
Psychometrika Submission March 12, 2008 ReguGCANOfinal Page 1

REGULARIZED MULTIPLE-SET CANONICAL CORRELATION ANALYSIS

Yoshio Takane and Heungsun Hwang

mcgill university

Hervé Abdi
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REGULARIZED MULTIPLE-SET CANONICAL CORRELATION ANALYSIS

Abstract

Multiple-set canonical correlation analysis (Generalized CANO or GCANO for
short) is an important technique because it subsumes a number of interesting multivari-
ate data analysis techniques as special cases. More recently, it has also been recognized
as an important technique for integrating information from multiple sources. In this
paper we present a simple regularization technique for GCANO and demonstrate its
usefulness. Regularization is deemed important as a way of supplementing insufficient
data by prior knowledge, and/or of incorporating certain desirable properties in the
estimates of parameters in the model. Implications of regularized GCANO for multiple
correspondence analysis are also discussed. Examples are given to illustrate the use of
the proposed technique.

Key words: Information integration, Prior information, Ridge regression, Generalized
singular value decomposition (GSVD), G-fold cross validation, Permutation tests, the
Bootstrap method, Multiple correspondence analysis (MCA).
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1. Introduction

Multiple-set canonical correlation analysis (GCANO) subsumes a number of represen-
tative techniques of multivariate data analysis as special cases (e.g., Gifi, 1990). Perhaps
for this reason it has attracted attention of so many researchers (e.g., Gardner, et al., 2006;
Takane and Oshima-Takane, 2002; van de Velden and Bijmolt, 2006; van der Burg, 1988).
When the number of data sets K is equal to two, GCANO reduces to the usual (2-set)
canonical correlation analysis (CANO), which in turn specializes into canonical discrim-
inant analysis or MANOVA, when one of the two sets of variables consists of indicator
variables, and into correspondence analysis (CA) of two-way contingency tables when both
sets consist of indicator variables. GCANO also specializes into multiple correspondence
analysis (MCA) when all K data sets consist of indicator variables representing patterns
of responses to multiple-choice items, and into principal component analysis (PCA) when
each of the K data sets consists of a single continuous variable. Thus, introducing some
useful modification to GCANO has far reaching implications beyond what is normally
referred to as GCANO.

GCANO analyzes the relationships among K sets of variables. It can also be viewed as
a method for information integration from K distinct sources (Takane and Oshima-Takane,
2002; see also Dahl and Næs (2006), Devaux, et al. (1998), Fischer, et al. (2007), and Sun,
et al. (2005).). For example, information regarding an object comes through multi-modal
sensory channels, e.g., visual, auditory, and tactile. The information coming through mul-
tiple pathways must be integrated in some way before an identification judgment is made
about this object. GCANO mimics this information integration mechanism. As another
example, let us look at Table 1. This is a small data set from Abdi and Valentin (2007)
in which three expert judges evaluated six brands of wine according to several criteria.
As in this example, these criteria are not necessarily identical across different judges. In
a situation like this, one may be tempted to ask: 1) What are the most discriminating
factors among the six brands of wine that are commonly used by the three judges? 2)
Where are those wines positioned in terms of those factors? These questions can best be
answered by applying GCANO, which extracts a set of attributes (called canonical vari-
ates or components) most representative of all three judges in characterizing the wines. In
the application section of this paper, a GCANO analysis of this data set will be given in
some detail.

In this paper we discuss a simple regularization technique for GCANO and demon-
strate its usefulness in data analysis. Regularization can broadly be construed as a process
for incorporating prior knowledge in data analysis for better understanding of data, and
as such, it includes all such processes that are variously called penalizing, smoothing,
shrinking, soft-constraining, etc. Regularization has proven useful as a means of identi-
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fying an over-parameterized model (e.g., Tikhonov and Arsenin, 1977), of supplementing
insufficient data by prior knowledge (e.g., Poggio and Girosi, 1990), of incorporating cer-
tain desirable properties (e.g., smoothness) in the estimates of parameters (e.g., Ramsay
and Silverman, 2005), and of obtaining estimates of parameters with better statistical
properties (e.g., Hoerl and Kennard, 1970).

There are a variety of regularization techniques that have been developed. In this
paper, however, we focus on a ridge type of shrinkage estimation initially developed in the
context of regression analysis. In ridge regression (Hoerl and Kennard, 1970), the vector
of regression coefficients b is estimated by

b̃ = (X′X + λI)−1X′y, (1)

where X is the matrix of predictor variables (assumed columnwise nonsingular), y is the
vector of observations on the criterion variable, I is the identity matrix of appropriate
size, and λ is called the ridge parameter. A small positive value of λ in (1) often provides
an estimate of b which is on average closer to the true parameter value than the least
squares (LS) estimator (Hoerl and Kennard, 1970). Let θ represent a generic parameter
vector, and let θ̂ represent its estimator. One way to measure the average closeness of an
estimator to the population value is provided by the mean square error (MSE) defined by

MSE(θ̂) = E[(θ̂ − θ)′(θ̂ − θ)], (2)

where E indicates an expectation operation. The MSE(θ̂) can be decomposed into two
parts,

MSE(θ̂) = (θ − E(θ̂))′(θ − E(θ̂)) + E[(θ̂ − E(θ̂))′(θ̂ − E(θ̂))], (3)

where the first term on the right hand side is called “squared bias” and the second term
“variance”. The LS estimator is usually unbiased, but tends to have a large variance. The
ridge estimator, on the other hand, is usually biased (albeit often slightly), but is associated
with a much smaller variance. As a result, the latter tends to have a smaller MSE than its
LS counterpart. The ridge estimation has been found particularly useful when there are a
large number of predictor variables (compared to the number of cases), and/or when they
are highly correlated (e.g., Hoerl and Kennard, 1970). It can also be easily adapted to
the estimation of parameters in many multivariate data analysis techniques (Takane and
Hwang, 2006, 2007; Takane and Jung, 2006; Takane and Yanai, 2008). In this paper we
demonstrate the usefulness of the ridge regularization in GCANO through the analysis of
both Monte Carlo data sets and actual data sets. In Takane and Hwang (2006), a special
case of regularized GCANO (RGCANO), regularized multiple correspondence analysis
(RMCA), was discussed. However, it was assumed in that paper that K sets of variables
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were disjoint. In this paper, this assumption is lifted, and RGCANO is developed under a
general condition.

This paper is organized as follows. In the next section, we present the proposed method
of RGCANO in some detail. We first (section 2.1) briefly discuss ordinary (non-regularized)
GCANO. This is for preparation to introduce regularization in the following subsection
(section 2.2). We then discuss how to choose an optimal value of the regularization pa-
rameter (section 2.3). In section 2.4, we discuss some additional considerations necessary
to deal with multiple-choice categorical data by RGCANO (RMCA). In section 3, we first
(section 3.1) give a simple demonstration of the effect of regularization using a Monte Carlo
method. We then (sections 3.2 through 3.5) illustrate practical applications of RGCANO
using actual data sets. In none of these examples, the disjointness condition holds. We
conclude the paper by a few remarks about the method. The appendix provides further
technical information.

2. The Methods

A number of procedures have been proposed so far for relating multiple sets of vari-
ables. See Gifi (1990, section 5.1) and Smilde, Bro, and Geladi (2004) for a concise sum-
mary of these procedures. We consider only one of them in this paper, developed by Carroll
(1968; see also Horst (1961), and Meredith (1964)). This approach is most attractive be-
cause the solution can be obtained non-iteratively (Kroonenberg, 2008).

