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1 Introduction

Let C™*™ denote the set of all m x n matrices over the field of complex numbers. A matrix
X € C**™ s called a generalized inverse (g-inverse) or {1}-inverse of A € C™*", denoted by A~
if it satisfies AXA = A, while the collection of all A~ is denoted by {A~}. In addition to A~
the definitions of some other well-known generalized inverses of A are given as follows: the Moore-
Penrose inverse of A, denoted by A, is the unique matrix X € C**™ satisfying the following four
Penrose equations

(1) AXA=A4, (2) XAX =X, (3) (AX)* = AX, (4) (XA)* = XA,

where (-)* denotes the conjugate transpose of a complex matrix. Suppose {i,...,5} is a nonempty
subset of {1, 2, 3, 4}. An X is called an {i,.. ., j}-inverse of A if it satisfies the i, ..., jth equations
and is denoted by A(»9); the collection of all {i,...,j}-inverses of A is denoted by {A7}.
In particular, a {1, 2}-inverse of A, also denoted by A, is also called a reflexive g-inverse of A4; a
{1, 3}-inverse of A is also called a least-squares g-inverse of A; a {1, 4}-inverse of A is also called
a minimum norm g-inverse of A. {1,2,3}-inverse, {1,2,4}-inverse and {1,3,4}-inverse of A are
defined similarly. The seven g-inverses A1), A(1:2) A(1:3) = A(L4) = A(1,23) © 4(1.2.4) 5pq A(134) of
A have been studied by lots of authors; see, e.g., [1, 2, 6, 14] among others.

Suppose A is a square matrix. A Hermitian matrix X is called a Hermitian {i,...,j}-inverse
of A if it satisfies the 4, ..., jth equations and is denoted by A;:"“’] ). Hermitian {i,...,j}-inverse
of A if it satisfies the i, ..., jth equations and is denoted by AS""’J). In particular, AS), AS’Q),
AS’S), ASA), AS’ZS), AS’M) and AS’M) are seven Hermitian inverses of A. It should be pointed
out that the Hermitian {4, ..., j}-inverse of A does not necessarily exist.

Suppose A and B are singular matrices of the same size. Then their g-inverses are not unique.
In this case, it is of interest to see whether these two matrices have a common g-inverse. Precisely,
one may want to know
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(a) The existence of A~ and B~ so that A~ = B~.
(b) Necessary and sufficient conditions for {A~} C {B~} and {4~} = {B~ } to hold.

(c) Necessary and sufficient conditions for {AA™} C {BB™}, {A"A} C {B™ B}, {AA™} =
{BB~} and {A~ A} = {B~ B} to hold.

Mitra [4, 5] showed that {A~} = {B~} if and only if A = B. Some other results on common
g-inverses of two matrices were derived in Tian [8, 9] by the matrix rank method. In this paper, we
seek necessary and sufficient conditions such that A and B of the same size have a common {1}-
inverse, {1, 2}-inverse, {1, 3}-inverse, {1,4}-inverse, {1, 2, 3}-inverse, {1, 2,4}-inverse and {1, 3,4}-
inverse, respectively. A variety of consequences and applications are also given, including a group
of results on common g-inverses of a square matrix A and its conjugate transpose A*.

It is well known that the general expressions of g-inverses of A can be written as the following
linear matrix expressions

A= = AV 4 FuV + WE,, (1.1)
A = (AT + FAV)A(A' + WE,), (1.2)
AWL3) = At L By, (1.3)
A = At L WEy, (1.4)
A28 — At 4 v AAY, (1.5)
A2 — At 4 AYAW Ey, (1.6)
A3Y — At L FAVE,, (1.7)

where B4 =1 — AAT, Fa=1-— AJTA, the two matrices V' and W are arbitrary; see [1, 2]. Various
properties of g-inverses can be derived from these matrix expressions.
It is obvious that two matrices A and B of the same size have a common {i, ..., j}-inverse if

and only if o o
min . T(A(’l:---:J) _ B(z,...,]) ) — 0,

where r(-) denotes the rank of a matrix. If one can establish a formula for the minimal rank on
the left-hand side of this equality, necessary and sufficient conditions for A7) = B(i-9) to hold
can be derived from this formula.

