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Abstract Nonsymmetric correspondence analysis (NSCA) aims to examine
predictive relationships between rows and columns of a contingency table. The
predictor categories of such tables are often accompanied by some auxiliary
information. Constrained NSCA (CNSCA) incorporates such information as
linear constraints on the predictor categories. However, imposing constraints
also means that part of the predictive relationship is left unaccounted for by
the constraints. A method of NSCA is proposed for analyzing the residual part
along with the part accounted for by the constraints. The CATANOVA test
may be invoked to test the significance of each part. The two tests parallel
the distinction between tests of ignoring and eliminating, and help gain some
insight into what is known as Simpson’s paradox in the analysis of contingency
tables. Two examples are given to illustrate the distinction.
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1 Introduction

Scientific research in many disciplines including psychology, biology, ecology,
epidemiology, and so on, often concerns the prediction of one categorical vari-
able from another. Nonsymmetric correspondence analysis (NSCA: Lauro and
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D’Ambra 1984) is a useful technique for analyzing a two-way contingency ta-
ble in which rows and columns assume asymmetric relationships, for example,
columns depend on rows, but not vice versa. (Throughout this paper, we as-
sume that rows represent the predictive categories, and columns the criterion
categories.) For such tables, the Goodman-Kruskal τ index (Goodman and
Kruskal 1954) is used to indicate how well the rows predict the columns. The
CATANOVA test (Light and Margolin 1971) may then be invoked to test the
significance of the predictive relationship indicated by τ .

Two-way contingency tables are often accompanied by some auxiliary infor-
mation on the predictor categories. Consider, for example, a table of frequen-
cies of certain tree species (columns) in various sites (rows). The abundance
of trees depends on the sites, while the converse is not true. Variables describ-
ing environmental factors may be provided that influence the population of
trees in the sites. Constrained NSCA (CNSCA: Takane and Jung 2009) may
be applied to incorporate such information in the prediction of abundance of
various kinds of trees in various sites (see also Böckenholt and Böckenholt
1990; Böckenholt and Takane 1994; Hwang and Takane 2002; Takane, Yanai,
and Mayekawa 1991; ter Braak 1986).

Higher order contingency tables can also be analyzed by CNSCA. Table 1
shows a three-way contingency table constructed by classifying 800 patients
by treatment and gender (interactively coded) on the rows, and prognosis on
the columns. Patient recovery is affected by the treatment and gender. We
may take the prognosis as the criterion variable, and the combinations of the
other two as the predictor variables. Since the rows of the table have a factorial
structure, a variety of analyses can be performed by defining appropriate con-
trast vectors (contrasts are formal representations of constraints) representing
the structure on the rows. For example, we may be specifically interested in
examining how the main effect of treatment alone influences the prognosis. To
achieve this goal, we supply a contrast vector representing the main effect of
treatment, that is,

T1 =




1
−1

1
−1




male, medication
male, control
female, medication
female, control

, (1)

and apply CNSCA. Note that T1 takes the sum of the first and third rows
(both related to the medication group), the sum of the second and fourth rows
(both related to the control group), and take a difference between these two
sums, thereby contrasting the two groups (the medication and control groups).
(Note that T1 satisfies 1′T1 = 0, which is the defining property of a contrast
vector.)

Imposing constraints on the predictor categories has the potential benefit
of stabilizing the estimates of parameters (Takane and Jung 2009). A potential
problem, on the other hand, is that part of the predictive relationship may be
left unexplained by the constraints. That is, the constraints may capture some
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Table 1 Cross-classification of patients in terms of Treatment, Gender, and Prognosis (n =
800, where n is the total sample size).

Prognosis
Gender Treatment Recovery Non-recovery Recovery rate
Male Medication 180 120 .6

Control 70 30 .7
Female Medication 20 80 .2

Control 120 180 .4

portions of the relationship, but not the entire relationship. In the specific ex-
ample of Table 1, if the contrast representing the main effect of treatment (T1)
is imposed, the main effect of gender and the interaction between treatment
and gender will be left out. The latter effects pertain to the contrast matrix

T2 =




1 1
1 −1

−1 −1
−1 1




male, medication
male, control
female, medication
female, control

, (2)

where the first column of T2 contrasts the two categories of gender, and the sec-
ond column the interaction between treatment and gender. Note that 1′T2 = 0
(indicating that T2 is a contrast matrix), and T′1T2 = 0 (T1 and T2 are or-
thogonal). The present paper proposes a method of NSCA that allows the
analysis of both parts of the predictive relationship. The two parts of the
analysis parallel the distinction between tests of ignoring and eliminating other
effects in multiple regression analysis and non-orthogonal ANOVA (Maxwell
and Delaney 2004, pp 320-343). The method also allows analogous partition-
ings of the Goodman-Kruskal τ index and the CATANOVA test statistic. This
example will be used in the application section to illustrate various analyses
that can be carried out by the proposed method.

This paper first calls attention to the importance of analyzing the resid-
uals along with the part accounted for by the constraints in the analysis of
contingency tables. In particular, the analysis sheds further light on an old
problem known as Simpson’s paradox in statistics (Simpson 1951; Yule 1903).
Simpson’s paradox (e.g., Blyth 1972; Shapiro 1982) occurs when an appar-
ent association between rows and columns of a table disappears or is even
reversed, or when an apparent non-association between rows and columns ap-
pears as a sizable association, when a third variable is taken into consideration.
These differences that occur when the effect of a third variable is ignored or
eliminated can be captured by the difference between the analysis of the part
explained by the constraints and that of the residuals. For example, in testing
the treatment main effect in Table 1, we can either ignore or eliminate the
other effects. The former (the test of ignoring) can be performed by CNSCA
with T1 as the constraint, while the latter (the test of eliminating) by the
analysis of residuals from CNSCA with T2 as the constraints.
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This paper is organized as follows. Section 2 discusses the proposed tests
of ignoring and eliminating in the analysis of contingency tables. Section 3
presents the mathematical underpinnings for the proposed method. Section 4
gives possible finer decompositions of the ignoring and eliminating effects. Sec-
tion 5 discusses how the proposed method is related to other existing methods.
Section 6 introduces permutation tests for determining the best dimensional-
ity of the solution. The bootstrap method is then described for evaluating the
stability of the estimates of parameters. Section 7 demonstrates applications
of the proposed method to two empirical examples to illustrate its usefulness.
The final section gives a summary and discussion.

2 The Proposed Method

Let G and H represent n by r and n by c indicator matrices of predictor
and criterion variables, respectively, where n is the number of subjects (the
sample size), r is the number of categories in the predictor variable, and c is
the number of categories in the criterion variable. Let K = G′G and D = H′H
denote diagonal matrices of row and column marginal frequencies, respectively.
We assume for the moment that K is nonsingular. Let F = G′H denote an r
by c contingency table calculated from G and H. NSCA attempts to predict
column categories given row categories of a contingency table. Measures of
predictive power of rows on columns are given collectively by

A = K−1Q′
1/KF = Q1/KK−1F, (3)

where
Q1/K = I− 1(1′K1)−11′K (4)

is the orthogonal projector onto the null space of 1 (the vector of ones) in
metric K. The matrix Q1/K eliminates the row marginal effect from the entire
relationship between rows and columns. The ijth element aij of A is equal to

aij = pij/pi. − p.j , (5)

where pij is the joint probability of row i and column j (the ijth element
of F/n), pi. is the marginal probability of row i (the ith diagonal element
of K/n), and p.j is the marginal probability of column j (the jth diagonal
element of D/n). The first term on the right hand side of (5) is the conditional
probability of column j given row i. This means that the predictive power of
row i on column j is higher if the conditional probability of column j given
row i is higher relative to the marginal (unconditional) probability of column
j, and it is lower if pij/pi. is smaller than p.j (Takane and Jung 2009).