2.1. Multiple-set Canonical Correlation Analysis (GCANO)

Let Xk (k = 1, · · · ,K) denote the n-case by pk-variable (n > pk) matrix of the kth

data set. Unless otherwise stated, we assume that Xk is column-wise standardized. Let
X denote an n by p (=

∑
k pk) row block matrix, X = [X1, . . . ,XK ]. Let W denote a p

by t matrix of weights applied to X to obtain canonical (variate) scores, where t is the
dimensionality of the solution (the number of canonical variates to be extracted). Let W
be partitioned conformably with the partition of X, that is, W = [W′

1, . . . ,W
′
K ]′, where

Wk is a pk by t matrix. In GCANO, we obtain W which maximizes

φ(W) = tr(W′X′XW), (4)

subject to the restriction that W′DW = It, where D is a block diagonal matrix formed
from Dk = X′

kXk as the kth diagonal block. This leads to the generalized eigen equation
of the form,

X′XW = DW∆2, (5)
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where ∆2 is the diagonal matrix of the t largest generalized eigenvalues of X′X with
respect to D (arranged in descending order of magnitude), and W is the matrix of the
corresponding generalized eigenvectors. Matrix of canonical scores (variates) F can be
obtained by F = XW∆−1. In the above generalized eigen problem, D is not necessarily
of full rank. A way to avoid the null space of D in the solution has been given by de Leeuw
(1982).

Essentially the same results as above can also be obtained by the generalized singular
value decomposition (GSVD) of matrix XD− with column metric D, where D− is a g-
inverse of D. This is written as

GSVD(XD−)In, D. (6)

In this decomposition, we obtain a matrix of left singular vectors F∗ such that F∗′F∗ =
Ir (where r is the rank of X), a matrix of right generalized singular vectors W∗ such
that W∗′DW∗ = Ir, and a pd (positive definite) diagonal matrix of generalized singular
values ∆∗ (in descending order of magnitude) such that XD− = F∗∆∗W∗′ (e.g., Abdi,
2007; Greenacre, 1984; Takane and Hunter, 2001). To obtain GSVD(XD−)In, D, we first
calculate the ordinary SVD of XD−1/2, denoted by XD−1/2 = F̃∆̃W̃′, and then obtain
XD− = F̃∆̃W̃′D−1/2 = F∗∆∗W∗′, where F∗ = F̃, ∆∗ = ∆̃, and W∗ = D−1/2W̃.
The matrix W that maximizes (4) is obtained by retaining only the first t columns of
W∗ corresponding to the t largest generalized singular values (assuming that t ≤ r), and
matrix ∆ in (5) is obtained by retaining only the leading t by t block of ∆∗. The matrix
of canonical scores F is obtained directly by retaining only the first t columns of F∗.

We choose D−D1/2 for D−1/2 above, where D− is an arbitrary g-inverse and D1/2

is the symmetric square root factor of D. This choice of D−1/2 is convenient since
X(D−D1/2)2 = XD+, where D+ is the Moore-Penrose g-inverse of D, uniquely deter-
mines the solution to the above GSVD problem. (Note, however, a different choice of
D−1/2 is typically made in MCA as will be explained in section 2.4.)

There is another popular criterion for GCANO called the homogeneity criterion (Gifi,
1990). It is defined as

ψ(F,B) =
K∑

k=1

SS(F−XkBk), (7)

where SS(Y) = tr(Y′Y), and Bk is the pk by t matrix of weights. Let B denote a column
block matrix B = [B′

1, · · · ,B′
K ]′. We minimize (7) with respect to B and F under the

restriction that F′F = It. Minimizing (7) with respect to B for fixed F leads to B̂ =
D−X′F. By putting this estimate of B in (7), we obtain ψ∗(F) = ψ(F, B̂). Minimizing
ψ∗(F) with respect to F under the restriction that F′F = It leads to the following eigen



Psychometrika Submission March 12, 2008 ReguGCANOfinal Page 8

equation:

XD−X′F = F∆2. (8)

Matrix B is related to W in the previous formulation by B = W∆−1. Note that XD−X′

is invariant over the choice of a g-inverse D− because Sp(X′) ⊂ Sp(D) (Rao and Mitra,
1970, Lemma 2.2.4(iii)), where Sp indicates a range space. Let D−(∗) denote a block
diagonal matrix with D−

k as its kth diagonal block. Clearly, D−(∗) ∈ {D−} (i.e., D−(∗) is
a g-inverse of D). Thus, XD−X′ = XD−(∗)X′ =

∑K
k=1 Pk, where Pk = Xk(X′

kXk)−X′
k is

the orthogonal projector onto Sp(Xk). Note also XD−DD−X′ = XD−X′, which explains
the relationship between (8) and (6), where we noted a similar relationship between (5)
and (6).

Among the three approaches, the first approach (solving (5)) has a computational
advantage when the sample size n is greater than the total number of variables p, while
the homogeneity approach (solving (8)) has the advantage when p > n. (These methods
obtain eigenvalues and vectors of a p by p and an n by n matrix, respectively, and the
smaller the size of the matrix, the more quickly the solution can be obtained.) The GSVD
approach (solving (6)) is numerically most stable (least prone to rounding errors because it
avoids calculating the matrix of sums of squares and products) and provides a theoretical
bridge between the first two.

The following notations, though not essential in non-regularized GCANO, will be
extremely useful in regularized GCANO to be described in the following section. Let DX

denote the block diagonal matrix with Xk as the kth diagonal block, and let N = 1K ⊗ In,
where 1K is the K-component vector of ones, and ⊗ indicates a Kronecker product. (We
define A⊗B = [aijB].) Then, X = N′DX , and D = D′

XDX . The homogeneity criterion
(7) can also be rewritten as

ψ(F,B) = SS(NF−DXB). (9)

An estimate of B that minimizes (9) for fixed F can then be written as B̂ = D−D′
XNF =

D−X′F.

2.2. Regularized GCANO (RGCANO)

We now incorporate a ridge type of regularization into GCANO. In RGCANO, we
maximize

φλ(W) = tr(W′(X′X + λJp)W) (10)

subject to the ortho-normalization restriction W′D(λ)W = It, where λ is the regular-
ization parameter (a shrinkage factor), D(λ) = D + λJp, and Jp is the block diagonal
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matrix with Jpk
= X′

k(XkX′
k)
−Xk as the kth diagonal block. (Matrix Jpk

is the orthog-
onal projector onto the row space of Xk. It reduces to an identity matrix of order pk, if
Xk is columnwise nonsingular.) An optimal value of λ is determined by a cross validation
procedure (to be explained in the next section). It usually takes a small positive value
and has the effect of shrinking the estimates of canonical weights W. As has been alluded
to earlier, this tends to produce estimates with a smaller mean square error (Hoerl and
Kennard, 1970) than in the non-regularized case (λ = 0).

The above criterion leads to the following generalized eigen equation to be solved:

(X′X + λJp)W = D(λ)W∆2. (11)

As before, essentially the same results can also be obtained by GSVD. Using the notations
introduced at the end of the previous section, let

T =
[

N λ1/2DXD+
]

(12)

be a row block matrix, and define

MDX
(λ) = TT′ = NN′ + λ(DXD′

X)+. (13)

(Note that (DXD′
X)+ = DX(D′

XDX)+2D′
X = DX(D+)2D′

X .) Then, X′X + λJp can be
rewritten as

X′X + λJp = D′
XMDX

(λ)DX . (14)

This suggests that we obtain

GSVD(T′DXD(λ)−)In+p, D(λ), (15)

where the matrix in parentheses reduces to

T′DXD(λ)− =

[
X

λ1/2Jp

]
D(λ)−. (16)

Let this GSVD be represented by

T′DXD(λ)− = F∗∆∗W∗′ =

[
F∗1
F∗2

]
∆∗W∗′, (17)

where F∗′F∗ = I. We split the F∗ matrix into two parts, one (F∗1) corresponding to the
X part, and the other (F∗2) corresponding to the λ1/2Jp part of T′DX in (16). We are
typically only interested in the first part. As before, W in (11) can be obtained by retaining
the only t leading columns of W∗.