In the past several years, one of the authors gave a set of formulas for the extremal ranks of
some simple linear matrix expressions through generalized inverses of matrices:

r%}nr(A—BXC)zr[A,B]w[é]—r[g ’09] (1.8)
Qilr/lr(A—BX—YC):r[é, ﬁ] —+(B) —r(C), (1.9)

where A € C™*", B € C™** and C € C"*", and [ A, B] denotes a row block matrix. The matrices
X and Y satisfying (1.8) and (1.9) can be expressed in generalized inverses, see [7, 8, 12]. A general
result is (see [9])

A
min T(A—Blecl—BQXQCQ):T Cl +T’[A, Bl,Bg]
X1, X2
Cs
. A B)_[4 B B]_ |4
ax<ir Cy 0 r Cy 0 0 r 1 ’
Cy 0
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ERAR P O]_T[cl ” (.10
Cy 0

These fundamental formulas can be applied for finding extremal ranks of various matrix expressions
that involve variant matrices. For instance, suppose 4 € C™*", C € C"*™ and D € C'**™. Then

_ (1,3)y _ .- A*A AT
max r(D—-CAY) ) = min {m, r[ c D ] r(A)}, (1.11)
A*A A A
1 - (1,3)y — —
1LI;I(111’I31)7‘(D CA»)) _r[ c D] T[C]' (1.12)
Suppose A € C™*" B € C™** and D € C***. Then
AA* B
_ A1) = 1 —
max r(D—-AYYB) = min {n, r[ A D] T(A)}, (1.13)
AA* B
1 - (1,4) — —
nin r(D—-AYYB) = r[ A% D] r[A, B]. (1.14)

The proofs of these results are given in [10]. Another simple result on ranks of two matrices is
if PA = B and QB = A for some matrices P and @, then r(A) = r(B).

It is easy to derive from this result that

(1.15)

AAT A JA* A4
"It B|~"|B* B*B|"

This rank equality will be used in the sequel.

2 Main results

The problem on common {1}-inverses of a pair of matrices A and B of the same size was investigated
by one of the authors through some rank formulas. The following result is given in [9].

Theorem 2.1 Let A, B € C"*". Then

rréa_xr(A — AB7A) =min{r(4), r(B—A)—-r(B)+r(A)}, (2.1)
rgi_nr(A —AB7A) = Ar_n’ilrgl_r( A™ —B7)
:r(A—B)+r(A)+r(B)—r[A,B]—r[é]. 2.2)

Hence,

(a) A and B have a common {1}-inverse if and only if

r(A-B):r[g]+r[A,B]—r(A)—r(B). (2.3)

(b) The set inclusion {B~} C {A™} holds if and only if r(B — A) = r(B) —r(4).



(¢) {A}={B} if and only if A= B.

@)L4}m{3}:{m@fmmomygr@4—3)>r[A

B] +7r[A, B] —r(A) —r(B).

(e) If #(A) N Z#(B) = {0} and Z(A*) N #(B*) = {0}, then there exist A~ and B~ such that
A= =B".

Theorem 2.1(b) and (c) were shown in [4]. Theoretically, the existence of common {1, 2}-inverse
of a pair of matrices A and B can be determined through the minimal rank of A7 — B, . Note
that the general expression of A, — B, is

A, =B, = (A" + FAVi)A(A' + Wi Ex) — (Bt + FgVs )B( B + W2Ep).

This is a quadratic matrix expression with four variant matrices V4, V5, W7 and W,. There is,
however, no formula available at present for finding the minimal rank of this expression. Instead,
it is shown in [11] that if a pair of matrix equations AXA = A and BXB = B have a common
solution, then

min  7(X) = max{r(4), r(B)}. (2.4)
AXA=A
BXB=B

In light of (2.4), we can show the following result.
Theorem 2.2 Let A, B € C™*". Then A and B have a common {1, 2}-inverse if and only if the
following two rank equalities

NA—B)zﬂA

B] +7r[A, B] —r(A) —r(B) and r(A) = r(B) (2.5)

hold.