For dimension reduction, we may use the generalized singular value de-
composition (GSVD) of (3) with metric matrices K and I, which is written
as GSVD(A)K, I (e.g., Takane and Shibayama 1991). Let A = U∆V′ denote
GSVD(A)K, I , where U is an r by m matrix of left singular vectors such that
U′KU = Im (m = rank(A)), V is a c by m matrix of right singular vectors
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Table 2 The marginal table obtained from Table 1 by collapsing over gender

Prognosis
Treatment Recovery Non-recovery Recovery rate
Medication 200 200 .5

Control 190 210 .475

such that V′V = Im, and ∆ is a pd (positive definite) diagonal matrix of
order m of generalized singular values of A. Then the best rank-t approxima-
tion to A in the sense of SS(A − Â) → min, assuming that t ≤ m, is given
by Â = Ut∆tV′

t, where the matrices with subscript t (Ut, Vt, and ∆t) are
submatrices of the respective matrices (U,V, and ∆) in the GSVD of A cor-
responding to the t largest (generalized) singular values of A. Matrix Ut∆t

gives the so-called principal coordinates of row (predictor) categories, while Vt

the standard coordinates of column (criterion) categories (Greenacre, 1984).
The method of choosing the best dimensionality t will be discussed in Section
6.

Let T = [T1,T2] be a matrix of contrast vectors (representing predic-
tor variables) defined on row categories such that T′1T2 = 0, and Sp(T1) ⊕
Sp(T2) = Sp(Q1/K) (i.e., T2 spans the ortho-complement subspace of T1

within Sp(Q1/K), where Sp(Y) indicates the column space of Y = T1,T2, or
Q1/K . Note that an example of T1 and T2 has been given in the introduction
section, where for Table 1, T1 indicated the main effect of treatment, while T2

the main effect of gender and the interaction between treatment and gender.
In CNSCA of F with T1 ignoring T2, we obtain

B = Q1/KT1(T′1Q
′
1/KKT1)−1T′1Q

′
1/KF. (6)

Note that Q′
1/KKQ1/K = Q′

1/KK = KQ1/K . Note also that 1′KQ1/KT1 = 0.
We say that B pertains to the effect of T1 ignoring T2 because it is essentially
the same as analyzing the total predictive relationship between rows (treat-
ment) and columns (prognosis) of a contingency table obtained by collapsing
Table 1 across gender categories (i.e., ignoring gender), as presented in Table
2. For dimension reduction, we obtain GSVD(B)K,I . Let B = U∆V′ denote
this GSVD. As before, B̂ = Ut∆tV′

t gives the best rank-t approximation of
B, Ut∆t gives the principal coordinates of the predictive categories, and Vt

gives the standard coordinates of the criterion categories.
In some cases, each column of Q1/KT1 has a specific meaning, and its

effect may be of interest individually. In such cases, the weights applied to
Q1/KT1 to obtain the row representation Ut∆t may be in order. They can
be calculated by

Wt = (T′1Q
′
1/KKT1)−1T′1Q

′
1/KKUt∆t, (7)

or more directly by GSVD((T′1Q
′
1/KKT1)−1T′1Q

′
1/KF)T ′1Q′1/K

KT1,I . In the
latter, the row representation is recovered by Q1/KT1Wt =
PQ1/KT1/KUt∆t = Ut∆t.
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The residuals from B (i.e., E = A−B) can be expressed as

E = K−1T2(T′2K
−1T2)−1T′2K

−1F. (8)

Note that T′1Q
′
1/KT2 = 0, and that 1′KE = 0. The matrix E may also be

subjected to GSVD (i.e., GSVD(E)K,I) for dimension reduction. Let U∆V′

denote GSVD(E)K,I . As before, Ê = Ut∆tV′
t gives the best rank-t approx-

imation to E, Ut∆t the principal coordinates of the predictor categories,
and Vt the standard coordinates of the criterion categories. The weights ap-
plied to K−1T2 to obtain the row representation can be obtained by Wt =
(T′2KT2)−1T′2Ut∆t, or by GSVD((T′2K

−1T2)−1T′2K
−1F)T ′2K−1T2,I . In the

latter, Ut∆t can be obtained from Wt by K−1T2Wt = PK−1T2/KUt∆t =
Ut∆t.

The above derivation assumed that both T1 and T2 were known explicitly,
which may not be true in general. However, using their complementarity, we
can derive one from the other. That is, E can be derived from B by E = A−B,
and B from E by B = A− E. It is thus sufficient to know only one of them.
That the complementarity relation A = B+E holds with A defined in (3), B
defined in (6), and E defined in (8) will be shown in the next section.

Obviously, we can interchange the roles of T1 and T2 above. We may
analyze

J = Q1/KT2(T′2Q
′
1/KKT2)−1T′2Q

′
1/KF, (9)

which gives the CNSCA of F with T2 ignoring T1. We may also analyze

L = K−1T1(T′1K
−1T1)−1T′1K

−1F, (10)

which gives the CNSCA of F with T1 eliminating T2. Again, we have A =
J + L.

The significance of the overall predictability (A) as well as the effects
of ignoring (B and J) and eliminating (E and L) can be tested using the
CATANOVA C-statistic (Light and Margolin 1971; see also Anderson and
Landis (1980), and D’Ambra, Beh, and Amenta (2005)). Let

TSS = 1− tr(D2)/n2 (11)

denote the total variance in the contingency table F, where n is the sample
size (i.e., n = 1′CD1C). Let

BSSA =
1
n

SS(A)K, I = tr(A′KA)/n (12)

indicate the explained variance due to the predictability of rows on columns.
The Goodman-Kruskal τ index, which indicates the overall predictability of
rows on columns, is defined by

τA = BSSA/TSS. (13)

(τA is sometimes called multiple τ (Gray and Williams (1981) because it
represents the total predictability of two or more predictor variables.) The
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CATANOVA test may be used to test the significance of the τ index. The test
statistic known as the C-statistic (Light and Margolin 1971) is defined by

CA = (n− 1)(c− 1)τA. (14)

This statistic follows the asymptotic chi-square distribution with (c−1)(r−1)
degrees of freedom as n →∞ under the null hypothesis of no predictability of
the rows on the columns.

Tests involved in the two parts of the proposed analysis (i.e., tests of ignor-
ing and eliminating) entail decomposing the Goodman-Kruskal τ index and the
CATANOVA test statistic in a straightforward manner. Let BSSB and BSSE

be 1
nSS(B)K, I and 1

nSS(E)K, I , respectively. We have BSSA = BSSB +BSSE .
Part of the overall τ index pertaining to the effect of T1 ignoring T2 is defined
as

τB = BSSB/TSS, (15)

while the complementary part pertaining to the effect of T2 eliminating T1 is
defined as

τE = BSSE/TSS. (16)

(τB is simply the basic τ index for the marginal table (Table 2), while τE

is sometimes called partial τ (Gray and Williams 1981).) The CATANOVA
test statistic can also be analogously decomposed into two parts. Let r1 and
r2 denote rank(T1) and rank(T2), respectively, such that r1 + r2 = rank(T).
Then, the portion of the overall C-statistic pertaining to the test of T1 ignoring
T2 is obtained by

CB = (n− 1)(c− 1)BSSB/TSS. (17)

Under the hypothesis that T1 ignoring T2 has no predictability on columns,
this statistic has an asymptotic chi-square distribution with (c− 1)r1 degrees
of freedom. The complementary part of the C-statistic pertaining to the test
of T2 eliminating T1, on the other hand, is obtained by

CE = (n− 1)(c− 1)BSSE/TSS. (18)

This statistic follows the asymptotic chi-square distribution with (c − 1)r2

degrees of freedom under the hypothesis that T2 eliminating T1 has no pre-
dictability on columns. Obviously, analogous arguments hold for J and L,
where we test the effects of T2 ignoring T1, and of T1 eliminating T2.