There is an interesting relationship between F∗1 and F∗2, namely

F∗1 = λ−1/2XF∗2 (18)
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that allows further reduction of the above GSVD problem. From (16) and (17), it is obvious

that Sp

([
F∗1
F∗2

])
⊂ Sp

([
X

λ1/2Jp

])
, which implies

[
F∗1
F∗2

]
=

[
X

λ1/2Jp

]
G for some

G. From the bottom portion of this relationship, we obtain JpG = λ−1/2F∗2. Note that
XJp = X. Note also that the restriction F∗′F∗ = I is turned into

λ−1F∗′2 (X′X + λJp)F∗2 = I. (19)

By premultiplying (17) by λ−1/2(X′X + λJp)+1/2[λ−1/2X′ Jp], where (X′X + λJp)+1/2 is
the symmetric square root factor of (X′X + λJp)+, and also taking into account (16), we
obtain

(X′X + λJp)1/2D(λ)− = λ−1/2(X′X + λJp)1/2F∗2∆
∗W∗′. (20)

By setting

F̃∗2 = λ−1/2(X′X + λJp)1/2F∗2, (21)

we obtain

(X′X + λJp)1/2D(λ)− = F̃∗2∆
∗W∗′. (22)

This is the GSVD((X′X + λJp)1/2D(λ)−)I, D(λ), since F̃∗′2 F̃∗2 = I from (19). The matrix
whose GSVD is obtained in (22) is usually much smaller in size than the one in (17). Once
F∗2 is obtained, F∗1 can easily be calculated by (18).

The homogeneity criterion (7) can also be adapted for regularization. Let

ψλ(F,B) = SS(NF1 −DXB) + λSS(F̄2 −B)Jp
+ λ(K − 1)SS(F̄2)Jp

= SS







NF1

F2

(K − 1)1/2F2


−




DX

λ1/2Jp

0


 B


 (23)

be the regularized homogeneity criterion, where in general SS(A)M = tr(A′MA), and
F2 = λ1/2JpF̄2. This criterion is minimized with respect to B and F = [F′1,F′2]′ under the
restriction that F′F = It. For fixed F, an estimate of B that minimizes (23) is given by

B̂ = D(λ)−
[

D′
X λ1/2Jp 0

]



NF1

F2

(K − 1)1/2F2


 , (24)

where D(λ) = D′
XDX + λJp. By putting this estimate of B in (23), we obtain

ψ∗λ(F) ≡ ψλ(F, B̂) = SS







NF1

F2

(K − 1)1/2F2







I−R
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= Const.− SS







NF1

F2

(K − 1)1/2F2







R

, (25)

where

R =




DX

λ1/2Jp

0


D(λ)−

[
D′

X λ1/2Jp 0
]
. (26)

It can be easily verified that

SS







NF1

F2

(K − 1)1/2F2







I

= K(F′1F1 + F′2F2) = KI (27)

is a constant. The second term on the right hand side of (25) can be further rewritten as

tr







NF1

F2

K̃F2




′

R




NF1

F2

K̃F2







= tr




[
F′1N′ F′2 K̃F′2

]



DX

λ1/2Jp

0


D(λ)−

[
D′

X λ1/2Jp 0
]



NF1

F2

K̃F2







= tr

([
F′1 F′2

] [
XD(λ)−X′ λ1/2XD(λ)−Jp

λ1/2JpD(λ)−X′ λJpD(λ)−Jp

] [
F1

F2

])
, (28)

where K̃ = (K−1)1/2. Minimizing (25) with respect to F subject to F′F = It is equivalent
to maximizing (28) under the same normalization restriction on F, which leads to the
following eigen equation:

[
XD(λ)−X′ λ1/2XD(λ)−Jp

λ1/2JpD(λ)−X′ λJpD(λ)−Jp

] [
F1

F2

]
=

[
F1

F2

]
∆2, (29)

where as in the non-regularized case, XD(λ)−X′ is invariant over the choice of a g-
inverse D(λ)− since Sp(X′) ⊂ Sp(D(λ)). Let D(λ)−(∗) be a block diagonal matrix with
Dk(λ)− as the kth diagonal block. Clearly, D(λ)−(∗) ∈ {D(λ)−}, so that XD(λ)−X′ =
XD(λ)−(∗)X′ =

∑K
k=1 Xk(X′

kXk + λJpk
)−X′

k. Again, we are only interested in F1. This
F1 is equal to the t leading columns of F∗1 in (17).

Takane and Hwang (2006) developed regularized MCA, a special case of RGCANO
for multiple-choice data, under the disjointness condition on Xk’s. Matrices Xk’s are said



Psychometrika Submission March 12, 2008 ReguGCANOfinal Page 12

to be disjoint if the following rank additivity condition holds (Takane and Yanai, 2008):

rank(X) =
K∑

k=1

rank(Xk). (30)

The above development is substantially more general in that no such condition is required.
That the present formulation is indeed more general than that by Takane and Hwang
(2006) is explicitly shown in Appendix (A).

Criterion (10) can also be readily generalized into the maximization of

φ
(L)
λ (W) = tr(W′(X′X + λL)W) (31)

subject to the restriction that W′(D + λL)W = It, where L is a block diagonal matrix
with Lk as the kth diagonal block. Matrix Lk could be any symmetric nnd (non-negative
definite) matrix such that Sp(Lk) = Sp(X′

k). This generalization is often useful when we
need a regularization term more complicated than Jp. Such cases arise, for example, when
we wish to incorporate certain degrees of smoothness in curves to be approximated by
way of regularization (Adachi, 2002; Ramsay and Silverman, 2005). In this case, we define
M(L)

DX
(λ) = TT′, where

T =
[

N (λL)1/2
]
. (32)

2.3. The Choice of λ

We use the G-fold cross validation method to choose an “optimal” value of λ. In this
method, the entire data set is partitioned into G subsets, one of which is set aside in turn
as the test sample. Estimates of parameters are obtained from the remaining G−1 subsets,
which are then used to predict the test sample to assess the amount of prediction error.
This process is repeated G times with the test sample changed systematically. Let X(−g)

denote the data matrix with the gth subset, X(g), removed from X. We apply RGCANO
to X(−g) to obtain W(−g), from which we calculate X(g)W(−g)W(−g)′. This gives the cross
validatory prediction of X(g)D(λ)−. We repeat this for all g’s (g = 1, · · · , G), and collect
all X(g)W(−g)W(−g)′ in the matrix X̂D(λ)−. We then calculate

ε(λ) = SS(XD(λ)− − X̂D(λ)−)In, D(λ) (33)

as an index of cross validated prediction error, where SS(Y)In,D(λ) = tr(Y′YD(λ)). We
evaluate ε(λ) for different values of λ (e.g., λ = 0, 5, 10, 20, 50, 100), and choose the value
of λ associated with the smallest value of the prediction error.

The above procedure is based on the following rationale. Let F∗1∆
∗W∗′ denote

GSVD(XD−(λ))I, D(λ), and let F1, ∆, and W represent the reduced rank matrices ob-
tained from F∗1, ∆

∗, and W∗. Then, XWW′ = F∗1∆
∗W∗′D(λ)WW′ = F1∆W′ (denoted
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by X̂D(λ)−) gives the best reduced rank approximation to XD(λ)−. In cross validation we
use X(g)W(−g)W(−g)′ to obtain the best prediction to X(g)D(λ)−, which is accumulated
over g.

