
ADAC manuscript No.
(will be inserted by the editor)

Generalized GIPSCAL Re-revisited: A fast convergent
algorithm with acceleration by the minimal polynomial
extrapolation

Sébastien Loisel · Yoshio Takane

the date of receipt and acceptance should be inserted later

Abstract Generalized GIPSCAL, like DEDICOM, is a model for the analysis of square

asymmetric tables. It is a special case of DEDICOM, but unlike DEDICOM, it ensures

the nonnegative definiteness (nnd) of the model matrix, thereby allowing a spatial

representation of the asymmetric relationships among “objects”. A fast convergent

algorithm was developed for GIPSCAL with acceleration by the minimal polynomial

extrapolation. The proposed algorithm was compared with Trendafilov’s algorithm in

computational speed. The basic algorithm has been adapted to various extensions of

GIPSCAL, including off-diagonal DEDICOM/GIPSCAL, and three-way GIPSCAL.

Keywords Asymmetric square tables · DEDICOM · Singular value decomposition

(SVD) · Dynamical system algorithm · Diagonal estimation · Three-way data

Subject classification JEL C61, AMS 62H25 65B05

1 Introduction

Asymmetric square tables arise in many scientific disciplines. Social mobility tables (so-

ciology), brand switching data (marketing), stimulus identification data (psychology)

are but a few examples. Generalized GIPSCAL (Generalized Inner Product SCAL-

ing; Kiers and Takane 1994; hereafter simply referred to as GIPSCAL) is a model for

The work reported here has been supported by a grant 10630 from the Natural Sciences and
Engineering Research Council of Canada. Correspondence regarding this article should be sent
to Yoshio Takane, Department of Psychology, McGill University, 1205 Dr. Penfield Avenue,
Montreal, QC, H3A 1B1, Canada.

Sébastien Loisel
Department of Mathematics, Heriot-Watt University,
Edinburgh, EH14 4AS UK
Phone:+44 131 451 3234 Fax:+44 131 451 3249
E-mail: S.Loisel@hw.ac.uk

Yoshio Takane
Department of Psychology, McGill University,
1205 Dr. Penfield Ave., Montreal, QC, H3A 1B1 Canada
Phone: 514-398-6125 Fax: 514-398-4896
E-mail: takane@psych.mcgill.ca



2

such tables. It is similar to DEDICOM (DEcomposition into DIrectional COMponents;

Harshman 1978; Harshman et al. 1981), but unlike DEDICOM, the model matrix in

GIPSCAL is constrained to be nnd (nonnegative definite). This allows a visualization

of the asymmetric relationships among the n objects in a low (p) dimensional space.

More formally, let A∗ denote an n by n model matrix in DEDICOM describing the

asymmetric relationships among n objects. (In principle, A∗ could also be symmetric.

However, the main objective of DEDICOM is to analyze asymmetric data. We thus

assume that A∗ is asymmetric throughout this paper, unless otherwise stated, as is

the matrix A to be introduced in (8).) DEDICOM postulates that this matrix can be

expressed as

A∗ = YBY′, (1)

where Y is an n by p columnwise nonsingular matrix that relates p latent “objects”

to n observed objects, and B is a square asymmetric matrix of order p describing

the asymmetric relationships among the latent objects. There are many decomposition

methods that take a similar quadratic/bilinear form. What characterizes DEDICOM

is the assumption that B is square and asymmetric.

Let Bs = (B + B′)/2, and Bsk = (B −B′)/2 represent the symmetric and skew-

symmetric parts of B, respectively. Then the DEDICOM model can be rewritten as

A∗ = Y(Bs + Bsk)Y′. (2)

Kiers and Takane (1994) assumed that Bs was pd (positive definite), and further

rewrote (2) as follows. Let

Bs = PD2P′ (3)

denote the spectral decomposition of Bs where D2 > 0, and let

D−1P′BskPD−1 = Q∆R′ (4)

be the singular value decomposition (SVD) of D−1P′BskPD−1. Note that the singular

values of a skew symmetric matrix come in pairs except possibly for 0. Hence, ∆ consists

of diagonal sub-matrices of the form δjI2 (1 ≤ j ≤ (p− 1)/2; if p is odd, an additional