3 Mathematical Underpinnings

In this section, we show the complementarity of B and E, and of J and L. Let
X = Q1/KT1 and R = Q′

1/KT2 = T2, or X = Q1/KT2 and R = Q′
1/KT1 =

T1. Note that with these definitions of X and R

X′R = 0, (19)
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and
Sp([X,R]) = Sp(Q1/K). (20)

The analyses discussed in the previous section suggest the following decompo-
sition of matrix K−1Q′

1/K :

K−1Q′
1/K = X(X′KX)−1X′ + K−1R(R′K−1R)−1R′K−1. (21)

Since K−1Q′
1/K = Q1/KK−1, and because

Q1/KX = X, (22)

and
Q1/KK−1R = K−1R, (23)

(21) can be rewritten as

Q1/KK−1 = Q1/KX(X′KX)−1X′ + Q1/KK−1R(R′K−1R)−1R′K−1. (24)

If there is no Q1/K in front of each term in this identity, this is nothing
but Khatri’s (1966) lemma used to show the equivalence of CCA (canonical
correspondence analysis; ter Braak, 1986) and CALC (canonical analysis with
linear constraints; Böckenholt and Böckenholt 1990) in Takane, Yanai, and
Mayekawa (1991). The matrix Q1/K has the effect of eliminating the trivial
solution corresponding to the most dominant singular value in NSCA, since
1′KQ1/K = 0. The identity (21) can also be rewritten as

X(X′KX)−1X′ = K−1(Q′
1/K −R(R′K−1R)−1R′K−1), (25)

or

K−1R(R′K−1KK−1R)−1R′K−1

= K−1(Q′
1/K −KX(X′KK−1KX)−1X′KK−1). (26)

Eq. (25) shows that a nonsymmetric version of CCA (NSCCA), which is a spe-
cial case of CNSCA of F with the predictor matrix X (written as NSCCA(X)),
and which obtains GSVD(X(X′KX)−1X′F)K, I , is equivalent to obtaining:

GSVD(K−1(Q′
1/K −R(R′K−1R)−1R′K−1)F)K, I .

The latter is a nonsymmetric version of CALC (NSCALC), which is written as
NSCALC(R). The original CALC used I for Q′

1/K and an R which included
K1 as part of it in the above formula. The difference in the present case
arose from the fact that we a priori eliminated the effect of K1. Eq. (26)
shows NSCCA(K−1R) is equivalent to NSCALC(KX); both analyze the part
of K−1Q′

1/KF complementary to NSCCA(X) = NSCALC(R).
It is interesting to note that decomposition (21) has a one-to-one corre-

spondence with the following decomposition of projector PGQ1/K
:

PGQ1/K
= PGQ1/KX + PGQ1/K(Q′1/K

KQ1/K)−R, (27)



9

where PGQ1/K
can further be rewritten as

PGQ1/K
= GQ1/K(Q′

1/KKQ1/K)−Q′
1/KG′

= GQ1/KK−1Q′
1/KG′ = GK−1Q′

1/KG′, (28)

since K−1Q′
1/K ⊂ {(Q′

1/KKQ1/K)−}, where − indicates a g-inverse. Because
of (22) and (23), we have GQ1/KX = GX, and GQ1/K(Q′

1/KKQ1/K)−R =
GQ1/KK−1R = GK−1R. Thus, the above decomposition can be rewritten
as:

GK−1Q′
1/KG′

= GX(X′KX)−1X′G′ + GK−1R(R′K−1R)−1R′K−1G′. (29)

By pre- and postmultiplying both sides of (29) by K−1G′ and GK−1, respec-
tively, we obtain (26), establishing that (27) implies (21). Showing the reverse
is straightforward by tracing the above process backward.

Thus far we have assumed that K is nonsingular (i.e., of full rank). Con-
sider, however, the situation in which we allow predictor categories with 0
frequencies in the diagonal matrix of row totals. In practice, we may discard
those categories before the data analysis is conducted, but this strategy may
not work in the bootstrap method (see Section 6).

The case of singular K is quite challenging because Sp(R) is not necessarily
in Sp(Q′

1/KG′), and GX and GK−R in (29) are not necessarily mutually
orthogonal. There are two possible orthogonal decompositions in this case,
depending on which of X and R we put more emphasis on. Both are based on
the following well-known decomposition of the orthogonal projector defined
by a row block matrix [M,N] (e.g., Takane and Yanai 1999):

P[M,N ] = PM + PQM N . (30)

One is
PGQ1/K

= PGX + PQGXGQ1/K
, (31)

where QGXGQ1/K can further be rewritten as

QGXGQ1/K = GQ1/KQX/K = GQX∗/K , (32)

where X∗ = [1,X]. (The matrix QGX = I−GX(X′KX)−X′G′ is the orthog-
onal projector onto the null space of GX (Ker(X′G′)), whereas QX∗/K =
I−X∗(X∗′KX∗)−X∗′K is the orthogonal projector onto the null space of X∗

(Ker(X∗′)) in metric K.) The other is

PGQ1/K
= PGQ1/K(Q′1/K

KQ1/K)−R + PQGQ1/K K+RGQ1/K
, (33)

where the matrices that define the two projectors on the right hand side of
(33) can further be written as

GQ1/K(Q′
1/KKQ1/K)−R = GQ1/KK+R, (34)
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and
QGQ1/KK+RGQ1/K = GQ1/KQQ1/KK+R/K = GQR∗/K , (35)

where R∗ = [1,Q1/KK+R], and + indicates a Moore-Penrose inverse.
In the previous section, we set X = Q1/KT1 and R = T2 (respectively,

X = Q1/KT2 and R = T1) to obtain the CNSCA of F with T1 ignoring
T2, and T2 eliminating T1 (respectively, T2 ignoring T1 and T1 eliminating
T2). The role of X and R can be interchanged by redefining X = K−1R
and R = KX systematically (Takane and Hunter, 2001; Section 5.1). By
redefining R = KX = KQ1/KT1 by the latter, for instance, E in (8) becomes
B in (6). (Note that the new definitions of X and R also satisfy (22) and (23),
respectively.)