A similar procedure can be used for selecting an optimal number of canonical variates
to be extracted. It is, however, rather time-consuming to vary both the value of λ and the
number of canonical variates simultaneously in the G-fold cross validation procedure. It
is more economical to choose the number of canonical variates by some other means, and
then apply the cross validation method to find an optimal value of λ. We use permutation
tests for dimensionality selection. This procedure is similar to the one used by Takane and
Hwang (2002) in generalized constrained CANO. General descriptions of the permutation
tests for dimensionality selection can be found in Legendre and Legendre (1998), and ter
Braak (1990).

We also use a bootstrap method (Efron, 1979) to assess the reliability of parameter
estimates derived by RGCANO. In this procedure, random samples (called bootstrap
samples) of the same size as the original data are repeatedly sampled with replacement
from the original data. RGCANO is applied to each bootstrap sample to obtain estimates
of parameters each time. We then calculate the mean and the variance-covariance of the
estimates (after reflecting and permuting dimensions if necessary) across the bootstrap
samples, from which we calculate estimates of standard errors of the parameter estimates,
or draw confidence regions to indicate how reliably parameters are estimated. The latter is
done under the assumption of asymptotic normality of the parameter estimates. When the
asymptotic normality assumption is not likely to hold, we may simply plot the empirical
distribution of parameter estimates. In most cases, this is sufficient to get a rough idea of
how reliably parameters are estimated.

Significance tests of canonical weights and structure vectors (correlations between
canonical scores and observed variables) may also be performed as byproducts of the
bootstrap method described above. We count the number of times bootstrap estimates
“cross” the value of zero (i.e., if the original estimate is positive, we count how many
times the corresponding bootstrap estimate comes out to be negative, and vice versa.) If
the relative frequency (the p-value) of “crossing” zero is smaller than a prescribed α level,
we conclude that the corresponding parameter is significantly positive (or negative).

2.4. Regularized Multiple Correspondence Analysis (RMCA)

GCANO reduces to MCA when each of the K data sets consists of indicator variables
(e.g., Gifi, 1990). However, there is a subtle “difference” between them that needs to be
addressed. In MCA, the data are usually only columnwise centered (but not standard-
ized). The columnwise centering, however, reduces the rank of an indicator matrix by one.
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Consequently, D and D(λ) defined in sections 2.1 and 2.2, respectively, are bound to be
rank deficient, and the choice of g-inverses of D and D(λ) is crucial from a computational
point of view. Both MCA and RMCA use special g-inverses (Takane and Hwang, 2006).

Let us begin with the non-regularized case. Let Z = [Z1, . . . ,ZK ] denote a ma-
trix of raw indicator matrices, and let DZ denote a block diagonal matrix with Zk

as the kth diagonal block. To allow missing data (zero rows in Zk) in our formula-
tion, let Dwk

(k = 1, . . . , K) denote a diagonal matrix with its ith diagonal element
equal to 1 if the ith subject has responded to item k, and 0 otherwise. (This approach
for handling missing data is similar to that of van de Velden and Bijmolt (2006).) Let
QDwk

= In − 1n(1′nDwk
1n)−11′nDwk

(the orthogonal projector onto Sp(1n) in the metric
Dwk

), where 1n is the n-component vector of ones. Then,

Xk = Q′
Dwk

Zk = ZkQ1pk
/D̃k

, (34)

for k = 1, . . . ,K, where D̃k = Z′kZk,

Q1pk
/D̃k

= Ipk
− 1pk

(1′pk
D̃k1pk

)−11′pk
D̃k, (35)

and 1pk
is the pk-component vector of ones. Matrix Q1pk

/D̃k
is the orthogonal projector

onto 1pk
in the metric D̃k. To show (34), we simply note that Zk1pk

= Dwk
1n, and

1′nDwk
1n = 1′pk

D̃k1pk
. Let Q′

Dw
denote a supermatrix formed from Q′

Dwk
arranged side

by side (i.e., Q′
Dw

= [Q′
Dw1

, . . . ,Q′
DwK

]). Then, the columnwise centered data matrix is
obtained by

X = Q′
Dw

DZ = ZQ1p/D̃, (36)

where Q1p/D̃ is a block diagonal matrix with Q1pk
/D̃k

as the kth diagonal block.

Let D̃ = D′
ZDZ denote the diagonal matrix with D̃k as the kth diagonal block, and

let D denote the block diagonal matrix with Dk = X′
kXk as the kth diagonal block. Then,

Dk = D̃kQ1pk
/D̃k

= Q′
1pk

/D̃k
D̃k, (37)

and

D = D̃Q1p/D̃ = Q′
1p/D̃

D̃. (38)

To see (37), we note that Dk = Q′
1pk

/D̃k
D̃kQ1pk

/D̃k
, but D̃kQ1pk

/D̃k
= Q′

1pk
/D̃k

D̃k in

general, and Q1pk
/D̃k

(and Q′
1pk

/D̃k
) are idempotent.

For the sake of generality, we do not assume that D̃ is always nonsingular in the follow-
ing discussion. That is, the existence of response categories with zero marginal frequencies
is allowed. When the original data set includes such categories, they can be removed a
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priori from all subsequent analyses. However, it is important to be able to handle such
categories, since they may occur quite frequently in applications of the bootstrap methods.

A straightforward application of GCANO with columnwise centered data requires

GSVD(ZQ1p/D̃D−)In, D, (39)

whereas in MCA we typically obtain

GSVD(ZQ1p/D̃D̃+)In, D̃, (40)

where D̃+ indicates the Moore-Penrose g-inverse of D̃. The latter is solved by first post-
multiplying ZQ1p/D̃D̃+ by D̃1/2, that is, ZQ1p/D̃D̃+D̃1/2 = ZQ1p/D̃(D̃+)1/2, whose or-
dinary SVD is then obtained. Let this SVD be denoted by ZQ1p/D̃(D̃+)1/2 = F̃∆̃W̃′.
Then GSVD(ZQ1p/D̃D̃+)In, D̃, denoted by F∗∆∗W∗′, is obtained by F∗ = F̃, ∆∗ = ∆̃,
and W∗ = W̃(D̃+)1/2. This is equivalent to making the following sequence of choices in
solving (39):

(a) Take D̃+ as a g-inverse of D and obtain GSVD(ZQ1p/D̃D+)In, D. (That D̃+ is a g-
inverse of D can easily be shown by DD̃+D = Q′

1p/D̃
D̃D̃+D̃Q1p/D̃ = Q′

1p/D̃
D̃Q1p/D̃

= D̃Q1p/D̃ = D due to (38).)

(b) Take Q′
1p/D̃

D̃1/2 as a square root factor of the metric matrix D, where D̃1/2 is the

symmetric square root factor of D̃. By Theorem 1 in Appendix (B), postmultiplying
ZQ1p/D̃D̃+ by Q′

1p/D̃
D̃1/2 leads to ZQ1p/D̃(D̃+)1/2, whose SVD we obtain. Note that

postmultiplying ZQ1p/D̃D̃+ by Q′
1p/D̃

D̃1/2 has the same effect as postmulitplying the

former by merely D̃1/2. (That Q′
1p/D̃

D̃1/2 is a square root factor of D can easily be

shown by Q′
1p/D̃

D̃1/2D̃1/2Q1p/D̃ = D due to (38).)

(c) Take (D̃+)1/2 as a g-inverse of D1/2 = Q′
1p/D̃

D̃1/2. The SVD of ZQ1p/D̃(D̃+)1/2

obtained above is postmultiplied by (D̃+)1/2 to obtain GSVD(ZQ1p/D̃D̃+)I, D̃. (That
(D̃+)1/2 is a g-inverse of Q′

1p/D̃
D̃1/2 can easily be shown by

Q′
1p/D̃

D̃1/2(D̃+)1/2Q′
1p/D̃

D̃1/2 = Q′
1p/D̃

D̃1/2.)