Proof Recall that A~ € {4, } if and only if 7(A~) = r(A). Also note that {4} C {A~}. Hence,
the two matrices A and B have a common {1, 2}-inverse if and only if AXA = A and BXB =B
have a common solution and

min  7(X) =7r(A) =r(B). (2.6)
AXA=A
BXB=B

It can be seen from Theorem 2.1(a) that A and B have a common {1}-inverse, i.e., AXA = A and
BXB = B have a common solution, if and only if (2.3) holds. In this case, the minimal rank of
common solutions is given in (2.4). Combining (2.3), (2.4) and (2.6) gives (2.5). O

It was shown in [13] that any two idempotent matrices A and B of the same order satisfy (2.3).
Hence, it can be seen from Theorem 2.2 that two idempotent matrices A and B of the same order
have a common reflexive g-inverse if and only if r(4) = r(B).

Theorem 2.3 Let A, B € C™*™. Then

min  r(A®3 - B3y = 4 (2.7)
A(1’3),B(1’3)
min r( BBt — BA1®)) =5, (2.8)
A(L3)
min r( AAT — AB1) ) = (2.9)
B(13)



where s =T [Aj’:lA B§B] —r [g] Hence, A and B have a common {1,3}-inverse if and only if
A B A . A* A*A
T[A*A B*B]:T[B]’ z.e.,%[B*]gﬁ[B*B]. (2.10)

Proof From (1.3), the general expression of A(1:3) — B(1:3) is given by

AW _ B3 — 4t _ Bt L PV + FgV = A' — Bt + [Fy, F1V,

where V = {Vl ] Hence, by (1.8)
Va

A(l’glig(l’a) r(A®3) — BU3)) = m&xr( Al — BT 4 [Fa, F|V)
=r[AT — BY, Fy, Fg] —r[Fa, Fp]. (2.11)

Simplifying the ranks of the two block matrices in (2.11) by elementary block matrix operations
(these operations do not change the rank of a matrix) and the following rank formulas for parti-
tioned matrices due to Marsaglia and Styan (see [3])

r[A, B] = r(A) + r(B — AA'B), (2.12)
r [é] =7r(A)+r(C - CATA), (2.13)
r [é ’09] — +(B) +(C) + r[(Im — BBYA(I, — C'O)] (2.14)

gives us

[At—BY 1, I,
r[AY — BY, Fy, Fg] =1 0 A 0| —r(4)—r(B)

0 0 B
[ 0 I, 0
=r|—-AAT 0 —-A| -r(4) -7r(B)
. BB' 0 B
[—AAt —A
:r_ BBt B] +n—r(A) —r(B)
[A*  A*A
_T_B* B*B]—}—n—r(A)—T(B) (by (1.15))
[ A B
=T A*A B*B:| —I—’I’L—'I"(A)—’I‘(B),

Iy

r[Fa, Fgl=r 0| —r(A) —r(B)




Substituting these results into (2.11) yields (2.7). It is well known that X € {A(1:3)} if and only
if AX = AA%; see, e.g., [1]. Applying (1.12) to BBt — BA®:3) and AA' — AB(1:3) gives (2.8) and
(2.9). O

Theorem 2.4 Let A, B € C™*". Then

max r(BB! - BACH) = [A’fA BfB] —r(A), (2.15)
max r(AAT — AB1) = T[AfA B§B] —(B). (2.16)
Hence,
@ e e er| B 0| = ie, 2| 2] e 2]
o) BN () or| A ol —rB) ie, @ | <] |

(c) {A13} = (B3} & A = B.