4 Decompositions into finer components

When T1 and/or T2 consist of more than one column, their effects can further
be split into finer components. For explanatory purposes, suppose that we have
already split the entire predictive relationship (A) into B (T1 ignoring T2),
and E (T2 eliminating T1). Let T1 be partitioned into T11 and T12, i.e.,
T1 = [T11,T12], and let T2 = [T21,T22]. Let G1 and H1 denote the selection
matrices to select T11 and T12 from T1, respectively. That is, T11 = T1G1,
and T12 = T1H1. Let G2 and H2 do the same for T2. Note that G′

1H1 = 0,
and Sp(G1) ⊕ Sp(H1) = Sp(T′1), and that analogous properties hold for G2

and H2. We generally have

PY/K = PY C/K + PY (Y ′KY )−S/K (36)

(Takane and Yanai 1999), where C and S are such that C′S = 0, and Sp(C)⊕
Sp(S) = Sp(Y′), and PY/K = Y(Y′KY)−Y′K is the orthogonal projector
onto Sp(Y) in metric K. Using this decomposition, we obtain

B = PQ1/KT1G1/KK−1F + PQ1/KT1(T ′1Q′1/K
KT1)−1H1/KK−1F, (37)

and
E = PK−1T2G2/KK−1F + PK−1T2(T ′2K−1T2)−1H2/KK−1F. (38)

The two terms on the right hand side of (37) represent the effect of T11 ig-
noring both T12 and T2, and the effect of T12 ignoring T2 but eliminating
T11, respectively. Similarly, the two terms on the right hand side of (38) rep-
resent the effect of T21 ignoring T22 but eliminating T1, and the effect of T22

eliminating both T21 and T1. These effects (the effect of a particular set of
variables eliminating some of other effects but ignoring the rest) can also be
obtained by differences in fit between two models, as will be illustrated in the
discussion section. Analogous decompositions hold for J and L as well.

One important message so far is that whenever we fit particular effects (say
T1), there are two ways to do so. One pertains to the particular effects (T1)
ignoring, and the other eliminating, other effects (T2). This is true despite
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the fact that T1 and T2, as have been postulated earlier, are orthogonal in
metric I. They are usually not orthogonal in metric K, which gives rise to the
distinction between the effects of ignoring and eliminating.

There are situations in which all contrast vectors in T1 and T2 are also
orthogonal under the K metric. One obvious situation is in which K is con-
stant diagonal. This is a sufficient condition, but not necessary. There are two
exceptions in which the effects of ignoring and eliminating coincide no mat-
ter what K is. One is in which T1 is null and Sp(T2) = Sp(Q1/K), and the
other case is in which T2 is null and Sp(T1) = Sp(Q1/K). These two cases
correspond with the unconstrained case of NSCA. There are also situations in
which only T1 and T2 are orthogonal. When k1 = k3 and k2 = k4, where kj

is the jth diagonal element of K, T1 and T2 are orthogonal, but not the two
contrast vectors in T2. In the example data set given in Table 1, the interac-
tion between treatment and gender is orthogonal to both the treatment and
gender main effects, and vice versa, under the K metric, but the two main
effects are not mutually orthogonal. This implies that the interaction effect
remains the same whether the joint effects of the two main effects are ignored
or eliminated. The latter also remains the same whether the interaction effect
is ignored or eliminated.

5 Relations to Other Methods

In this section, we discuss the relationships between the method proposed in
this paper and other existing techniques. More rigorous proofs of the relation-
ships between CNSCA and nonsymmetric versions of CCA, CALC, and PCCA
will be given in the Appendix.

Böckenholt and Böckenholt (1990) developed CALC, which finds a row
representation U of a two-way contingency table under the restriction that
R′U = 0, where they further chose R = T1 (respectively, R = T2). As has
been seen already, the nonsymmetric version of their CALC (NSCALC) is
equivalent to CNSCA with T2 ignoring T1 (respectively, T1 ignoring T2).
In their original formulation, R also contained K1, so that 1′KU = 0 also
holds. Because in our formulations the effect of K1 was a priori eliminated,
1′KU = 0 is automatically satisfied.

Van der Heijden and Meijerink (1989) (see also Takane, Yanai, and
Mayekawa (1991), Section 3.2) discussed the so-called zero average restriction,
where the row representation is required to satisfy R′U = 0 as in CALC, but
with R = KT1) (respectively, R = KT2). NSCALC with this restriction (de-
noted as NSCALC(R) with R = KT1) turns out to be equivalent to CNSCA
with T2 eliminating T1 (respectively, T1 eliminating T2). This amounts to
GSVD(K−1(I−R(R′K−1R)−1R′K−1)F)K, I . Takane, Yanai, and Mayekawa
(1991) discussed the zero average restriction as a special kind of CALC. After
all, the only difference is whether we take R = T1 (CALC) or R = KT1 (the
zero average restriction). There was no discussion on the nature of the differ-
ence between the two in Takane, Yanai, and Mayekawa (1991). However, the
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discussion in this paper makes clear that CALC pertains to ignoring, whereas
the zero average restriction to eliminating.

CCA (ter Braak 1986) was developed as a method of finding the repre-
sentation of row categories subject to linear constraints (i.e., U = XU∗ for
some U∗), which is based on symmetric CA. Since CNSCA may be viewed
as a nonsymmetric version of CCA (NSCCA; Takane and Jung 2009), equiv-
alence can be readily established between CNSCA and NSCCA. From (26),
NSCA(X) with X = Q1/KT1 (respectively, X = Q1/KT2) is equivalent to
CNSCA with T1 ignoring T2 (respectively, T2 ignoring T1), and NSCCA(X)
with X = K−1T1 (respectively, X = K−1T2) is equivalent to CNSCA with
T1 eliminating T2 (respectively, T2 eliminating T1). Ter Braak (1986) only
discusses the former (ignoring).

Ter Braak (1988) also developed partial CCA (PCCA) to eliminate the
effect of extraneous variables (Z) from the predictor variables (X). In PCCA,
residuals from X left unaccounted for by Z are taken as newly derived con-
straints in CCA. In typical applications of CCA, X and Z do not exhaust the
entire space of Q1/K , so the situation is more like splitting T1 into X = T11

and Z = [1,T12]. (Note that we need to include 1 as part of Z to eliminate
the effect of K1 from X.) In this case, we obtain T11 eliminating [1,T12] but
ignoring T2. (See Section 4 for the decomposition of a projector corresponding
to this case.) That is, the complementary part to T1 is typically ignored. The
nonsymmetric version of PCCA, denoted as NSPCCA(X,Z), can, however, be
made equivalent to CNSCA with T1 eliminating T2 (respectively, T2 elimi-
nating T1) by setting X = T1 and Z = [1,T2] (respectively, X = T2 and
Z = [1,T1]). This amounts to obtaining GSVD(X∗(X∗′KX∗)−1X∗′F)K, I

where X∗ = QZ/KX. However, this has rarely been done, if at all.
D’Ambra and Lauro (1989) proposed nonsymmetric partial correspondence

analysis (NSPCA) in the context of three-way contingency tables. Let us look
at Table 1 again for illustration. NSPCA fits the gender main effect, and then
fits the treatment main effect, and the interaction eliminating the gender main
effect by conditioning on levels of gender. However, the conditioning strategy
does not always work. For example, there is no way to perform CNSCA of F
with the treatment main effect eliminating both the gender main effect and
the interaction effect by conditioning. This corresponds with the fact that
log-linear analysis allows no closed-form solution when both the gender main
effect and the interaction effect have to be fitted (van der Heijden and de
Leeuw 1985; see the discussion section for examples).

6 Permutation Tests and the Bootstrap Method

One important aspect of NSCA and CNSCA is low dimensional displays of
predictive relationships between the rows and columns of a contingency table
via GSVD of relevant matrices. How many dimensions we should retain in
these displays is extremely important in practical applications of (C)NSCA.
Unfortunately, the CATANOVA test statistic cannot be used for this purpose.
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So there remains a question of determining how many singular values are
statistically significant. We use permutation tests for dimensionality selection,
which have proven useful in similar contexts (e.g., Takane and Hwang 2006;
Takane and Jung 2009). They are easy to apply, computationally simple, and
do not require any specific distributional assumptions. Note that this is just
for getting a rough idea as to how many components are reliable enough and
so worth interpreting. (These tests are not designed to identify the “correct”
dimensionality or the number of empirically meaningful components.)