Note that the choices of solutions in the above steps are not necessarily unique, but they
are chosen to make the solution to (39) equivalent to that of (40).

An important question is if an analogous relationship holds for regularized MCA. The
answer is “yes”, as shown below. Let D̃(λ) = D̃ + λJp, where Jp is, as defined earlier, a
block diagonal matrix with Jpk

= X′
k(XkX′

k)
−Xk as the kth diagonal block. Then,

D(λ) = D̃(λ)Q1p/D̃ = Q′
1p/D̃

D̃(λ), (41)
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since Q′
1p/D̃

Jp = JpQ1p/D̃ = Jp. A straightforward application of (15) with columnwise
centered data requires

GSVD(T′DZQ1p/D̃D(λ)−)In, D(λ), (42)

whereas RMCA typically obtains (Takane and Hwang, 2006)

GSVD(T′DZQ1p/D̃D̃(λ)+)In, D̃(λ), (43)

where D̃(λ)+ is the Moore-Penrose g-inverse of D̃(λ). The two GSVD problems can be
made equivalent by making the following sequence of choices in solving (42):

(a) Take D̃(λ)+ as a g-inverse of D(λ) and obtain GSVD(T′DZQ1p/D̃D(λ)+). (That
D̃(λ)+ is a g-inverse of D(λ) can be shown by D(λ)D̃(λ)+D(λ) =
Q′

1p/D̃
D̃(λ)D̃(λ)+D̃(λ)Q1p/D̃ = Q′

1p/D̃
D̃(λ)Q1p/D̃ = D̃(λ)Q1p/D̃ = D(λ) due to

(41).)

(b) Take Q′
1p/D̃

D̃(λ)1/2 as a square root factor of D(λ). By Theorem 2 in Appendix (B),

postmultiplying T′DZQ1p/D̃D̃(λ)+ by Q′
1p/D̃

D̃(λ)1/2 leads to T′DZQ1p/D̃(D̃(λ)+)1/2,

whose SVD we obtain. Note that postmultiplying T′DZQ1p/D̃D̃(λ)+ by Q′
1p/D̃

D̃(λ)1/2

has the same effect as postmultiplying the former by merely D̃(λ)1/2.
(That Q′

1p/D̃
D̃(λ)1/2 is a square root factor of D(λ) can be shown by

Q′
1p/D̃

D̃(λ)1/2D̃(λ)1/2Q1p/D̃ = D(λ) due to (41).)

(c) Take (D̃(λ)+)1/2 as a g-inverse of Q′
1p/D̃

D̃(λ)1/2. The SVD of T′DZQ1p/D̃(D̃(λ)+)1/2

is postmultiplied by (D̃(λ)+)1/2 to obtain GSVD(T′DZQ1p/D̃D̃(λ)+)I, D̃(λ). (That
(D̃(λ)+)1/2 is a g-inverse of Q′

1p/D̃
D̃(λ)1/2 can be shown by

Q′
1p/D̃

D̃(λ)1/2(D̃(λ)+)1/2Q′
1p/D̃

D̃(λ)1/2 = Q′
1p/D̃

D̃(λ)1/2.)

Again, the choices in the above steps make the solution to (42) equivalent to that of (43).

3. Some Numerical Examples

In this section we report some results on applications of RGCANO. We first present
a simple demonstration of the effect of regularization using a Monte Carlo technique. We
then discuss four applications of RGCANO to illustrate practical uses of the method. The
first two of these analyze continuous data (applications of RGCANO proper), while the last
two analyze multiple-choice data (applications of GCANO for RMCA). In none of these
examples the rank additivity condition (30) holds, requiring the generalized formulation
developed in this paper.
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3.1. A Monte Carlo Study

In this demonstration a number of data sets were generated from a population GCANO
model. (This is somewhat different from the Monte Carlo study conducted for RMCA by
Takane and Hwang (2006), where no population model existed according to which the
data could be generated. Instead, multiple-choice data with a very large sample size was
taken as the population data from which a number of data sets were sampled.) They were
then analyzed by RGCANO to examine the effect of regularization on the estimates of
parameters. Since “true” population values are known in this case, MSE can be directly
calculated as a function of the regularization parameter.

The population model used was as follows. First, it was assumed that there were three
sets of variables, and that the first set had 3 variables, the second set 4 variables and the
third set 5 variables (p = 12). A model with two canonical variates was then postulated
by assuming

A′ =


 1 1 1 1 1 1 1 1 1 1 1 1
− 1√

2
0 1√

2
− 3√

20
− 1√

20
1√
20

3√
20
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10

− 1√
10

0 1√
10

2√
10


 ,

from which a population covariance matrix was generated by

Σ = aAA′ + bI,

where both a and b were further assumed to be unity. (Note that columns of A consist of
a constant vector and a vector of linear trend coefficients within each subset of variables.
There was no strong reason to postulate this particular A, except that we wanted a
population covariance matrix with two canonical variates.) The population parameters
(W) in GCANO can be derived from the generalized eigen decomposition of Σ with
respect to DΣ, where DΣ is a block diagonal matrix formed from diagonal blocks of Σ
of order 3, 4, and 5. (This decomposition has exactly 2 eigenvalues larger than one.) A
number of data matrices (100 within a particular sample size), each row following the
p-variate normal distribution with mean 0 and covariance matrix Σ, were generated and
subjected to GCANO with the value of λ systematically varied (λ = 0, 10, 50, 100, 200,
400). This was repeated for different sample sizes (n = 50, 100, 200, and 400).

Figure 1 depicts MSEs as a function of the sample size and the value of the ridge
parameter. The MSE was calculated according to (1). As can be seen, the MSE decreases
as soon as λ departs from 0, but begins to increase after a while. The minimum value
of MSE occurs somewhere in the middle. This tendency is clearer for small sample sizes,
but can still be observed for a sample size as large as 400. Figure 2 breaks down the MSE
function for n = 200 into its two constituents, squared bias and variance. The squared bias
consistently increases as the value of λ increases, while the variance decreases. The sum
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of the two (MSE) takes its smallest value in the mid range. Figures 1 and 2 are similar to
those derived theoretically by Hoerl and Kennard (1970) in multiple regression analysis,
and it is reassuring to find that essentially the same holds for GCANO as well. (See also
Takane and Hwang, 2006.) We also tried a number of parameter combinations within the
two-component model, and the one-component model to assess the generality of the above
results. We obtained essentially the same results.
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Figure 1.
MSE as a function of the regularization pa-
rameter (λ) and sample size (n).
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Figure 2.
MSE, Squared Bias and Variance as a func-
tion of the regularization parameter (λ) for
n = 200.

3.2. The First Example of Application

We first analyze the data set given in Table 1. We refer the reader to the introduction
section for a description of the data and motivations for data analysis. Permutation tests
indicated that there was only one significant component (p < .0005 for the first component,
and p > .15 for the second component, both with λ = 10.) The six-fold cross validation
found that an “optimal” value of λ was 10. The cross validation index (ε) was .755 for
λ = 10, and .781 for λ = 0.

The top portion of Table 2 provides the estimates of weights (applied to the observed
variables to derive the canonical component) and the correlations between the canonical
component and the observed variables for non-regularized GCANO (columns 3 and 4) and
RGCANO (columns 5 and 6). It can be observed that the weights (and the correlations)
obtained by RGCANO tend to be closer to zero than their non-regularized counter-parts,
indicating the shrinkage effect of regularization. The weights as well as the correlations
indicate that this component represents the type of material used to store the wine. It
is highly positively correlated with “woodiness” for all three judges, and negatively with
“fruitiness”. The bottom portion of the table give canonical scores for the six wines on
the derived component. The wines are grouped into two groups, wines 1, 5, and 6 on
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the positive side, and wines 2, 3, and 4 on the negative side, which coincide with the two
different types of oak to store the wines indicated in the second column of Table 1. Patterns
of canonical scores are similar in both non-regularized and regularized cases. However, the
standard errors given in parentheses indicate that the estimates of canonical scores in
the latter are much more reliable than in the former. (The former are at least 10 times
as large.) The overall size of the canonical scores was equated across the two estimation
methods to ensure that the smaller standard errors in RGCANO are not merely due to
smaller sizes of the estimates. (This roughly has the effect of equating the degree of bias
across the two methods.)