Proof Recall that X € {A®3} if and only if AX = AA! and the set inclusion {A(1:3)} € {B(1:3)}
holds if and only if max s r( BBt — BA®3)) = 0. Applying (1.11) to BBt — BA®3) and
AAY — AB(13) gives (2.15) and (2.16). It can be seen from (a) and (b) of this theorem that
{AG)Y = {BULY if and only if
A B
| it pog| =) =B,

which are equivalent to

A B A B
[o B*B—A*B]—’"(A) and T[A*A—B*A 0| =7B):

Hence, B*B = A*B and A*A = B*A hold. In this case,
(A—-B)(A—-B)=A"A—-B*A—-A*"B+ B*B =0,
which implies A = B. O

The two rank formulas in (2.8) and (2.15) are also mentioned in [10]. The following result can
be obtained by a similar approach.

Theorem 2.5 Let A, B € C™*". Then

- (14) _ g4y _ o _

qoin (A B"Y) = s —r[A, B], (2.17)
win r(B'5 — AMVB) = s~ 1[4, B), 218)
A4
Ir(nn) r(AtA—BOYA) = s —r[A, B], (2.19)
B(1,4

t 1,4y —
max (BB~ A%YB) = s —r(4), (2.20)
max r(ATA - BUYA) = 5 —r(B), (2.21)
B
A AAY
where s =r [B BB*]' Hence,



) A AA* . A
(a) A and B have a common {1,4}-inverse & T‘|:B BB*] = r[A4, B], i.e, W[B] -
AA*
Nl
A AA* B* A*
(1,4) (1,4) = ;
(b) {AYY} C{B }<=>T[B BB*]—T(A), Z'e"’%[BB*]g’%[AA*]'

A AAX A* B*

(1,4) (1,4) - ~

© By a0 or| g pn| =rm) ie, 2| L] < g
(d) {AY} ={BUY} & A=B.

Theorem 2.6 Let A, B € C™*". Then

Lo min r(A®® — B4 ) = r(BA*A — BB*A). (2.22)

Hence, there are A3 and BUY such that A3 = B4 if and only if BA*A = BB*A.
Proof In terms of (1.3) and (1.4), the general expression of A3 — B(1:4) is given by
AL _ ptA — At _ Bt L P,V + WES,
where V and W are arbitrary. Hence by (1.9) and (2.14), we get
min (A% — B4
A3 BOL4)
=minr( A" — Bt + F4V + WEpR)
v, W

[At — Bt Fy4
Ep 0

(At - Bt I,

=r

| =) = ()

0
Bl —-m—-—n
0

0
0 A
0 I, 0
=r|I, O 0
| 0 0 AAtB — AB'B

=r(AA'B - AB'B).

—-—m-n

Also note that
A*(AA'B — AB'B)B* = A*BB* — A*AB*,
(A")*( A*BB* — A*AB*)(B')* = AA'B — AB'B.

Hence,
r(AA'B — AB'B) =r(A*BB* — A*AB*) =r(BA*A — BB*A).

Thus, (2.22) follows. O



Theorem 2.7 Let A, B € C™*". Then

min r(AL23) — p1.2:3))
A(1,2,3) B(1,2,3)

:max{r[A,B]+r[ 4.0 ]—r[ 4.8 0],

A*A B*B A*A 0 B*
A B A 0 B
r[A,B]—}—r[A*A B*B]_T[O e B*B]}' (2.23)
Hence, A and B have a common {1,2,3}-inverse if and only if
A B A
T[A*A B*B] =T|:B:| (2.24)
and
A B 0 A 0 B A
T[A*A 0 B*]:T[O e B*B]:T[A’B]-FT[B] (2.25)
hold, that is,
A+ A A A* A*A A* 0
Q[B*]QQ[B*B]"@ B*In#Z| 0 |={0}and Z| 0 |n#Z| A |={0}.
0 B B* B*B

Proof From (1.5), the general expression of A(+%3) — B(1:2:3) is given by
AL23) _ p23) — 4t _ Bt L F,VAAY + FgWBB!.

Hence, by (1.10)

r(A023) _ p129))

min
A(1,2,3),B(1,2,3)
= maxr( Al — Bt + F,v AAt + FRWBB?)

