] through
[12] represent those in the intermediary decompositions. Readers are referred
to Figures 1 and 3 for the relationships among these terms.

Note that some of the terms listed above may be null, while others may be
identical. As has been noted earlier, some of the terms in Decompositions (A)
and (B) may be null depending on the data sets. When this happens, some
of the terms in intermediary decompositions will be identical to some of those
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in Decompositions (A) and (B). In some cases, no special row and/or column
information matrices are available. In such cases we set G and/or H equal to
an identity matrix of appropriate order. This gives rise to more identical terms
in the list. Note also that terms [5] and [17] may not be of direct interest for
GCCANO, since they both pertain to Ker(X ′). They are included here for the
sake of completeness.

Once the decompositions are made, CANO may be applied to any pair of
terms in the decompositions to investigate the relationships between them.
This allows a wide variety of canonical correlation analysis, including both ex-
isting and new ones. Some of the representative analyses that can be realized
include: The bi-partial bi-constraint CANO obtained by the combination of
[3]’s for both sets, the bi-partial (no-constraint) CANO realized by the com-
bination of [8]’s for both sets, the (non-partial) bi-constraint CANO realized
by the combination of (11)’s, the ordinary (non-partial, no-constraint) CANO
obtained by the combination of [10]’s for both sets, etc. We may also “partial”
and/or “constrain” only one set of variables to obtain various semi-partial
and/or semi-constrained CANO, e.g., the combinations of [3] and [8], [3] and
[10], [8] and [11], etc. In each case, we can assess what proportion of the total
association is linked to the portion of the relationship between two sets of
variables analyzed in the particular analysis.

Imposing constraints may also invoke our interest in analyzing “the other
side of the same coin.” As an example, suppose we have performed a semi-
constrained CANO with some constraints on X, i.e., CANO between [11] for X
and [10] for Y . Then, it may also be of interest to analyze the complementary
part of [11], that is, [12] for X in combination with [10] for Y . This allows us
to look at what is left out in the first analysis, i.e., what is left unaccounted
for by the constraints on X. As another example, suppose we have performed
a bi-partial CANO between X and Y eliminating the effect of GX from X and
the effect of GY from Y . What may seem interesting in this case is CANO’s
of the effects left out from the previous analysis, the combinations of [7] for
both, [7] for X and [8] for Y , and vice versa. These combinations may be
analyzed separately, or summed into a lumped effect, which is then subjected
to CANO.

In the proposed framework, CANO amounts to obtaining the SVD of a product
of two orthogonal projectors associated with the two sets of variables. This
may pose some computational difficulty. The size of the matrix whose SVD is
obtained, being equal to the number of cases n in the data set, could be quite
large. Fortunately, the following procedure significantly cut down the size of
the matrix whose SVD is to be computed (Takane & Hunter, 2002). Let T1

and T2 represent any orthonormal (i.e., T ′
1T1 = I and T ′

2T2 = I) bases of the
spaces spanned by the two projectors. Then, the product of the two projectors
can be expressed as T1T

′
1T2T

′
2. Let the SVD of T ′

1T2 be denoted by M̃DÑ ′.
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The SVD of T1T
′
1T2T

′
2 can then be obtained by (T1M̃)D(Ñ ′T ′

2).

Let X∗ and Y ∗ denote the matrices of specific bases vectors spanning Sp(T1)
and Sp(T2), respectively. (These X∗ and Y ∗ could be any one of the matrices
that define the 17 projectors in the decompositions of P[X,GX ] and P[Y,GY ].)
Then, X∗ = T1R

′
1 for some R1, and Y ∗ = T2R

′
2 for some R2. Matrices of

canonical weights, M∗ and N∗, can be obtained from M̃ and Ñ above by M∗ =
(R1R

′
1)
−R1M̃ and N∗ = (R2R

′
2)
−R2Ñ . Covariances (or correlations) between

the bases vectors and the canonical variates are obtained by scaling X∗′T1M̃ =
R1M̃ , and Y ∗′T2Ñ appropriately. These are called structure coefficients.