Table 2.
Analysis of wine tasting data in Table 1 by non-regularized and regularized GCANO.

Column Scale Non-regularized Regularized
Weight Correlation Weight Correlation

Expert 1 fruity -.415 -.993 -.264 -.890
woody .500 .996 .275 .902
coffee .097 .926 .225 .837

Expert 2 red fruit -.298 -.928 -.174 -.824
roasted -.187 .928 .205 .872
vanillin .490 .974 .186 .873
woody .443 .947 .222 .884

Expert 3 fruity .267 -.447 -.067 -.511
butter .218 .884 .270 .856
woody .943 .982 .324 .903

Row Score Std. Error Score Std. Error
Wine 1 .597 (.418) .539 (.024)
Wine 2 -.142 (.366) -.133 (.009)
Wine 3 -.457 (.523) -.540 (.040)
Wine 4 -.514 (.616) -.466 (.032)
Wine 5 .351 (.292) .341 (.016)
Wine 6 .165 (.313) .258 (.025)

3.3. The Second Example

The data to be analyzed in this section are similar to the wine tasting data in the
previous section, but on a much larger scale (Tillman, Dowling, and Abdi, in prepa-
ration). Twenty six judges rated twenty one music pieces on six rating scales. The 21
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music pieces were sampled from works by three composers (seven pieces each): 1. Bach,
2. Beethoven, and 3. Mozart. (See Table 3 for more detailed descriptions.) After hear-
ing each piece for ten seconds, each judge rated the piece on the following six bipo-
lar scales: 1. simple/complex, 2. fierce/gentle, 3. positive/negative, 4. elegant/plain, 5.
regular/irregular, and 6. jagged/smooth. (The underlined symbols are used as plotting
symbols in Figure 3.) Each rating scale had eight response categories numbered from 1 to
8. A larger number indicated a more complex, more gentle, more negative, plainer, more
regular, and smoother piece.

Table 3.
Description of the 21 music pieces.

No. Composer Symbol Description
1 Bach 1 11 A† - English Suite No. 1, Guigue 806
2 Bach 2 12 Bb - Partitas No. 1, BWV 825
3 Bach 3 13 C - Three-Part Invention, BWV 787
4 Bach 4 14 C minor - French Suite No. 2, BWV 813
5 Bach 5 15 D - Prelude No. 5, BWV 850 (Well-tempered Piano I)
6 Bach 6 16 F - Little Fugue, BWV 556
7 Bach 7 17 G - French Suite No. 5, BWV 816
8 Beethoven 1 21 A - Sonata K331, Allegro
9 Beethoven 2 22 Bb - Sonata K281, Allegro
10 Beethoven 3 23 C - Sonata K545, Allegro
11 Beethoven 4 24 C minor - Sonata K457, Allegro assai
12 Beethoven 5 25 D - Sonata K576, Allegro
13 Beethoven 6 26 F - Sonata K280, Allegro
14 Beethoven 7 27 G - Sonata K283, Allegro
15 Mozart 1 31 A - Sonata No. 2, Op. 2, Allegro
16 Mozart 2 32 Bb - Sonata No. 11, Op. 22
17 Mozart 3 33 C - Sonata in C, Op. 21, Allegro con brio
18 Mozart 4 34 C minor - Sonata No. 5, Op. 10 No. 1, Allegro
19 Mozart 5 35 D - Sonata No. 7, Op. 10, Presto
20 Mozart 6 36 F - Sonata No. 6, Op. 10 No. 2
21 Mozart 7 37 G - Sonata No. 10, Op. 14, Allegro.
†A capital letter indicates key, and a lower case “b” a bemol (flat).
All are major except those explicitly designated as minor.

Our interest in applying GCANO in this case is to find a representation of the 21
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music pieces most representative of the 26 judges. We therefore mainly focus on canonical
scores (F1) that indicate the spatial locations of the pieces in relation to each other.
Permutation tests found that the first two components were clearly significant (both p <

.0005), while the third one was on the borderline. The third component was not significant
for the non-regularized case with a p-value of .120, while it was marginally significant
(p = .021) with the value of λ = 10. For ease of comparison, however, we adopted a
two-dimensional solution for both cases. (The third component was also rather difficult to
interpret, because none of the six scales was correlated highly with this component.) The
21-fold cross validation found that an optimal value of the ridge parameter was 10. The
cross validation index (ε) was .926 for λ = 10 compared to .931 for λ = 0. The difference
is rather small, but this is due to the fact that this data set is fairly large (21 by 6 by 26).

Figure 3 displays the two-dimensional configuration of the 21 music pieces from
RGCANO (the plot of F1). Music pieces are indicated by number pairs, the first one
indicating the composer number followed by the piece number within a composer. For
example, 23 indicates Beethoven’s piece number 3. Works by the same composer loosely
form clusters; those composed by Bach tend to be located toward the upper left corner,
those by Beethoven toward the right, and those by Mozart toward the lower left corner.
This is seen from the convex hulls (shown by connected line segments) drawn to enclose
the works by the three composers separately.

Mean ratings of the 26 judges on the six scales were mapped into the configuration
as vectors. (The mean ratings can be taken in this example because all judges used the
same six scales. This is in contrast to the previous example in which different sets of
attributes were used by different judges.) Six arrows indicate the directions with which
the mean ratings on the six rating scales are most highly correlated. Bach’s compositions
were rated plainer and more negative, Beethoven’s works more gentle and smoother, and
Mozart’s pieces more irregular and complex. The numbers in parentheses indicate the
multiple correlations, which are fairly large in all cases.

The bootstrap method was used to assess the reliability of the estimated locations of
the music pieces. (The number of bootstrap samples was set to 1000.) Figure 4 displays the
two-dimensional configuration of music pieces obtained by the non-regularized GCANO
along with the 95% confidence regions. The variabilities of point locations are fairly large
in almost all cases. This is partly due to the fact that the 26 judges varied considerably in
their ratings. Figure 5, on the other hand, displays the same (as Figure 4) but that derived
by RGCANO. The confidence regions derived by RGCANO are almost uniformly smaller
than those derived by non-regularized GCANO. Again, the configuration in Figure 5 has
been resized to match the size of Figure 4 to ensure that the tighter confidence regions
in the former were not merely due to the shrunken configuration size. (As before, this
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Figure 3.
Regularized GCANO with the musical piece data along with vectors representing the directions
with which average ratings on six scales are most highly correlated

adjustment may be seen as a bias correction.)

3.4 The Third Example

The third example pertains to a small multiple-choice data set used by Maraun, Slaney,
and Jalava (2005) to illustrate the use of MCA. Two groups of subjects (5 depressed inpa-
tients, and 5 university undergraduates) responded to four items of the Beck Depression
Inventory (BDI; Beck, 1996). The items and the response categories used were: 1. Item 1
– Sadness (1: I do not feel sad, 2: I feel sad much of the time, 3: I am sad all the time,
4: I am so sad or unhappy that I can’t stand it). 2. Item 4 – Loss of pleasure (1: I get as
much pleasure as I ever did from the things I enjoy, 2: I don’t enjoy things as much as
I used to, 3: I get very little pleasure from the things I used to enjoy, 4: I can’t get any
pleasure from the things I used to enjoy). 3. Item 7 – Self-dislike (1: I feel the same about



Psychometrika Submission March 12, 2008 ReguGCANOfinal Page 23

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

11

12

13

14

15

16

17

21

22

23

24

25

26

27

31

32

33

34

35
36

37

Figure 4.
Two-dimensional stimulus configuration from the musical piece data obtained by non-regularized
GCANO along with 95% confidence regions

myself as ever, 2: I have lost confidence about myself, 3: I am disappointed about myself,
4: I dislike myself). 4. Item 21 – Loss of interest in sex (1: I have not noticed any recent
change in my interest in sex, 2: I am less interested in sex than I used to be, 3: I am much
less interested in sex now, 4: I have lost interest in sex completely). Although the response
options are roughly ordinal, they were treated as nominal for the purpose of MCA.