0 is appended to the diagonal elements of ∆). Note also that (4) can be rewritten as

(Constantine and Gower 1978),

Q∆R′ = Q∆JQ′, (5)

where J is a block diagonal matrix with diagonal blocks of the form

(
0 1

−1 0

)
(again,

when p is odd, an additional 0 is appended to the diagonals). Then

A∗ = X∗(Ip + ∆J)X∗′ , (6)

where X∗ = YPDQ. Kiers and Takane (1994) developed an alternating least squares

algorithm to fit (6) to an observed square asymmetric table.

More recently, Trendafilov (2002) developed a dynamical system algorithm for GIP-

SCAL. While doing so, he also changed the model slightly. He required that Bs be nnd

rather than pd. Let (3) denote the spectral decomposition of Bs, where now D2 may

have zero diagonal elements (D2 ≥ 0). Then,

A∗ = X(D2 + K)X′, (7)



3

where X = YP, and K = P′BskP is a skew-symmetric matrix. Trendafilov (2002)

showed that his dynamical system algorithm worked better than Kiers and Takane’s

algorithm in two respects. On average, the computation time is shorter, and the value

of the minimization criterion is smaller with his algorithm.

The better performance of Trendafilov’s algorithm, however, may be due to the fact

that he allowed Bs to be nnd, while Kiers and Takane assumed Bs to be strictly pd.

The set of pd matrices is an open set within which a least squares (LS) loss function

may not have a minimum (but only an infimum), in which case Kiers and Takane’s

algorithm never converges, while monotonically reducing the value of the loss function.

(A minimum is attained on the boundary of the parameter space, but the boundary

is not part of the feasible parameter space.) In such situations, Kiers and Takane’s

(1994) algorithm continues to iterate forever (increasing the average convergence time)

or it stops prematurely (giving rise to a larger value of fitting criterion). This point

has been directly verified by running Kiers and Takane’s (1994) algorithm on data sets

generated from psd (positive-semidefinite) D2 matrices in (7).

In this paper, we develop an algorithm for model (7) that works better than

Trendafilov’s algorithm, thereby reaffirming the above contention. In the following

section (Section 2.1), we present our basic algorithm, followed by an exposition of

an acceleration technique called the minimal polynomial extrapolation (Section 2.2).

Then Trendafilov’s dynamical system algorithm is briefly discussed (Section 2.3). The

three algorithms (the basic algorithm, the accelerated algorithm, and Trendafilov’s al-

gorithm) are then empirically evaluated (Section 3). Some extensions of the proposed

algorithm to similar situations are considered in Section 4. These extensions include

an additive constant incorporated into GIPSCAL, off-diagonal DEDICOM/GIPSCAL

and three-way GIPSCAL. Section 5 concludes the paper.

2 Algorithms To Be Compared

In this section, we describe in some detail three algorithms to be compared in later

sections. We start with our basic algorithm, which is then combined with the minimal

polynomial extrapolation (MPE) for acceleration, and then Trendafilov’s dynamical

system algorithm.

2.1 The basic algorithm

Let A be a square asymmetric data matrix. The two-way GIPSCAL model postulates

A = A∗ + E, (8)

where A∗ is as given in (7), and E is a matrix of disturbance terms. We estimate the

parameters in the model in such a way that the following least squares (LS) criterion

is minimized, namely

f(X,D2,K) = SS(E) = SS(A−X(D2 + K)X′), (9)

where SS(E) = tr(E′E). The above criterion is minimized using a conditional mini-

mization strategy. That is, we first minimize f(X,D2,K) with respect to D2 and K

conditional on X, and then with respect to X. This is written as

min
X,D2,K

f(X,D2,K) = min
X

min
D2,K|X

f(X,D2,K). (10)