V,W
At — pt
=r| AAY | +r[Al — BY, F4, Fg]
BBt
t _ gt
+ max r[At_BT FA] r[Af_Bf Fa FB] r AAATB F(;A
t - t - J
BB 0 BB 0 0 BBt 0
At — Bt F
m_m_@] Ptﬂtﬂ&&] B
r[ + —r + —r| AAf 0 |- (2.26)
AA 0 AA 0 0 BB 0

Simplifying the ranks of the block matrices in (2.26) by (2.13) and elementary block matrix oper-
ations gives

Af — Bt
AAT
BBf

r =r[A, B],




r[AT — BY, Fu, Fg]

At — Bt Fyu

"I BBt 0
At — Bt Fy

"l BBt 0 0

At — Bt Fy

r|  AAt 0

BBt 0

Substituting the above six equalities into (2.26) gives (2.23).

FB] _

[ At — Bt
0
0

0
—AAt

L,
A
0

I,
0
B

0 I,
A 0
-B 0

—r(4) —r(B)

—r(4) —r(B)

n

n

n

=n

=n

=r

=r

| BBt

[ AA
| BB
e

L B*

+7r B

A*A
B*B

A] —r(4) —(B)
+7r ] —r(A) —r(B) (by (1.15))

+r

At
-B*
-t
B*

o
A* A*A
0 B
[ A4 B 0
(A4 0 B
Fy
0
0

0

+r —r(A) —r(B)

+r

| - rt) - r(),

0
AAt
BBt

[ AAt

BBT] +r(F4) =r[A, B]+n—r(A).

O

The following two theorems can be shown similarly.



Theorem 2.8 Let A, B € C™*". Then

A AAx
A A AA*
. (1,24) _ p(1,24)y _ —
A(l’zgl’lg(l’z"l)r(A B ) = max{r[B] +7'[B BB*] r 103 59* )
T‘|:A:|+T’|:A AA*]—T 61 f(l)*
B B BB B BB*

Hence, A and B have a common {1,2,4}-inverse if and only if

* A AA* A 0 ]
[é ég*]zr[A’B]‘mdr B0 |=rj0 A& =r[A,B]+"[§]
0 B* B BB*_
hold, that is,
A AA* A AA* Al 0

Theorem 2.9 Let A, B € C™*™. Then

A A A B
: (1,3,4) (1,3,4) y _
hin,) (4 B )_T[B BB*]+T[A*A B*B]

B(1,3,4)
+ max {r(AA*B — AB*B) —r(A*A— A*B) — r(BB* — AB*),
r(BA*A — BB*A) — r(AA* — BA*) —r(B*B — B*A)}.

3 The relations between (A*)~ and (A™)*

In this section, we investigate the relations between the two sets {(A*)~} and {(47)*} consisting
of g-inverses of A* and A. A simple result on the Moore-Penrose inverse of A is

(45T = (ah)".

In addition,
A* (AT = AtA, (AnTAr = 44T

Applying these results to (1.1)—(1.7) gives

(A7) = (AT + V*Fy + E4W*, (3.1)
(A,)" = [(A)T + EAW* JA*[(A")T + V*F4], (3.2)
(AN = (A L V*Fy, (3.3)
(ABDY* = (A9 4 By W™, (3.4)
(A2 = (4 4 AAV*Fy, (3.5)
(A2 = (A 4 B WAt A, (3.6)
(ALY — (A L By V*Fy, (3.7)

10



and

(A")™ = (AT + EAV + WFy, (3.8)
(A%)7 = [(A) + BV )A*[(A*)' + WF4] (3.9)
(A3 = (A9 4 B V™, (3.10)
(AN = (A L Wy, (3.11)
(A9 123 = (A9t + B,V At A, (3.12)
(A1) 124 = (AT + AAtWFy, (3.13)
(A)34) = (At + B AV Fy (3.14)

Since the two matrices V' and W are arbitrary, by comparing (3.1)—(3.7) and (3.8)—(3.14) we obtain
the following results.

Theorem 3.1 Let A € C"*™. Then

(a) [6] {(A")7} ={(A7)"}.

(b) {(4):} ={(4:)"}

(c) {(An)®&9} = {(A0)"}.
(d) {(A)D} = {(A409)*}
() {(4n)23} = {(A424)*}.
(f) {(4")®20} = {(A129)*}.
(8) {(A7)139} = {(ALSD)},.