The permutation tests work as follows for CNSCA: First, singular values
(sv) are computed from the original data set. Then, the rows of predictor
variables are randomly permuted, and sv’s are calculated from the permuted
data set. The largest sv from the permuted data set is compared with that
from the original data set. To test the statistical significance of the sv from
the original data set, we repeat the same procedure many times (say, 1000),
and count how many times the former is larger than the latter. If this count is
smaller than 1000α (where α is the prescribed significance level), the largest
sv being tested is significantly different from 0. Each subsequent sv can be
tested in the same way after eliminating the effects of the preceding sv’s. Note
that the square of a singular value indicates the sum of squares in the table
that is explained by the corresponding component. The best dimensionality
is the number of significant sv’s. (See Legendre and Legendre (1998) for more
general discussions on permutation tests in similar contexts.)

The bootstrap method (Efron and Tibshirani 1993) provides a way of as-
sessing the stability of parameter estimates. A form of nonparametric boot-
strapping is used to derive empirical distributions of parameter estimates.
To illustrate, we repeatedly draw random bootstrap samples from the origi-
nal data set with replacement. We analyze each of the bootstrap samples by
CNSCA to obtain parameter estimates. We then calculate means and vari-
ances of the estimates, from which we estimate biases and standard errors.
The bootstrap method may be used to test whether the estimated parameters
are significantly positive or negative, and to construct 95% confidence regions
(Ramsay 1978). Suppose that an estimate from the original data set is posi-
tive. We count the number of times that the estimate of the same parameter
is negative in bootstrap samples. If the relative frequency of the bootstrap
estimates crossing over zero is less than a prescribed significance level (e.g.,
.05 or .01), we conclude that it is significantly positive.

7 Examples of Application

In this section, we present two detailed applications of the proposed method.
The first application concerns an example of Simpson’s paradox, and shows
how the two parts of the CNSCA analysis help understand this paradox. The
second application involves a three-way contingency table that was previously
analyzed by CALC by Böckenholt and Böckenholt (1990).
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7.1 Health Recovery Data

Let us begin by looking at Table 2 obtained by collapsing Table 1 across
genders. The table shows that there is not much difference in the recovery rate
between the medication group and the control group (in fact, the recovery rate
is slightly higher for the medication group). Now let us look at Table 1 again.
This table indicates that the recovery rate is higher for the control group for
both male and female groups, which is the opposite from what we have just
observed in Table 2. This kind of discrepancy is called Simpson’s paradox
(Blyth 1972; Shapiro 1982).

The difference is presumed to arise from the fact that Table 1 takes into
account the effect of gender, whereas Table 2 ignores it. The treatment effect
(T) in Table 1 represents the main effect of T eliminating the gender main effect
(G). The treatment effect we saw in Table 2, on the other hand, corresponds
to the T main effect ignoring the G main effect. What should we do about
the interaction between the two (the GT interaction)? Should we ignore it or
eliminate it in evaluating the kinds of T main effect? Ideally, we should look
at both. In this particular data set, however, the interaction effect happens to
be orthogonal to both the T and G main effects, as has been discussed at the
end of Section 3. Thus, whether we ignore or eliminate the interaction makes
no difference. This considerably simplifies the analyses to follow.

Let T1 and T2 be as given in (1) and (2), respectively. Let us be reminded
that T1 represents the T main effect, and T2 the G main effect and the the
GT interaction. If we use this T1 in (6), we obtain the CNSCA of F with T1

ignoring T2 (this analysis is equivalent to unconstrained NSCA of Table 2),
and if we use this T2 in (8), we obtain the analysis of its residuals, that is,
the CNSCA of F with T2 eliminating T1. If, on the other hand, we use the
T1 in (10), we obtain the CNSCA of F with T1 eliminating T2, and if we use
the T2 in (9), we obtain the CNSCA of F with T2 ignoring T1. For Simpson’s
paradox, we are interested in comparing the test of T1 ignoring T2 and that
of T1 eliminating T2.

There are several other effects of interest as preliminary to examining Simp-
son’s paradox. One relates to the conditions related to “collapsibility” (e.g.,
Agresti 2002, Chapter 9), and another pertains to the GT interaction. The
collapsibility conditions (see below for more details) are sufficient for nonexis-
tence of Simpson’s paradox. It is important to see them fail as prerequisites to
examining Simpson’s paradox. The test of the interaction effect is important
because it concerns whether the effect of treatment remains the same across
genders. That the interaction effect is insignificant is another prerequisite for
Simpson’s paradox.

The collapsibility holds, in the context of CNSCA, if there is no joint effect
of the G main effect and the GT interaction after eliminating the T main
effect, or if the G and T main effects are statistically independent and there
is no GT interaction (Wermuth 1987). The first condition is tested by the test
of E (T2 eliminating T1) in Table 3. The condition clearly fails because the
CATANOVA statistic for testing this effect is highly significant (CE = 74.95
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Table 3 Summary of the CATANOVA tests for the data in Table 1

Goodman-Kruskal CATANOVA
Matrix Constraints τ index C-statistic (d.f.)

A Unconstrained .0944 75.45 (3)
B T1 ignoring T2 .0006 .50 (1)
E T2 eliminating T1 .0938 74.95 (2)
J T2 ignoring T1 .0775 61.96 (2)
L T1 eliminating T2 .0169 13.49 (1)

B with new T1 GT interaction .0018 1.50 (1)

with 1 df, p << .01). The second condition also fails because the two main
effects are not marginally independent, since 300× 300− 100× 100 6= 0. The
GT interaction is insignificant (CInt. = 1.50 with 1 df, p > .05), as may
be observed in the last row of Table 3. (When testing the interaction effect,
whether we should ignore or eliminate the effect of the two main effects is again
an issue. Fortunately, however, in this particular data set, the interaction effect
remains the same whether we ignore or eliminate the two main effects for the
same reason that the two main effects remain identical whether we ignore or
eliminate the interaction. The unique interaction effect in this case can be
analyzed in a number of ways, e.g., by defining T1 by the second column of
T2 in (2), and use it in (6).)

Now we may look at other results reported in Table 3. We observe that
the Goodman-Kruskal τ index and the CATANOVA C-statistic (along with
its degrees of freedom) for T1 ignoring T2 (Matrix B) and T2 eliminating T1

(matrix E) add up to the same quantities for unconstrained NSCA (Matrix A),
and similarly for T2 ignoring T1 (Matrix J) and T1 eliminating T2 (Matrix
L). These observations are consistent with our theory presented in Section 2.
Given the prerequisites for Simpson’s paradox given above, we may compare
the test of T1 ignoring T2 and that of T1 eliminating T2. The CATANOVA
test of the former is not significant (CB = .50 with 1 df, p > .05), whereas that
of the latter is significant (CL = 13.49 with 1 df, p < .01). This observation is
in agreement with the fact that in Table 2 the difference between the control
and medication groups is rather small (although the latter has a slightly better
recovery rate), while in Table 1 the control group has a better recovery rate
for both males and females, indicating Simpson’s paradox.