4

The conditional minimum of f with respect to D2 and K given X is obtained by

D̂2 = max(diag(X′AsX),0), (11)

and

K̂ = X′AskX, (12)

where As = (A+A′)/2 and Ask = (A−A′)/2 are the symmetric and skew-symmetric

parts of A, respectively. Let

g(X) = f(X, D̂2, K̂) = min
D2,K|X

f(X,D2,K). (13)

To minimize this function with respect to X subject to X′X = I, we define

g∗(X,S) = g(X) + tr(S(X′X− I)), (14)

where S is a symmetric matrix of Lagrange multipliers. Differentiating (14) with respect

to X and S and setting the results equal to zero gives

−1

2

∂g∗

∂X
= G−XB̂′B̂−XB̂B̂′ −XS = 0, (15)

where

G = A′XB̂ + AXB̂′, (16)

with B̂ = D̂2 + K̂, and

X′X− I = 0. (17)

Note that the derivatives of g(X) with respect to X in (15) can be taken as if D̂2

and K̂ were constant, whereas they are in fact functions of X. This is justified by the

fact that D̂2 and K̂ are obtained by minimizing f conditional on X. See Takane et al.

(2010, Appendix) for full technical details. Premultiplying (15) by X′ and considering

(17), we obtain

S = X′G− B̂′B̂− B̂B̂′. (18)

Putting this into (15), we obtain

G = XX′G, (19)

or

(I−XX′)G = 0. (20)

This equation is solved by (e.g., Jennrich 2001)

X = UV′, (21)

where U and V are such that G = UDV′ is the SVD of G.

Algorithm 1 (GIPSCAL). Let A be a square asymmetric matrix of order n, and let

X(0) be an n by p columnwise orthogonal matrix, where p ≤ n. For each j = 0, 1, . . .,

compute X(j+1) using the following steps:

1) Compute D̂2 and K̂ using (11) and (12), with X = X(j).

2) Compute X(j+1) = X using (21).

Remark 1. Algorithm 1 can be rephrased as a fixed-point iteration of the form

X(j+1) = hGIPSCAL(X(j)), (22)

where hGIPSCAL is the process described by steps 1) and 2) of Algorithm 1.

The above algorithm can easily be combined with acceleration by the minimal

polynomial extrapolation (MPE) method to be described in the following subsection.

Note that GIPSCAL reduces to the spectral decomposition of A when A is symmetric

and nnd, and consequently K = 0.



5

2.2 Acceleration of Algorithm 1 by the MPE method

In this subsection, we outline the MPE method of convergence acceleration for vector

sequences, and we explain how this method can be used to accelerate the convergence

of our basic GIPSCAL algorithm presented in the previous subsection. A good overview

of vector acceleration techniques can be found in Smith et al. (1987). See also Loisel

and Takane (2009, 2010), and Takane et al. (2010).

We begin by defining the MPE algorithm, which accelerates the convergence of

vector sequences.

Algorithm 2 (Minimal Polynomial Extrapolation). Let x(0), . . . ,x(k) be vector

iterates. Define

u(j) = x(j+1) − x(j), (23)

for j = 0, . . . , k, and let

U = [u(0), . . . ,u(k−1)]. (24)

Define c = [c0, c1, . . . , ck−1]
′ by

c = −U+u(k). (25)

Then, the limit of the vector sequence x(0),x(1), . . . predicted by MPE is given by

xMPE =

k∑

j=0

cjx
(j)/

k∑

j=0

cj , (26)

where we have defined ck = 1.

To understand how MPE works, it is best to consider a fixed point iteration whose

update function is linear. Let

hlin(x) = Hx + b, (27)

and for a given x(0), consider the vector sequence defined by

x(j+1) = hlin(x(j)) = Hx(j) + b. (28)

If the sequence converges to a point xconv, then we have

xconv = (I−H)−1b, (29)

where I − H is assumed nonsingular. We define the increments u(j) of the iteration

using (23) for j = 0, 1, . . . The matrix H and its minimal polynomial with respect to

u(0) play an important role in the analysis of the convergence of the MPE acceleration

method defined by Algorithm 2.

Definition 1. The minimal polynomial P(H) of the matrix H with respect to u(0) is

the unique polynomial in H whose leading coefficient is 1, and whose degree k is the

smallest possible, such that

P(H)u(0) = 0. (30)



6

The theory of minimal polynomials is a standard component of linear algebra.