As has been alluded to above, we may sometimes wish to apply CANO to a sum
of more than one product of projectors. This allows CANO of the joint effects
of more than one source. In some cases, the sum of products of projectors can
again be expressed as a single product of two projectors, in which case we
may use the computational procedure just described. In other cases, however,
the sum cannot be expressed in such a form. Suppose [1] and [3] are merged
for both sets of variables, which are then subjected to CANO. This requires
the SVD of the sum of PPGX

XHX
PPGY

Y HY
and PQGX

XHX
PQGY

Y HY
. This can

be efficiently calculated by the following procedure. Define

R = [PPGX
XHX

PGY
Y HY , PQGX

XHX
QGY

Y HY ], (17)

and

C = [PGY
Y HY (H ′

Y Y ′PGY
Y HY )−, QGY

Y HY (H ′
Y Y ′QGY

Y HY )−]. (18)

Then, RC ′ = PPGX
XHX

PPGY
Y HY

+ PQGX
XHX

PQGY
Y HY

. Let TR and TC be any
orthonormal bases of Sp(R) and Sp(C), respectively. Then, R = TRR∗ and
C = TCC∗ for some R∗ and C∗, or R∗ = T ′

RR and C∗ = T ′
CC. Let the SVD

of R∗C∗′ be M̃DÑ ′. Then, the SVD of RC ′ is obtained by (TRM̃)D(Ñ ′T ′
C).

This procedure can easily be extended to the sum of more than two terms.
Note that other definitions of matrices R and C may be equally as good,
since the primary purpose of defining them is to make the number of columns
of these matrices as small as possible. In particular, (H ′

Y Y ′PGY
Y HY )− and

(H ′
Y Y ′QGY

Y HY )− could be either part of R or part of C. It may also be
worthwhile using, whether SVD of products of projectors or that of their
sums is to be computed, more elaborate techniques for SVD of a product of
two or more matrices, such as the product SVD (e.g., Fernando & Hammarling,
1988; Bojanczyk, Ewerbring, Luk, & van Dooren, 1991; Zha, 1991), may be
in order. The product SVD (PSVD) calculates the SVD of a product of two
or more matrices without explicitly forming the product, thereby avoiding the
accumulation of rounding errors.

As was the case with the original GCCANO, the proposed method for im-
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proved GCCANO is primarily descriptive. No distributional assumptions were
deliberately made to avoid limiting the applicability of the method. It should
be emphasized, however, that information regarding the stability of the analy-
sis results (e.g., standard errors of the estimates of canonical weights, etc.) can
be readily obtained by adapting the Bootstrap method (Efron & Tibshirani,
1998) to canonical correlation analysis. The number of significant canonical
correlations can also be tested using permutation tests. The construction of
permutations tests for GCCANO has been described by Takane and Hwang
(2002). See also Legendre and Legendre (1998) and ter Braak and Šmilaur
(1991) for applications of permutation tests to similar situations. The use of
these procedures will be demonstrated in the example section.

4 An Illustrative Example

In this section we present examples of analysis by the proposed method of GC-
CANO. The data to be analyzed are closely linked to the situation described in
the introduction section. We are interested in finding the relationship between
intake of various kinds of food and mortality rates by various kinds of can-
cer. We extracted the data on food supplies in 34 countries of the world from
FAOSTAT (Food and Agriculture Organization’s statistic archive), which were
used as the X variables. Specific variables used were: (x1) alcohol, (x2) meat,
(x3) fish, (x4) cereal, (x5) vegetable, (x6) milk products, and (x7) the total
calorie per day. All of the variables were on a per capita basis, and the data
were mostly taken in 1994. We obtained the data on cancer mortality rates
from WHOSIS (World Health Organization Statistical Information System).
Cancer variables, which were used as the Y variables, consisted of the follow-
ing four cancer sites: (y1) esophagus, (y2) stomach, (y3) pancreas, and (y4)
liver. These data were also taken in 1994. In what follows, we present a series
of analysis performed on this data set. A progression of ideas (about what the
data could tell us) developed through these analyses is quite illuminating.