The CATANOVA tests, however, do not provide information regarding
the direction of the effects. For this we may look at the dimension reduction
results by GSVD, although in the present case the dimension reduction aspect
of GSVD per se is not of much interest because there are only two criterion
categories, for which the maximum number of extractable dimensions is one.
Permutation tests in this case should give similar results to those obtained
by the CATANOVA tests, as indeed was the case (s2

1 = .25, p > .418 for
T1 ignoring T2, where s2

1 indicates the sum of squares (the variation) in the
contingency table that can be explained by the first component, which is equal
to the squared largest singular value, and s2

1 = 6.75, p < .001 for T1 eliminating
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Table 4 The principal coordinates (Prn) of predictor categories, and the standard coor-
dinates (Std) of criterion categories by CNSCA for the health recovery data. (Bootstrap
standard error (SE) estimates are given in parentheses. “*” indicates a significance at the
5% level, and “**” at the 1% level.)

T1 ignoring T2 T1 eliminating T2

Crit Std (SE) Std (SE)
R **.707 (.000) **.707 (.000)
N **-.707 (.000) **-.707 (.000)

Pred Prn (SE) Prn (SE)
M-M .018 (.025) **-.053 (.013)
C-M -.018 (.025) **.159 (.040)
M-F .018 (.025) **-.159 (.040)
C-F -.018 (.025) **.053 (.013)

T2). Nonetheless, it is interesting to see how predictor categories are related
to criterion categories through the coordinate values obtained by the GSVD.
Table 4 gives estimates of principal coordinates of predictor categories, and
standard coordinates of criterion categories with T1 ignoring T2, and with
T1 eliminating T2 along with their standard error estimates (in parentheses)
obtained by the bootstrap method. In both cases, the recovery group takes
a positive coordinate value. For T1 ignoring T2, the medication groups take
a slightly positive coordinate value, indicating a slightly closer relationship
with recovery. For T1 eliminating T2, the control groups are closer to the
recovery group for both males and females. That is, the predictive relationship
between treatment and prognosis is reversed in the two. These results are
consistent with our earlier observation that Simpson’s paradox exists in this
table. (That the coordinates of the criterion categories for T1 ignoring T2

are significant at the 1% significance level with 0 standard error is an artifact
because the standard coordinates are always .707 =

√
2/2 or -.707 with two

criterion categories, and with the reflection of singular vectors that is permitted
they can always be made to coincide.) This data set will again be taken up in
the discussion section.

7.2 Abortion Data

The second example pertains to the analysis of a 3 × 3 × 3 contingency ta-
ble obtained by cross-classifying subjects by religion, education, and attitude
toward abortion. This data set was previously analyzed by Böckenholt and
Böckenholt (1990; see also Takane, Yanai, and Mayekawa (1991)). The first two
variables are interactively coded, constituting predictor categories, while the
third variable is taken as the criterion variable. Religion has three categories:
(np) Northern Protestants, (sp) Southern Protestants, and (ct) Catholic. The
symbols in parentheses are then combined with numbers that indicate years of
education of the subjects coded as 1 = less than 8 years, 2 = between 9 and 12,
and 3 = more than 13. The resultant nine predictor categories are labeled as
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Table 5 Attitudes toward non-therapeutic abortion: Cross classification by religion and
education of respondents (n = 3181)

Attitudes
Education Positive Neutral Negative

Religion Abbr. (Years) (pt) (nt) (ng)
Northern np1 ≤ 8 49 46 115
Protestant np2 9− 12 293 140 277

np3 ≥ 13 244 66 100
Southern sp1 ≤ 8 27 34 117
Protestant sp2 9− 12 134 98 167

sp3 ≥ 13 138 38 73
Catholic ct1 ≤ 8 25 40 88

ct2 9− 12 172 103 312
ct3 ≥ 13 93 57 135

np1, np2, np3, sp1, sp2, sp3, ct1, ct2, and ct3. The criterion variable consists
of three attitudes toward abortion: positive (pt), neutral (nt), and negative
(ng). (These abbreviations are used to label categories in subsequent reports.)
We denote the resultant 9 by 3 table by F, which is given in Table 5.

Define

T1 =




1 0 0 1
−2 0 0 −1

1 0 0 0
0 1 0 −1
0 −2 0 1
0 1 0 0
0 0 1 0
0 0 −2 0
0 0 1 0




np1
np2
np3
sp1
sp2
sp3
ct1
ct2
ct3

, and T2 =




1 0 1 1
0 0 1 1

−1 0 1 1
1 0 −1 1
0 0 −1 1

−1 0 −1 1
0 1 0 −2
0 0 0 −2
0 −1 0 −2




np1
np2
np3
sp1
sp2
sp3
ct1
ct2
ct3

in line with Takane, Yanai, and Mayekawa (1991). The first three columns of
T1 indicate quadratic trends over the three education levels for each of the
three religious groups, while the last column represents the interaction between
the first two levels of religion (np and sp) and the first two levels of education
(the low and medium education levels). The first column of T2, on the other
hand, represents the same linear trend over the three education levels for the
first two levels of religion, while the second column represents a separate linear
trend over the level of education for the catholic. The last two columns of T2

together represent the main effects of religion.
These two constraint matrices are motivated as follows: An unconstrained

correspondence analysis was first applied to the data in Table 5 (Gilula and
Haberman, 1988). The analysis revealed that the solution was essentially unidi-
mensional, and that given religion, the scores on this dimension looked approx-
imately linear in the three education levels. Furthermore, the linear spacing
seemed similar for the two protestant groups, while different for the catholic.
The first two columns of T2 capture these tendencies. There were also differ-
ences among the three religious groups in the degree of favorableness toward



18

Table 6 Summary of the CATANOVA tests for the abortion data

Goodman-Kruskal CATANOVA
Matrix Constraints τ index C-statistic (d.f.)

A Unconstrained .0488 310.59 (16)
B T1 ignoring T2 .0039 24.87 (8)
E T2 eliminating T1 .0449 285.72 (8)
J T2 ignoring T1 .0471 299.81 (8)
L T1 eliminating T2 .0017 10.77 (8)

abortion. The last two columns in T2 capture these differences (the main
effects of religion). On the other hand, T1 was derived as spanning the ortho-
complement subspace to T2. Because of the way these two constraint matrices
were derived, we expect that T2 captures a majority of the total predictability,
while T1 only a minor portion.

We first applied the CATANOVA tests for unconstrained NSCA of F as
well as for various CNSCA induced by the above T1 and T2. The results are
summarized in Table 6, which is similar to Table 3 seen previously. As before,
we see similar additivity in Goodman-Kruskal’s τ index and the CATANOVA
C-statistic for T1 ignoring T2 and T2 eliminating T1, and also for T2 ignoring
T1 and T1 eliminating T2. Four τ ’s are significantly different from 0, while the
one associated with T1 eliminating T2 is insignificant. As expected, the effect
of T2 (regardless of ignoring or eliminating) is much more dominant than that
of T1.

Böckenholt et al. (1990) applied CALC(T1) to this data set. The nonsym-
metric version of CALC is equivalent to CNSCA of F with T2 ignoring T1. We
look at this analysis a little more closely. Permutation tests indicated that the
first component was highly significant (s2

1 = 94.89, p < .001), while the second
was not (s2

2 = 0.49, p > .57). We also look at CNSCA of F with T2 eliminating
T1. Permutation tests for this analysis indicated, similarly to the above anal-
ysis, that the first component was highly significant (s2

1 = 90.60, p < .001),
while the second was not (s2

2 = 0.29, p > .744).
Table 7 gives estimates of principal coordinates for predictor categories, and

standard coordinates for criterion categories pertaining to the first component
derived from CNSCA with T2 ignoring T1, and with T2 eliminating T1 as well
as their standard error estimates (in parentheses) obtained by the bootstrap
method. In both cases, the positive side of this component represents a more
favorable attitude toward abortion (pt is positive, and ng is negative). We see
that more highly educated people tend to be more positive toward abortion
than less educated people, as do protestants than catholic. Overall, there is
not much difference in the effects of T2 between ignoring and eliminating T1.