The existence of a minimal polynomial follows immediately from the fact that the

vector space is finite dimensional. Indeed, in a d-dimensional vector space, the vectors

{u(0),Hu(0), . . . ,Hdu(0)} must be linearly dependent, since there are d + 1 of them.

Hence, for some k ≤ d, there is a set of coefficients c0, . . . , ck such that

k∑

j=0

cjH
ju(0) = 0. (31)

By taking k as small as possible, we may further assume that ck = 1, and this gives

(30).

Lemma 1. Let x(0) be given, and x(1),x(2), . . . be defined by (28), and let u(0) be

defined by (23). Let k be the degree of the minimal polynomial P(H) of H with respect

to u(0). Then, the limit xconv of (28) is xMPE, as defined by Algorithm 2.

In other words, the MPE algorithm computes the true limit xconv.

Proof of Lemma 1. Let

P(H) = c0I + c1H + . . . + Hk (32)

be the minimal polynomial P(H) of H with respect to u(0). We now show how to

recover the coefficients c0, c1, . . . , ck−1 from the increments u(0), . . . ,u(k−1). Observe

that u(j) = Hju(0) for j = 0, 1, . . . , k. Hence, from (30) and (32), we have that

k∑

j=0

cju
(j) = 0, (33)

where ck = 1. We may rewrite this as the linear system

U




c0
...

ck−1


 = −u(k), (34)

where we have moved the data ck = 1 from the left-hand side over to the right-

hand side. Although U may be rectangular, since the system (34) is obtained from

the minimal polynomial equation (30), we know that (34) has a unique solution. Any

method can be used to obtain this solution, but certainly one may use equation (25).

We have thus now shown that the vector c is indeed the vector of the coefficients of

the minimal polynomial of H with respect to u(0), provided that the number k is the

degree of that minimal polynomial.

We now turn our attention to the next task, which is to recover xconv from the

iterates x(0), . . . ,x(k+1). Observe that

u(0) = (I−H)(xconv − x(0)). (35)

(The above identity is readily verified.) We substitute this into equation (30) (and

take into account that I−H commutes with P(H), and it is invertible) to obtain the



7

relation

0 = P(H)(xconv − x(0))

=

k∑

j=0

cjH
j(xconv − x(0))

=

k∑

j=0

cj(xconv − x(j)); (36)

where we have used the following relation:

xconv−x(j) = (Hxconv+b)−(Hx(j−1)+b) = H(xconv−x(j−1)) = . . . = Hj(xconv−x(0)).

By solving equation (36) for the unknown xconv, we obtain that xconv = xMPE, where

xMPE is defined by (26). Q.E.D.

The fixed point iteration defined by Algorithm 1 is nonlinear; i.e., the function

hGIPSCAL, defined in Remark 1, is nonlinear. Therefore, MPE as defined in Algorithm

2 will not generally produce the limit point of the iteration for any finite value of k.

Nevertheless, we can define an MPE accelerated version of Algorithm 1, as follows.

Algorithm 3 (GIPSCAL-MPE). Let A be an n by n asymmetric matrix, and let

X(0) be an n by p columnwise orthogonal matrix, with p ≤ n. Let k ≥ 1 be an integer.

1) Compute X(1), . . . ,X(k) using Algorithm 1.

2) Convert the n by p matrices X(0), . . . ,X(k) into np-dimensional column vectors

x(0), . . . ,x(k). Compute xMPE using Algorithm 2. Convert xMPE into a matrix,

re-orthonormalize it by SVD (see (21)), and store it into X(0).

3) Iterate steps 1) and 2) until convergence.

The above algorithm assumes that the value of k is known. However, as far as the

MPE method has to be applied repeatedly as described in Algorithm 3 because of the

nonlinearity of the updating equation hGIPSCAL, a precise value of k is generally not

required. It suffices to have a value of k for which (33) holds approximately. Typically,

there is a wide range of values of k for which the MPE algorithm works well. In

the following numerical experiments, we vary the value of k (= 5, 10, 15, and 20)

systematically, and choose the best value.