Permutation tests indicated that there was only one significant component (p < .0005
for the first component and p > .15 for the second component with λ = 1). The 10-fold
cross validation indicated that the optimal value of λ was 1. The value of ε was .240 for λ =
1, and .468 for λ = 0. Table 4 shows that the overall patterns of estimates remain the same
across the non-regularized and the regularized cases. The derived component represents
the degree of depression with the negative side indicating more serious depression. (For
category 3 of item 7 the weight estimate is 0 with 0 variance. This is because no respondents
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Figure 5.
Two-dimensional stimulus configuration from the musical piece data obtained by regularized
GCANO along with 95% confidence regions

chose this category.) Scores of depressed inpatients tend to be on the negative side (they
are also more variable), while those of university undergrads on the positive side. Standard
errors were almost uniformly smaller in the regularized case. (The regularized estimates
were again scaled up to match the size of the non-regularized estimates.)

3.5 The Fourth Example

The fourth and final example concerns the analysis of sorting data by MCA (Takane,
1980). Ten university students sorted 29 “Have” words into as many groups as they liked in
terms of the similarity in meaning. The 29 Have words were: 1. Accept, 2. Beg, 3. Belong,
4. Borrow, 5. Bring, 6. Buy, 7. Earn, 8. Find, 9. Gain, 10. Get, 11. Get rid of, 12. Give,
13. Have, 14. Hold, 15. Keep, 16. Lack, 17. Lend, 18. Lose, 19. Need, 20. Offer, 21. Own,
22. Receive, 23. Return, 24. Save, 25. Sell, 26. Steal, 27. Take, 28. Use, and 29. Want. The
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Table 4.
Analysis of Maraun et al.,’s (2005) data by regularized GCANO (MCA).

BDI Category Non-regularized Regularized
Weight Std. Error Weight Std. Error

Item 1 1 .905 (.298) .827 (.223)
2 .540 (.259) .321 (.219)
3 .671 (.370) .390 (.243)
4 -1.149 (.285) -1.537 (.223)

Item 4 1 .813 (.399) 1.086 (.313)
2 .983 (.660) .732 (.452)
3 -1.586 (.804) -1.128 (.663)
4 -.663 (.537) -.691 (.463)

Item 7 1 .992 (.447) .943 (.361)
2 .449 (.360) .580 (.322)
3 .000 (.000) .000 (.000)
4 -1.410 (.385) -1.523 (.341)

Item 21 1 .797 (.274) .843 (.236)
2 .866 (.472) .682 (.417)
3 .088 (.387) .065 (.330)
4 -1.410 (.411) -1.589 (.349)

Subj. Score Std. Error Score Std. Error
Depressed 1 -1.322 (.575) -1.374 (.499)
Inpatients 2 .358 (.320) .345 (.322)

3 -1.322 (.575) -1.374 (.499)
4 -1.586 (.558) -1.490 (.476)
5 -.364 (.414) -.374 (.407)

University 1 .983 (.495) .820 (.378)
Undergrads 2 .846 (.360) .934 (.352)

3 .540 (.323) .592 (.341)
4 1.001 (.434) 1.030 (.388)
5 .866 (.385) .891 (.346)
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sorting data are a special case of multiple-choice data with rows of the table representing
stimuli, while columns representing sorting clusters elicited by the subjects.
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Figure 6.
Two-dimensional stimulus configuration for 29 have words obtained by non-regularized MCA along
with 95% confidence regions

Permutation tests indicated that there were seven significant components (p < .0005
up to the seventh component, and p > .85 for the eighth component with λ = 1). However,
for ease of presentation we adopt a two-dimensional solution defined by the two most
dominant components. The 29-fold cross validation found the optimal value of λ was 1.
The value of ε was .593 for λ = 1, and .906 for λ = 0. Figures 6 and 7 display the two-
dimensional stimulus configurations by non-regularized and regularized MCA, respectively,
along with 95% confidence regions for the point locations. The configurations are similar
in both cases. We find verbs such as 13. Have, 21. Own, 3. Belong, 15. Keep, etc. on the
left, while 12. Give, 25. Sell, 11. Get rid of, 18. Lose, etc. on the right. At the bottom,
we see 16. Lack, 19. Need, and 29. Want, while at the top, 22. Receive, 10. Get, 7. Earn,
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Figure 7.
Two-dimensional stimulus configuration for 29 have words obtained by regularized GCANO along
with 95% confidence regions

8. Find, etc. We may interpret dimension 1 (the horizontal direction) as contrasting two
states of possession, stable on the left and unstable on the right, while dimension 2 (the
vertical direction) contrasting the two states of nonpossession, stable at the bottom and
unstable at the top. Although the configurations are similar, confidence regions are almost
uniformly smaller in the regularized case.

Concluding Remarks

We presented a simple regularization technique for multiple-set canonical correlation
analysis (RGCANO). This technique is a straightforward extension of the ridge estimation
in regression analysis (Hoerl and Kennard, 1970) to multiple-set canonical correlation
analysis (GCANO). We outlined the theory for regularized GCANO and extended it to
multiple correspondence analysis (RMCA: Takane and Hwang, 2006). We demonstrated
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the usefulness of RGCANO using both a Monte Carlo method and actual data sets. The
regularization technique similar to the one presented here may be incorporated in many
other multivariate data analysis methods. Redundancy analysis (Takane and Hwang, 2007;
Takane and Jung, 2006), canonical discriminant analysis (DiPillo, 1976; Friedman, 1989),
PCA, hierarchical linear models (HLM), logistic discrimination, generalized linear models,
log-linear models, and structural equation models (SEM) are but a few examples of the
techniques in which regularization might be useful.

GCANO (Multiple-set CANO) has not been used extensively in data analysis so far.
Hardly any use of it has been reported in the literature, except in food sciences (Dahl and
Næs, 2006; see, however, Devaux, et al. (1998), Fischer, et al. (2007), Sun, et al. (2005).),
and in the special cases of GCANO, such as MCA and an optimal scaling approach to
nonlinear multivariate analysis (Gifi, 1990). The point of view given in the introduction
section that it can be viewed as a method of information integration from multiple sources
may broaden the scope of GCANO and generate more applications in the future.

Incorporating prior knowledge is essential in many data analyses. Information ob-
tained from the data is never sufficient and must be supplemented by prior information.
In regression analysis, for example, the regression curve (the conditional expectation of y

on X) is estimated for the entire range of X based on a finite number of observations.
In linear regression analysis, this is made possible by the assumption that the regression
curve is linear at least within the range of X of our interest. Regularization provides one
way of incorporating prior knowledge in data analysis.