One final analysis concerns the CNSCA of F with T1 ignoring T2. This
analysis is for the sake of completeness only. It is complementary to the CN-
SCA of T2 eliminating T1. (The effect of T1 eliminating T2 was not significant
by the CATANOVA test, and consequently no further analysis is empirically
warranted.) In this analysis, permutation tests indicated that the first compo-
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Table 7 The principal coordinates (Prn) of predictor categories, and the standard coordi-
nates (Std) of criterion categories by CNSCA for the abortion data. (Bootstrap standard
error (SE) estimates are given in parentheses. “*” indicates a significance at the 5% level,
and “**” at the 1% level.)

T2 ignoring T1 T2 eliminating T1

Crit Std (SE) Std (SE)
pt **.749 (.016) **.752 (.016)
nt *-.092 (.041) *-.099 (.041)
ng **-.657 (.024) **-.652 (.025)

Pred Prn (SE) Prn (SE)
np1 **-.192 (.026) **-.138 (.031)
np2 **.059 (.013) **.051 (.008)
np3 **.310 (.020) **.249 (.020)
sp1 **-.277 (.026) **-.371 (.035)
sp2 -.026 (.018) -.001 (.012)
sp3 **.225 (.026) **.261 (.028)
ct1 **-.224 (.034) **-.291 (.039)
ct2 **-.133 (.016) **-.061 (.008)
ct3 -.043 (.031) **-.096 (.031)

nent was significant (s2
1 = 5.17, p < .03), as was the second (s2

2 = 2.75, p < .05).
Thus, the best dimensionality was found to be two, despite the fact that the
size of the overall effect of T1 ignoring T2 is much smaller than that of T2

eliminating T1. We present the two-dimensional configuration as the best so-
lution in Figure 1. The predictive power of a particular predictor category on
a particular criterion category can be evaluated by the magnitude of the inner
product between the two vectors representing the two categories. For example,
sp1 is closest to pt (the positive attitude toward abortion). This means that
southern protestants with less than 8 years of education are most favorable to
abortion. This is fundamentally different from what we have observed in Table
7, where more highly educated protestants tend to favor abortion most. This is
because the two analyses reflect two independent portions of the relationships
between rows and columns of the same contingency table. (Figure 1 represents
T1 ignoring T2, whereas Table 7 T2 eliminating T1.)

8 Summary and Discussion

This paper presented a method of analyzing two complementary parts of the
predictive relationships between the rows and columns of a contingency table,
one part that can be explained by the constraints on predictive categories, and
the other that cannot be explained by the constraints. The former pertains
to the effects of the constraints ignoring other effects, while the latter to the
other effects eliminating the effects of the constraints. The method partitions
the Goodman-Kruskal (1954) τ index as well as the CATANOVA C-statistic,
which allows asymptotic tests of the two complementary parts, the test of
ignoring and the test of eliminating. These tests help understand Simpson’s
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Fig. 1 Two-dimensional configuration of the abortion data obtained by the CNSCA with
T1 ignoring T2. Asterisks indicate criterion categories (attitudes towards abortion), and
arrows indicate predictor categories. To make the graph look nicer, the estimated principal
coordinates of predictor categories are multiplied by 3, and the size of confidence regions for
these coordinates adjusted accordingly.

paradox, in which the effect of one variable on another depends on whether or
not the effect of a third variable is taken into account.

One important implication of the above is that whenever we fit particular
effects, there are two ways to do so, one ignoring, and the other eliminat-
ing, other effects. They almost always produce distinct effects having distinct
meanings. The distinction arises whenever predictor variables are correlated
as in multiple regression analysis, where the correlated predictor variables are
rules than exceptions, and in nonorthogonal ANOVA (Maxwell and Delaney
2004), where the confounding between the effects arises from disproportion-
ate numbers of observations per cell. Quite often, however, only one of them is
highlighted, neglecting the other. For example, in CA we tend to focus more on
the effects of ignoring, whereas in log-linear analysis we do just the opposite.

The two distinct effects of the same variables, however, necessarily com-
plicate the situation. Table 8 shows the results of fitting all possible CNSCA
models to the health recovery data (Example 1) discussed earlier. With three
predictor variables (the treatment main effect (T), the gender main effect (G),
and the interaction between them (GT)), there are six possible models (Mod-
els (2) to (7) in the table) excluding the independence model (1) and the
saturated model (8). Two distinct effects are associated with each of these six
models, the effects of ignoring in the second and third columns of the table
and those eliminating in the last two columns. There are six other identifiable
effects, all of which represent the effects of some variables eliminating certain
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Table 8 The CATANOVA C statistics for all possible CNSCA models.

Effects ignoring Effects eliminating
Model other effects χ2 (df) other effects χ2 (df)

(1) independence 0 (0) T,G,GT 75.45 (3)
(2) G 60.46 (1) T,GT 14.99 (2)
(3) T .50 (1) G,GT 74.95 (2)
(4) GT 1.50 (1) G,T 73.95 (2)
(5) G,T 73.95 (2) GT 1.50 (1)
(6) G,GT 61.96 (2) T 13.49 (1)
(7) T,GT 2.00 (2) G 73.45 (1)
(8) saturated 75.45 (3) ∅ 0 (0)

(G,T,GT)

others but ignoring the rest. In the table, these effects can be calculated by
the difference between two models. For example, G eliminating T but ignoring
GT is obtained by the difference between Models (5) and (2). (See Section 4
for direct calculation of these quantities.) In any case, there are 20 identifiable
effects altogether. This number grows very quickly as the number of predictor
variables increases, and soon becomes unmanageable. One good strategy to
avoid all these complications is, if at all possible, to design the study in such
a way to make row marginal frequencies equal, so that the effects of ignoring
and eliminating are identical.

The same phenomenon occurs regularly in log-linear analysis of contin-
gency tables, although the problem has rarely been pointed out in the litera-
ture (see, however, Cheng, Liou, Liou, and Aston 2006). In log-linear analysis,
performed tests are usually those of eliminating, but no consensus seems to
exist that there are two distinct tests for the effects of the same variable. For
comparison with CNSCA, Table 9 presents the results of fitting all possible pre-
dictive log-linear models (which are essentially the same as the logistic models
with categorical predictor variables). In the table, P stands for Prognosis (the
criterion variable). The independence model includes the row marginal effects
(T, G, and TG), and P, which serves as the baseline model. All other models
add one or more effects to this baseline model. For example, GP is added to
the independence model to obtain Model (2), which is indicated by symbol
“+GP”. This is analogous to adding the G main effect to the predictor set in
CNSCA. In log-linear analysis, residual effects (corresponding to the effects of
eliminating) reported in the last two columns of Table 9 are typically given.
In the present case, the fitted effects (corresponding to the effects of ignoring)
reported in the second and third columns of the table had to be recovered
by subtracting the chi-square value corresponding to the residual effects from
that of the saturated model. Overall, Table 9 looks very much like Table 8,
and conclusions similar to those drawn from CNSCA can also be drawn from
the log-linear analysis. Note, however, that certain log-linear models (those
marked by # in the table) cannot be fitted in closed form, and some iterative
estimation procedure is necessary. (Log-linear models that admit closed-form
solutions (those without #) are in fact identical to the corresponding CN-
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Table 9 The log-likelihood chi-square for all possible log-linear logistic models (logistic
models with categorical predictor variables). The superscript # indicates that the model
cannot be fitted in closed form.