We first applied the ordinary CANO. (This is equivalent to the GCCANO
of term [10] for both X and Y .) Permutation tests indicated that the largest
canonical correlation was highly significant (r2

1 = .818, p < .000), while the
second one was not (r2

2 = .378, p > .290). Table 1 provides estimates of canoni-
cal weights (weights applied to the observed data to obtain a canonical variate)
as well as those of structure coefficients (correlations between a canonical vari-
ate and observed variables) corresponding to the first canonical variate, along
with the standard errors of the estimates obtained by the Bootstrap method.
The standard errors tend to be large because the sample size was rather small
(n = 34). An asterisk indicates that the estimated coefficient is significant
(i.e., significantly different from 0) at the 5% level, while two asterisks indi-
cate a significance at the 1% level. This information was also obtained by the
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Table 1
Weight and structure vectors from analysis [10] & [10]: Ordinary (non-partial, non-
constraint) CANO. (An asterisk indicates a significance at the 5% level, and two
asterisks at the 1% level.)

Variable Weight (SE) Structure (SE)

x1 -.076 (.287) **.660 (.207)

x2 .198 (.229) **.811 (.174)

x3 -.231 (.187) -.115 (.262)

x4 **-.534 (.175) **-.723 (.185)

x5 -.362 (.190) -.169 (.202)

x6 -.079 (.136) .176 (.245)

x7 *.675 (.220) **.637 (.189)

y1 .267 (.172) **.690 (.247)

y2 *-.402 (.214) -.452 (.282)

y3 .254 (.254) *.614 (.279)

y4 *.527 (.393) **.908 (.320)

Bootstrap method. Comparing the weights and the structure coefficients, the
latter seem to be more interpretable than the former. The canonical variate
is highly positively correlated with alcohol, meat and high total calorie, and
to a lesser degree with milk products, while it is negatively correlated with
the other food variables (highly negatively correlated with cereal, and slightly
negatively correlated with fish and vegetable). This profile is characteristic
of the high-fat and high-cholesterol western European (and North American)
style diet. The canonical variate is also highly correlated with three of the
four cancer variables, esophagus, pancreas, and liver cancers. These are also
the kinds of cancer prevalent in the western European countries. The first
canonical variate thus suggests that the high-fat and high-cholesterol diet has
some negative impacts on certain kinds of cancer in digestive organs. Stomach
cancer is a bit peculiar among those cancers included in the analysis.

The above analysis has revealed which variables are positively or negatively
correlated with the first canonical variate. We may utilize this information to
obtain possibly more reliable estimates of parameters in CANO. Both food
and cancer variables were classified into two groups according to the sign of
their correlations with the canonical variate, and constraint matrices, H, were
constructed accordingly. (Another idea was to classify the variables accord-
ing to the absolute strength of their relationship with the canonical variate.
That the idea implemented here makes more sense will become clearer later.)
Specifically, the following constraint matrix was constructed for X:
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H ′
X =




1 1 0 0 0 1 1

0 0 1 1 1 0 0


 ,

and similarly, the following constraint matrix was constructed for Y :

H ′
Y =




1 0 1 1

0 1 0 0


 .

This matrix puts esophagus, pancreas, and liver cancers in one group and
stomach cancer in the other. This was again based on the sign of correlations
between these variables and the first canonical variate. (Although in this par-
ticular example, H matrices are both indicator variables, more general forms
of H matrices may be used. See Takane and Shibayama (1991), and Hunter and
Takane (2002) for examples of more complex forms of H matrices in slightly
different contexts.)

We have conducted a number of possible semi- and bi-constraint CANO’s us-
ing the above constraint matrices. We report only one of them here, that is,
the results from semi-constraint CANO with constraints imposed only on X.
Other results were similar. (Results involving the HY matrix will be given
later.) This analysis corresponds with GCCANO between term [11] for X and
[10] for Y . Canonical correlations (r2

1 = .677, and r2
2 = .114) were somewhat

smaller than those obtained in the previous analysis due to the constraints
imposed. However, permutation tests indicated that the first canonical cor-
relation was still highly significant (p < .000), while the second one was not
(p > .295). Table 2 provides estimates of canonical weights and structure coef-
ficients for the first canonical variate along with their standard errors obtained
by the Bootstrap method. As before, asterisks indicate the level of significance.
The estimated coefficients were similar to those obtained in the previous anal-
ysis. Note, however, that the standard errors were consistently smaller than
those given in Table 1, indicating that the coefficients were much more re-
liably estimated due to the constraints imposed. Biases (differences between
the original estimates and the Bootstrap means of the estimated coefficients)
were also found to be small. This suggests a potential utility of incorporating
constraints; we may obtain more reliable estimates of parameters without in-
troducing much biases. (However, we should also note the post-hoc nature of
the constraints in the present analysis.)