If A* is Hermitian, i.e., A* = A, we obtain the following from Theorem 3.1.

Corollary 3.2 Let A € C™*™ be Hermitian. Then

(a) {47} = {(47)"}.

(b) {47} = {(47) ).
(€) {40} = {(409)").
(d) {AT9} = {(A3)}.
(e) {4129} = {(A12D)*}.
(f) {AC24} = {(A029)},
(g) {AT2H} = {(AT29)},

Hermitian g-inverses of a general square matrix do not necessarily exist. If, however, A is
Hermitian, A, exists and their general expressions are given as follows.

Theorem 3.3 Let A € C™*™ be Hermitian. Then the general expressions of the Hermitian g-
inverses A, , Agm), A21’3), ASA), A21’2’3), A21,2,4) and A21’3’4) are given by

(a) Ay = AT+ EAV + V*Ey, where V is arbitrary.

11



(b) A(l’z) = (AV+ EAV)A(AY + V*E4), where V is arbitrary.

(c (1 3 — At + ELUE,, where U = U* is arbitrary.

) A

(d) A(1 Y — 4t + EAUE,, where U = U* is arbitrary.

(e) A (1 34 _ gt + EAUE 4, where U = U* is arbitrary.
1,2,3 1,2,4

() AP = 424 = gt

Proof Since A is Hermitian, Af is Hermitian, too. Hence A; in (a) is Hermitian. Also suppose
Xo is any Hermitian g-inverse of A, ie., AXoA = A and X§ = Xo. In this case, let V =
(Xo + XoAA1)/2 in (a). Then

1 1
Ay =AM+ 5Ea(Xo + XoAA") + 5 (Xo+ AATXG)Eq = AT + Xo — AT = X,

Hence (a) is the general expression of A, . The matrix A21’2) in (b) is a Hermitian {1, 2}-inverse
of A. Also suppose X is any Hermitian {1,2}-inverse of A, i.e., AXgA = A, XgAXo = Xp and
X§ = Xo. In this case, let V = Xg in A", Then

A = (AY 4 EoXo)A(A! + XoE4) = XoA( A + XoE4 ) = XoAXo = Xo.

Hence (b) is the general expression of AS’Z‘). The proofs of (¢)—(f) are left to the reader. O

From the general expressions of the Hermitian g-inverses in Theorem 3.3, one can find various
properties of these g-inverses, for example, the extremal ranks of the g-inverses; common Hermitian
g-inverses of two Hermitian matrices.

If A and B are Hermitian or normal, or they satisfy B = AF, B = I — A, or A*B = 0, the
results in Theorems 2.1-2.9 can be simplified further.

Many consequences can be derived from Theorems 2.1-2.9. For instance, replacing B with
A + B, where B is a perturbation matrix, one can obtain a set of results on common g-inverses of
A and A + B. For example,

(a) A+ B and A have a common {1}-inverse if and only if
A
r(A+ B) =T|:B:| +r[A, B] —r(A) —r(B).

(b) The set inclusion {(A+ B)~} C {A~} holds if and only if r(A + B) = r(A) + r(B).
(¢) {({A+B) }={A }ifand only if B =0.

(d) {(A+B) }n{A } ={0}if and only if r(A + B) >T[A

B] +r[A, B] —r(A) —r(B).

Moreover, a variety of results on common g-inverses of partitioned matrices can be derived. For

4 B] and N = [A 0].Then

instance, let M = [0 C 0 C

Mrzl’i]r%’_r(M_—N_):r(M) [C]—r[A B] +r(B).

r}\l/la_xr(N—NM_N)zr(A) r(B) +r(C) — r(M).

12



Hence, M and N have a common {1}-inverse if and only if

r(M) = T[B

c] +r[A, B]—r(B);

{M~} C{N"}if and only if (M) = r(A) + r(B) + r(C), i.e., Z(A) N #(B) = {0} and Z(B*)N

Z(C

") ={0}.
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