Appendix

(A): RGCANO when the rank additivity condition (30) holds
We show that the formulation of RGCANO presented in section 2.2 reduces to that of

Takane and Hwang (2006) developed under the assumption of rank additivity (30). Under
this condition, a solution of RGCANO was obtained by

GSVD(XD(λ)−)M(λ), D(λ), (44)

where

M(λ) = Jn + λ(XX′)+ (45)

is called the ridge metric matrix (Takane and Yanai, 2008). Here, Jn is any matrix such
that X′JnX = X′X (e.g., Jn = In, Jn = X(X′X)−X′, etc.). In this appendix, it will be
shown that (15) reduces to (44) if (30) holds.
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Let (17) be the solution to (15), where F∗′F∗ =

[
F∗1
F∗2

]′ [
F∗1
F∗2

]
= I. Then, obviously

XD(λ)− = F∗1∆
∗W∗′ (46)

holds. We will show that under (30) this is the solution to (44). That is,

F∗′1 M(λ)F∗1 = I. (47)

Let

M(λ) = CC′, (48)

where

C =
[

Jn λ1/2X(X′X)+
]
. (49)

Note that (XX′)+ = X(X′X)+2X′. When (30) holds,

C′XD(λ)− =

[
X

λ1/2(X′X)+X′X

]
D(λ)− =

[
X

λ1/2Jp

]
D(λ)− = T′DXD(λ)−. (50)

(Note that (X′X)+X′X = PX′ which in turn is equal to Jp if and only if (30) holds
(Takane and Yanai, 2008).) This leads to

M(λ)F∗1 = C

[
F∗1
F∗2

]
. (51)

We thus have

F∗′1 M(λ)F∗1 =

[
F∗1
F∗2

]′
C′M(λ)+C

[
F∗1
F∗2

]
= I, (52)

since Sp(F∗) ⊂ Sp(C′).
From (51), F∗1 + λ(XX′)+F∗1 = F∗1 + λ1/2X(X′X)+F∗2, from which it follows that

F∗2 = λ1/2(X′X)+X′F∗1, (53)

indicating Sp(F∗2) ⊂ Sp(X′), or

F∗1 = λ−1/2XF∗2, (54)

indicating Sp(F∗1) ⊂ Sp(X). (The latter always holds as given in (18), while the former
holds only when the rank additivity holds.)

By (53) we obtain

XD(λ)−X′F∗1 + λXD(λ)−(X′X)+X′F∗1 = XD(λ)−X′M(λ)F∗1 = F∗1∆
∗2 (55)
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from (29), where (X′X)+X′ = X′(XX′)+ was used to establish the first equality. (Note
that F1 is the t leading columns of F∗1.) Premultiplying the equation by M(λ)1/2, where
M(λ)1/2 is the symmetric square root factor of M(λ), leads to

M(λ)1/2XD(λ)−X′M(λ)1/2F̃1 = F̃1∆2, (56)

where F̃1 = M(λ)1/2F∗1, and F̃′1F̃1 = I. As in the non-regularized case, XD(λ)−X′ is
invariant over the choice of a g-inverse D(λ)− since Sp(X′) ⊂ Sp(D(λ)). Let D(λ)−(∗) be
the block diagonal matrix with Dk(λ)− as the kth diagonal block. Clearly, D(λ)−(∗) ⊂
{D(λ)−}, so that M(λ)1/2XD(λ)−X′M(λ)1/2 = M(λ)1/2XD(λ)−(∗)X′M(λ)1/2 =∑K

k=1 PM(λ)1/2Xk
(λ), where PM(λ)1/2Xk

(λ) = M(λ)1/2Xk(X′
kM(λ)Xk)−X′

kM(λ)1/2 is the
orthogonal projector onto Sp(M(λ)1/2Xk).

When K = 2, the above procedure leads to the canonical ridge “regression” proposed
by Vinod (1976). Matrix M(λ)1/2XD(λ)−X′M(λ)1/2 in (56) reduces to the sum of two
orthogonal projectors when K = 2. In the standard CANO, on the other hand, the eigen-
values and vectors of the product of the two orthogonal projectors are typically obtained.
However, the dominant eigenvalues and the corresponding eigenvectors of the sum of two
projectors are related in a simple manner to those of the products of the two projectors
(ten Berge, 1979).

(B): Two theorems bridging (R)GCANO and (R)MCA
In Appendix (B), we give some nontrivial results used in section 2.4. We refer the

reader to that section for definitions of various symbols. However, to avoid notational
clutters, we use Q for Q1p/D̃, 1 for 1p, and J for Jp. (Remember that Jp is defined shortly
after Equation (10), and that Q1p/D̃ is a block diagonal matrix with Q1pk

/D̃k
defined in (35)

as the kth diagonal block, so that Q1p/D̃ has the following expression: Q1p/D̃ = In −AD̃,
where A is the block diagonal matrix with 1pk

(1′pk
D̃k1pk

)−11′pk
as the kth diagonal block.)

Theorem 1. ZQD̃+Q′ = ZQD̃+.
Proof. The left hand side of the above equation can be expanded as Z{D̃+ −

1(1′D̃1)−11′D̃D̃+−D̃+D̃1(1′D̃1)−11′+1(1′D̃1)−11′D̃D̃+D̃1(1′D̃1)−11′}, the third and
the fourth terms of which cancel out because ZD̃+D̃1 = Z1. QED.

A stronger result holds when D̃ is nonsingular, namely QD̃−1 = D̃−1Q′, but this is
rather trivial.

The following lemma is necessary to prove Theorem 2.
Lemma. D̃(λ)+ = D̃+ − D̃+JS−1JD̃+, where S = JD̃+J + λ−1I.

Proof. We first prove D̃(λ)D̃(λ)+ = D̃D̃+ (symmetric). By expanding the left
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hand side we obtain D̃(λ)D̃(λ)+ = D̃D̃+ − D̃D̃+J(JD̃+J + λ−1I)−1JD̃+ + λJD̃+ −
λJD̃+J(JD̃+J+λ−1I)−1JD̃+. The second and the fourth terms on the right hand side of
this equation can be rewritten as −λJλ−1I(JD̃+J+λ−1I)−1JD̃+, and −λJJD̃+J(JD̃+J+
λ−1I)−1JD̃+, respectively, and these two terms add up to−λJD̃+, establishing D̃(λ)D̃(λ)+

= D̃D̃+. This in turn implies the other Penrose conditions: D̃(λ)+D̃(λ) = D̃+D̃ (sym-
metric), D̃(λ)D̃(λ)+D̃(λ) = D̃(λ), and D̃(λ)+D̃(λ)D̃(λ)+ = D̃(λ)+. QED.

Theorem 2. ZQD̃(λ)+Q′ = ZQD̃(λ)+.
Proof. Using the expression of D̃(λ)+ in the previous lemma, the left hand side of

the above equation can be expanded as ZQD̃+Q′ − ZQD̃+JS−1D̃+Q′, the second term
of which can further be expanded as Z{D̃+JS−1JD̃+ − 1(1′D̃1)−11′D̃D̃+JS−1JD̃+ −
D̃+JS−1JD̃+D̃1(1′D̃1)−11′ + 1(1′D̃1)−11′D̃D̃+JS−1JD̃+D̃1(1′D̃1)−11′}. Each of the
last three terms of this expression vanishes since JD̃+D̃1 = 0, leaving ZQD̃+ −
ZQD̃+JS−1JD̃+ = ZQD̃(λ)+. QED.

Again, a stronger result holds when D̃(λ) (and consequently, D̃) is nonsingular, namely
QD̃(λ)−1 = D̃(λ)−1Q′. This can be shown as follows: When D̃(λ) is nonsingular, its in-
verse takes the form of D̃(λ)−1 = D̃−1 − D̃−1JS−1JD̃−1, where S = JD̃−1J + λ−1I
(see the lemma above). Thus, D̃(λ)−1Q′ = D̃−1Q′ − D̃−1JS−1JD̃−1Q′ = D̃−1Q′ −
D̃−1Q′JS−1JQD̃−1 = QD̃−1 −QD̃−1JS−1JD̃−1 = QD̃(λ)−1. Note that Q′J = JQ = J.
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