To verify that the imposed constraints did not leave out any important as-
pects of the total relationship between the two sets of variables, CANO of the
complementary part of [11] and [10], that of [12] and [10], was also conducted.
The strength of the relationship between [12] and [10] (the part-association of
.812) was found to be larger than that of .791 between [11] and [10] that
was analyzed above. (See Table 5.) Permutation tests, however, indicated
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Table 2
Weight and structure vectors from analysis [11] & [10]: Non-partial semi-constraint
CANO with constraints only on X. (An asterisk indicates a significance at the 5%
level, and two asterisks at the 1% level.)

Variable Weight (SE) Structure (SE)

x1 **.824 (.112) **.765 (.116)

x2 **.824 (.112) **.792 (.122)

x3 **-.402 (.135) -.336 (.205)

x4 **-.402 (.135) **-.561 (.128)

x5 **-.402 (.135) -.257 (.218)

x6 **.824 (.112) **.484 (.182)

x7 **.824 (.112) **.526 (.199)

y1 **.499 (.173) **.814 (.162)

y2 -.295 (.167) -.326 (.294)

y3 .358 (.241) **.650 (.250)

y4 .303 (.239) **.874 (.152)

that none of the canonical correlations between [12] and [10] were significant
(r2

1 = .123, p > .104, and r2
2 = .269, p > .406), confirming that no significant

parts of the relationship between X and Y have been left out by imposing the
constraints. Analysis of complementary parts of a relationship between two
sets of variables is very straightforward with GCCANO, which can be viewed
as an important advantage.

How much of the relationship between the food and cancer variables we have
found is real, and how much is spurious? We suspected that at least part of
the relationship between the two sets of variables was mediated by the degree
of economic development and the overall health status in these countries. So,
in addition to the variables mentioned above, we obtained data on GDP per
capita, disability adjusted life expectancy (DALE), and infant mortality (IM)
rate from the United Nation’s data archive. We then partialled out the effect
of GDP from the food variables, and the effect of DALE and IM from the
cancer variables, and correlated the residuals. This is called bi-partial CANO
(Timm & Carlson, 1976) and corresponds with GCCANO of [8] for both X
and Y . (Bi-partial) canonical correlations (r2

1 = .670, and r2
2 = .388) were dis-

cernibly smaller than the (non-partial) canonical correlations obtained in the
first analysis, indicating that considerable portions of the original relationship
between the food and cancer variables could be explained by the economic
and health status variables. Permutation tests, however, indicated that the
first (bi-partial) canonical correlation was still highly significant (p < .004),
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Table 3
Weight and structure vectors from analysis [8] & [8]: Bi-partial no-constraint CANO.
(An asterisk indicates a significance at the 5% level, and two asterisks at the 1%
level.)

Variable Weight (SE) Structure (SE)

x1 -.188 (.446) .373 (.283)

x2 -.104 (.437) .317 (.331)

x3 -.568 (.276) -.709 (.279)

x4 -.166 (.281) -.200 (.220)

x5 *-.735 (.317) -.553 (.291)

x6 .092 (.299) .493 (.294)

x7 *.718 (.338) .193 (.258)

y1 .531 (.270) .619 (.293)

y2 -.465 (.418) -.366 (.457)

y3 .766 (.361) .535 (.277)

y4 -.064 (.412) .519 (.295)

while the second (p > .150) and subsequent ones were not. This means that a
substantial amount of the relationship still remained even after the effects of
the economic and the health status variables were eliminated. Table 3 shows
estimates of weights and structure coefficients obtained in the present anal-
ysis. GDP tended to be more highly correlated with the first group of food
variables (alcohol, meat, and total calorie) than the second (fish, cereal, and
vegetables), and it seems that eliminating its effect from the food variables
resulted in shifting the relative importance of the first group of food variables
to the second in defining the canonical variate.