2.3 Trendafilov’s algorithm

Trendafilov (2002) proposed an algorithm for GIPSCAL which also minimizes the same

criterion (9). His method reformulates the problem as an ordinary differential equation,

whose asymptotic solution as t →∞ is a solution of the generalized GIPSCAL problem.

Indeed, we can regard (9) as an energy which is to be minimized. One method for

minimizing an energy is to simulate a physical system in which “particles” are following

the steepest descent direction.

Assume that we are given an energy functional E(Y), which is a non-negative

function of the vector or matrix Y. Given initial estimates Y(0), we can define the



8

function Y(t) of the time parameter t to be the unique solution to the differential

equation

d

dt
Y(t) = −(∇E)(Y(t)), (37)

where ∇E denotes the gradient of E with respect to Y. This defines a “gradient dy-

namical system”, which can be interpreted physically as particles following the gradient

of the energy functional. Under some conditions, one may show that Y(t) converges to

some limit as t →∞. Moreover, we have that

(∇E)(Y(∞)) = 0. (38)

In other words, Y(∞) is a critical point of E(Y).

We now relate this gradient dynamical system to our optimization problem (9).

We consolidate the variables X, D and K into a single object Y = (X,D,K). (In

Trendafilov’s algorithm, D rather than D2 is estimated directly. This ensures the

nnd-ness of D2.) We can then define E(Y) = f(X,D,K) (cf. (9)). However, there

is a significant pitfall. The gradient (∇E) appearing on the right-hand side of (37)

must be understood in terms of the tangent space of the manifold in which Y resides.

This requires some further technical reasoning, which we now outline (and we refer to

Trendafilov (2002) for details).

Recall that the variable X is an n×p columwise orthogonal matrix, which we write

as X ∈ O(n, p). Likewise, we write D ∈ D(p) and K ∈ Sk(p) to denote that D and

K are diagonal and skew-symmetric, respectively. In this notation, we therefore have

that Y ∈ O(n, p)×D(p)× Sk(p) =: Y. This set is a smooth manifold. Hence, for any

Y ∈ Y, there is a corresponding tangent space, denoted TY. Because Y is a product,

the tangent spaces are also given by the following product:

TY = T(X,D,K) = TXO(n, p)×D(p)× Sk(p), (39)

where

TXO(n, p) = {H ∈ Rn×p|X′H is skew-symmetric}. (40)

The gradient ∇Xf should then be understood in terms of a tangential derivative in the

manifold O(n, p). In other words, for any fixed X, the gradient (∇Xf)(X) is a linear

function defined for all tangent directions in TXO(n, p). This derivative can be made

explicit in terms of the entrywise derivatives ∂f
∂xij

, where X = (xij).

We can assemble these entrywise derivatives into an n× p matrix

fX =




∂f
∂x11

· · · ∂f
∂x1p

...
. . .

...
∂f

∂xn1
· · · ∂f

∂xnp


 ∈ Rn×p. (41)

The difficulty is that this entrywise derivative is not likely to be in the tangent space

TXO(n, p). The derivative “in the tangent space” is instead defined to be a projection

of this entrywise derivative to the tangent space. This projection is defined by

πTX(Z) = X
X′Z− ZX

2
+ (I−XX′)Z. (42)



9

Then, the derivative ∇Xf “in the tangent space” is defined by

∇Xf = πTX(fX). (43)

The variables D and K reside in vector spaces instead of curved manifolds, and hence

no such subtlety arises for these variables. After further simplifications, the resulting

system of ordinary differential equations is given by (Trendafilov 2002)

dX

dt
= X([K,X′AskX]− [D2,X′AsX]) + 2(I−XX′)(AsXD2 −AskXK), (44)

dD

dt
= 2(X′AsX−D2)¯D, (45)

dK

dt
= X′AskX−K, (46)

where we have used the notation ¯ to denote the entrywise product, and [A,B] =

AB−BA indicates the Lie bracket.