Model Fitted effects χ2 (df) Residual effects χ2 (df)
independence

(1) (G,T,GT,P) 0 (0) GP,TP,GTP 78.67 (3)
(2) +GP 61.33 (1) TP,GTP 17.34 (2)
(3) +TP .50 (1) GP,GTP 78.17 (2)
(4) +GTP 1.51 (1) GP,TP 77.16 (2)
(5) +GP,TP# 76.54 (2) GTP 2.13 (1)
(6) +GP,GTP# 62.96 (2) TP 15.71 (1)
(7) +TP,GTP# 2.01 (2) GP 76.66 (1)
(8) saturated 78.67 (3) ∅ 0 (0)

(+GP,TP,GTP)

SCA models. However, the chi-square values differ due to the difference in
statistics used, the likelihood ratio chi-square in log-linear analysis, and the
CATANOVA C-statistic in CNSCA.)

In this paper, the two parts of the analysis are almost exclusively discussed
in the context of NSCA. Essentially the same thing can be done for symmetric
CA as well. In this case, we analyze the mutual relationship between the rows
and columns, and instead of decomposing the Goodman-Kruskal τ index and
the CATANOVA statistic, we decompose Cramér’s contingency coefficient and
the Pearson’s chi-square statistic in a manner analogous to the former. Techni-
cally, the only difference in symmetric CA is to postmultiply matrices involved
(A, B, E, etc.) by D−1, and use D as the column metric in GSVD rather than
the identity column metric. One possible ramification of the procedure in this
case may be to incorporate constraints similar to those imposed on rows in
columns of contingency tables as well.

A comment is in order on a popular method in ecology (e.g., Bocard,
Legendre, and Drapeau 1992; Anderson and Gribble 1998; Økland, 2003). This
method attempts to “partition” the total variation in the criterion variable
into non-overlapping portions. For example, in the simplest case of two sets
of predictor variables, there is a portion that can only be explained by each
of the two sets (the unique variation), and there is a portion that can be
explained by both of them (the shared variation). The latter is defined as the
joint variation (the variation that can be jointly explained by the two) minus
the sum of the unique variations. One difficulty with this procedure is that this
quantity can be negative (the sum of the unique variations exceeds the joint
variation). Thus, the name “shared variation” is conceptually inadequate. In
addition, the effects unaccounted for by the two sets of variables are simply
ignored. The possibility of eliminating these effects seems totally out of sight.

The analysis presented in this paper is based on the asymptotic behavior
of the CATANOVA statistic. Little has been done so far on the small sample
behavior of the statistic (but see Margolin and Light (1974) for some attempt
to compare this statistic against other competing statistics such as Pearson’s
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chi-square statistic, deviance, etc. in small samples). Obviously more system-
atic studies are necessary on this point. The proposed method works strictly
within the least squares (LS) framework. It is relatively straightforward to
extend the method to allow the ridge type of regularized LS estimation (Hoerl
and Kennard 1970). As has been demonstrated by Takane and Jung (2009),
this type of estimation tends to provide estimates of model parameters which
are on average closer to true population values in similar contexts.

9 Appendix

In this appendix, we show equivalences between CNSCA of T1 eliminat-
ing T2 and several existing methods, namely NSCCA(X), NSCALC(R), and
NSPCCA(X,Z) by defining X, R, and Z appropriately. These methods are
nonsymmetric versions of CCA (ter Braak 1986), CALC (Böckenholt and
Böckenholt 1990), and PCCA (ter Braak 1988), respectively.

Throughout this appendix, we set T∗2 = [1,T2]. The CNSCA of T1 elimi-
nating T2 amounts to:

GSVD(K−1T1(T′1K
−1T1)−1T′1K

−1F)K,I , (39)

(this is the same as (10)), which is equivalent to:

GSVD(K−1Q′
1/K(I−KT2(T′2Q

′
1/KKT2)−1T′2Q

′
1/K)F)K,I (40)

due to Khatri’s lemma (Khatri, 1966; Takane, Yanai, and Mayekawa 1991,
p. 675).

NSCCA(X), on the other hand, obtains

GSVD(X(X′KX)−1X′F)K,I . (41)

With X = K−1T1, (41) reduces to (39).
NSCALC(R) obtains

GSVD(K−1(I−R(R′K−1R)−1R′K−1)F)K,I . (42)

With R = KT∗2, this reduces to:

GSVD(K−1(I−KT∗2(T
∗′
2 KT∗2)

−1T∗′2 )F)K,I , (43)

where

KT∗2(T
∗′
2 KT∗2)

−1T∗′2 = P′T∗2 /K

= PKT∗2 /K−1

= PK1/K−1 + PQK1/K−1KT2/K−1 (44)
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and PY/K = Y(Y′KY)−1Y′K. The last term in the above equation can be
further rewritten as

PQK1/K−1KT2/K−1

= Q′
1/KKT2(T′2KQ1/KK−1Q′

1/KKT2)−1T′2KQ1/KK−1

= Q′
1/KKT2(T′2Q

′
1/KKT2)−1T′2Q

′
1/K . (45)

Hence,

K−1(I−KT∗2(T
∗′
2 KT∗2)

−1T∗′2 )F =
K−1Q′

1/K(I−KT2(T′2Q
′
1/KKT2)−1T′2Q

′
1/K)F, (46)

whose GSVD is nothing but (40).
NSPCCA(X,Z) reduces to:

GSVD(X∗(X∗′KX∗)−1X∗′F)K,I , (47)

where
X∗ = QZ/KX = QT∗2 /KT1, (48)

when X = T1 and Z = T∗2. Note that

KQT∗2 /K = T1(T′1KT1)−1T′1 = Q′
T∗2 /KK (49)

by Khatri’s lemma. Then,

X∗(X∗′KX∗)−1X∗′

= QT∗2 /KT1(T′1KQT∗2 /KT1)−1T′1Q
′
T∗2 /K

= K−1KQT∗2 /KT1(T′1KQT∗2 /KT1)−1T′1Q
′
T∗2 /KKK−1

= K−1T1(T′1K
−1T1)−1T′1T1(T′1T1)−1 ×
T′1K

−1T1(T′1T1)−1T′1T1(T′1K
−1T1)−1T′1K

−1

= K−1T1(T′1K
−1T1)−1T′1K

−1, (50)

whose GSVD is equivalent to (39). This is in fact the basis for calling K−1T1

(T′1K
−1T1)−1T′1K

−1F (the matrix whose GSVD is obtained in (39)) the ef-
fect of T1 eliminating T2.

There is another way of relating NSPCCA(X,Z) with CNSCA with T1

eliminating T2. Set X = I and Z = T∗2 = K−1R. Then NSPCCA(X,Z)
reduces to NSCALC(R) (Takane, Yanai, and Mayekawa 1991, p. 679), which
is equivalent to NSCA with T1 eliminating T2, as shown above.
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Böckenholt U, Böckenholt I (1990) Canonical analysis of contingency tables with linear
constraints. Psychometrika 55:633-639
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