No structural coefficients were significant in the above analysis. This was
partly because the partialling introduced additional instability in the esti-
mates of parameters. To compensate for this effect, we combined the bi-partial
CANO with constrained CANO which was found useful to obtain more reli-
able estimates of weights and structure coefficients in the second analysis. In
the present analysis, we used the grouping information on the cancer variables
(HY ) as well as on the food variables. This lead to CANO of the combination of
[3] for both X and Y , which may be called bi-partial bi-constraint CANO. Al-
though the size of canonical correlations decreased (r2

1 = .505, and r2
2 = .021),

permutation tests indicated that the first canonical correlation was still highly
significant (p < .001), while the second one was not (p > .427). The empirical
significance level for the largest canonical correlation improved somewhat from
the previous analysis. Table 4 provides estimates of weights and structure co-
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Table 4
Weight and structure vectors from analysis [3] & [3]: Bi-partial bi-constraint CANO.
(An asterisk indicates a significance at the 5% level, and two asterisks at the 1%
level.)

Variable Weight (SE) Structure (SE)

x1 *.555 (.228) **.648 (.168)

x2 *.555 (.228) *.523 (.205)

x3 **-.711 (.197) **-.642 (.172)

x4 **-.711 (.197) *-.467 (.131)

x5 **-.711 (.197) *-.507 (.248)

x6 *.555 (.228) *.502 (.174)

x7 *.555 (.228) .130 (.262)

y1 **.897 (.153) **.666 (.174)

y2 -.373 (.287) -.419 (.334)

y3 **.897 (.153) *.435 (.185)

y4 **.897 (.153) **.636 (.133)

efficients obtained in this analysis. The overall pattern of structure coefficients
remained essentially the same as before. The first canonical variate was pos-
itively correlated with alcohol, meat and milk products, and negatively with
fish, cereal and vegetable on the food variables, and positively with esophagus,
pancreas and liver cancers among cancer variables. Their standard errors were
much smaller than those obtained in the previous analysis, leading to more
significant estimates of parameters.

Table 5 gives a complete breakdown of the total association between P[X,GX ]

and P[Y,GY ] for the current data set. Rows of the table represent terms in the
decompositions of P[X,GX ], while columns represent those in the decomposi-
tions of P[Y,GY ]. Both rows and columns of the table are grouped into three
blocks labelled (A), (I), and (B). Block (A) represents terms ([1] through [5])
in Decomposition (A), Block (B) represents those ([13] though [17]) in De-
composition (B), and (I) represents terms ([6] through [12]) in intermediary
decompositions. (Column blocks may not be clear in the table. Block (A) con-
sists of three columns labelled [1, 6, 7], [3], and [4], Block (I) the next three
columns labelled [8], [9], and [10], and Block (B) the last three columns la-
belled [11, 19], [12, 13], and [17].) Note that no null terms are included in the
table. On the X side, [2] and [5] are null (because the number of variables in
GX is less than the number of variables in HX , i.e., qX < rX). For the same
reason, we also have [1] = [6] = [7]. Similarly, on the Y side, [2] and [5] are
null (because qY < rY ), and we again have [1] = [6] = [7]. Also, [14] and [16]
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Table 5
Additive partitionings of the total association, tr ([9],[9]) = 2.402.

(A) (I) (B)

Term Y [1,6,7] [3] [4] [8] [9] [10] [11,13] [12,15] [17]

X Rk 2 2 2 4 6 4 2 2 2

[1,6,7] 1 .653 .045 .015 .060 .712 .457 .382 .075 .255

(A) [3] 2 .082 .525 .101 .626 .708 .560 .422 .138 .148

[4] 5 .225 .443 .314 .757 .982 .689 .365 .324 .293

[8] 7 .306 .968 .415 1.383 1.690 1.249 .788 .462 .440

[9] 8 .959 1.013 .430 1.443 2.402 1.707 1.170 .537 .695

(I) [10] 7 .771 1.010 .365 1.375 2.146 1.603 1.149 .455 .543

[11] 2 .312 .564 .072 .635 .948 .791 .693 .098 .156

[12] 5 .459 .447 .293 .740 1.198 .812 .456 .356 .386

[13] 1 .285 .265 .024 .289 .574 .554 .532 .022 .020

[14] 1 .027 .299 .048 .346 .373 .237 .162 .076 .136

(B) [15] 1 .304 .019 .018 .037 .342 .166 .097 .069 .175

[16] 4 .154 .428 .275 .703 .857 .646 .359 .287 .211

[17] 1 .188 .003 .065 .068 .256 .103 .021 .082 .153

are null (because rY = qY and pY − rY = qY , respectively), so that [11] = [13],
and [12] = [15]. Ranks of the projection matrices associated with the terms
in various decompositions are given in the third row and the third column of
the table.