Trendafilov’s algorithm then consists of solving the system (44), (45), and (46),

given a starting point Y(0), using the MATLAB ODE solver ode15s from the initial

time t = 0 until the time t = 100 (with possible early termination if E decreases very

slowly). The value Y(100) is then returned as a local minimizer of (9).

3 Numerical experiments

In this section, we report the results of a numerical experiment (Experiment 1) on

the algorithms described in the previous section. In our first numerical experiment, we

compare the mean CPU time and the average fit reached by Algorithm 1, Algorithm

3, and Trendafilov’s. Two hundred fifty data sets each were generated by varying the

number of objects at three levels (n = 10, 20, and 30) with each entry of the data tables

following the uniform distribution between -.5 and .5 (Trendafilov, 2002). Randomly

generated data sets presumably impose the toughest condition for algorithms because

they must look for structures that “do not exist” in the data, and if they work well

under these conditions, they are bound to work well in more natural settings, where

some GIPSCAL structures exist. Jennrich (2001) and Takane and Zhang (2009) tested

their algorithms under similar conditions.

The data were analyzed by Algorithm 1, Algorithm 3 with k = 5, 10, 15, and 20,

and Trendafilov’s algorithm. Only 3-component solutions were obtained for n = 10,

while both 3- and 5-component solutions were obtained for n = 20 and n = 30. For

Algorithms 1 and 3, the normalized Frobenius norm of the projected gradients was

defined as the square root of the sum of squares of the left-hand side of (20) divided

by the sum of squares of data elements, and this quantity being less than 10−7 was

used as the convergence criterion. Trendafilov’s algorithm, on the other hand, used the

criterion that the improvement in the loss function between two consecutive output

points was less than 10−6. This criterion turned out to be much more lenient than that

used for Algorithms 1 and 3. (This was directly verified by evaluating the normalized

Frobenius norm of the projected gradients (defined above) at the convergence points of

Trendafilov’s algorithm. This quantity was almost always larger than 10−7.) However,

no further effort was made to equate the two convergence criteria because Algorithm

3 was found much faster than Trendafilov’s algorithm despite the fact that it used a

more stringent convergence criterion.



10

For Algorithms 1 and 3, initial estimates of X were first generated by uniform ran-

dom numbers between -.5 and .5 followed by the orthonormalization step by SVD (see

(21)). In Trendafilov’s algorithm, initial estimates were calculated by a matrix of eigen-

vectors of the symmetric part of the data matrix corresponding to the p largest eigenval-

ues. Initial estimates of D and K were then calculated by D̂ = {max(diag(X′AsX),0)}1/2,

and K̂ = X′AskX.

The main results of the simulation study are summarized in Table 1. In the table,

two numbers are given in each cell, one without and the other with parentheses. The

former indicates the mean cpu time, and the latter the mean fit value at the convergence

point. It is clear that the MPE method speeds up the convergence substantially. An

optimal value of k ranges between 10 and 15, although for larger problems, a larger

value of k may be desired. It is important to observe that within this range, Algorithm

3 works very well, and that it is nearly 10 times as fast as both Algorithm 1 and

Trendafilov’s algorithm. Trendafilov’s algorithm has a slight edge over Algorithm 1 for

smaller problems, although its advantage disappears for larger problems.

Table 1 The comparison of the mean cpu time and fit among Algorithm 1, Algorithm 3
(k = 5, 10, 15, and 20), and Trendafilov’s.

Algorithm 3
n p Algorithm 1 k = 5 k = 10 k = 15 k = 20 Trendafilov

10 3 cpu 0.1633 0.0183 0.0114 0.0149 0.0217 0.1394
fit (.6482) (.6001) (.6003) (.6011) (.6031) (.6010)

20 3 cpu 0.2454 0.0316 0.0179 0.0204 0.0209 0.2401
fit (.7904) (.7643) (.7635) (.7634) (.7635) (.7651)

20 5 cpu 0.5061 0.0966 0.0512 0.0440 0.0465 0.5417
fit (.6702) (.6377) (.6377) (.6380) (.6379) (.6376)