The intersection of Block (A) for both rows and columns (which we call
Block (A, A)) represents combinations of terms in Decomposition (A) for
both P[X,GX ] and P[Y,GY ]. One can easily verify that the nine numbers (part
associations) in Block (A, A) add up to the total association of 2.402 in row [9]
and column [9]. Similar observations can also be made in Blocks (A, B), (B,
A), and (B, B). As has been claimed, the decompositions proposed in this pa-
per indeed provide part associations that add up to the total association. The
ranks of projection matrices are also additive; in each block the row ranks add
up to pX +qX = 7+1 = 8 and the column ranks add up to pY +qY = 4+2 = 6.

As noted earlier, Block (I) refers to intermediary decompositions. Terms in
the intermediary decompositions are sums of certain subsets of terms in De-
composition (A) or (B). To recapitulate, [8] = [3] + [4], [9] = [7] + [8] = [10]
+ [17] and [10] = [11] + [12] for both X and Y , and [11] = [13] + [14] and [12]
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= [15] + [16] for X ([11] = [13] and [12] = [15] for Y ). Again, one can easily
verify that these relationships hold among the relevant part associations.

In this section, we have seen a series of interesting analyses by GCCANO.
They are, however, just a few examples of analyses that can be readily carried
out by the proposed method. A lot of other possibilities exist that may be
explored in the future.

5 Concluding Remarks

In this paper, we proposed an improved method of GCCANO, in which pro-
jectors associated with two sets of data were first orthogonally decomposed,
and then CANO was applied to pairs of decomposed projectors. Because of the
orthogonalities of terms in the decompositions, the total association was parti-
tioned into the sum of part associations defined by pairs of decomposed projec-
tors. This means that we can always (if we so wish) analyze non-overlapping
portions of the total relationship between two sets of variables separately,
which taken together represent the entire relationship between them. Par-
tialling out certain effects and constraining variables in CANO often prompt
our interest in analyzing complementary parts of the relationship between two
sets of variables, the portions of the relationship that are partialled out and/or
left out by the constraints. GCCANO makes this type of analysis extremely
easy and straightforward. The part association analyzed in each analysis may
have a simpler interpretation because it represents a specific aspect of the
total relationship for which additional structural information is provided by
the external information. The proposed decompositions of projectors provide
a comprehensive framework for additive partitionings of the total association
in CANO by external information, which nicely complements the notion of
SS decompositions in ANOVA and CPCA (Constrained Principal Component
Analysis; Takane & Hunter, 2001). A MATLAB program has been written that
implements the proposed method. An example was given that demonstrates
the use of the proposed method.

There are a variety of ways in which the proposed method may be further
improved. We discuss only one of them here. We may incorporate a regular-
ization procedure to improve the quality of parameter estimates in GCCANO.
This may be implemented as follows: For any standardized data matrix A, an
extended “projector” may be defined as

PA(λ) = A(A′A + λI)−1A′, (19)

where λ represents a regularization parameter. We may use PA(λ) instead of
the usual projector, PA(0) = A(A′A)−A′, in GCCANO. A small positive value
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of λ is known to provide better predictions (associated with smaller prediction
errors) than λ = 0 (e.g., Hoerl and Kennard, 1970), particularly when the
sample size is small and variables within sets are highly correlated. An optimal
value of λ may be determined in such a way as to maximize the association
between two sets of variables in validation samples. A leave-one-out method
(e.g., Takane & Hwang, 2003; Takane & Yanai, 2003) can easily be adapted
for this purpose. The effectiveness of the regularization procedure has been
demonstrated in the contexts of CANO by Vinod (1976), and Ramsay and
Silverman (1997) among others. GCCANO is already quite flexible, making
a variety of CANO’s possible within a unified framework. With the kind of
regularization described above, it will become an even more versatile technique
as a practical data analysis tool.
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