30 3 cpu 0.3540 0.0602 0.0365 0.0276 0.0271 0.3544
fit (.8537) (.8321) (.8322) (.8323) (.8322) (.8338)

30 5 cpu 0.7085 0.1551 0.0894 0.0655 0.0629 1.0029
fit (.7627) (.7372) (.7376) (.7375) (.7376) (.7372)

The computation times given in Table 1 were measured between the start of the

algorithms and whatever stationary points the algorithms first reached. The stationary

points reached, however, may not be a global minimum of the loss function. To compare

the quality of solutions obtained by the various algorithms, Table 1 also reports the

average fit value at the convergence points. The average fits obtained by the three

algorithms are very comparable (Algorithm 1 is somewhat worse than the other two).

This means that there is not much difference in the quality of solutions obtained by

Algorithm 3 and Trendafilov’s.

But just how serious is the problem of suboptimal solutions under the conditions

examined above? To investigate this problem, Algorithm 3 with k = 10 was run 50

times for each data set starting from 50 random initials. The best solution among the

50 solutions was considered as the globally optimal solution. (This is justified by the

following reasoning. Even if the chance of convergence to a suboptimal solution in a

single run is as high as .80, the probability of hitting the globally optimal solution at

least once in 50 runs is quite high; this is calculated by 1 − .8050 ≈ .999986.) The

globally optimal solution was then compared with a solution in a single run to see if

the latter is a suboptimal solution or not. The incidence of suboptimal solutions is is



11

then averaged over 250 data sets in each condition. The probabilities of suboptimal

solutions thus obtained were .232, .260, .404, .236, and .428 for the five conditions (the

five combinations of n and p) in Table 1. It seems that they are more heavily affected

by the dimensionality (p) of solutions than the number (n) of objects. When p = 3,

the probability of suboptimal solutions is around .25; this jumps up to above .40 for

p = 5.

4 Some extensions

Model (8) is the very basic model for GIPSCAL, and various extensions of the basic

model are possible. In this section, we consider three such extensions along with the

corresponding extensions of Algorithms 1 and 3.

4.1 Incorporating an additive constant into GIPSCAL

In many areas of social sciences, data are often measured on an interval scale with no

intrinsic zero point. In order to account for the effect of an arbitrary zero point, Chino

(1990) considered incorporating an additive constant to his original GIPSCAL model.

This model, with his original GIPSCAL model replaced by the generalized GIPSCAL

model (7), can be written as

A = X(D2 + K)X′ + c11′ + E, (47)

where c is the additive constant. We can easily modify Algorithm 1 to estimate the

additional parameter c.

Algorithm 4 (GIPSCAL-c). Let A be a square asymmetric matrix of order n, and

let X(0) be a given n by p columnwise orthogonal matrix. Let D̂2 be a non-negative

diagonal matrix of order p (an initial estimate of D2). For j = 0, 1, . . ., compute

X(j+1) as follows:

1) Compute ĉ by taking the average of A − X(j)D̂2(X(j))′. (That is, ĉ = 1′(A −
X(j)D̂2(X(j))′)1/n2, where 1 is the n-component vector of ones.)

2) Compute updated D̂2 and K̂ values using

D̂2 = max(diag((X(j))′(As − ĉ11′)X(j)),0), (48)

and

K̂ = (X(j))′AskX
(j), (49)

where, as before, As = (A + A′)/2 is the symmetric part of A, and Ask = (A −
A′)/2 is the skew-symmetric part of A.

3) Set G = (A− ĉ11′)′X(j)B̂ + (A− ĉ11′)X(j)B̂′, where B̂ = D̂2 + K̂. Then, set

X(j+1) = UV′, (50)

where U and V are such that G = UDV′ is the SVD of G.

The above algorithm can be easily combined with the MPE acceleration method in

the same manner as Algorithm 1 was combined with Algorithm 2 to produce Algorithm

3. We call this algorithm Algorithm 4’.



12

Remark 2. Algorithm 4 can be written as a fixed-point iteration of the form

[
X(j+1)

(D2)(j+1)

]
= fGIPSCAL− c

([
X(j)

(D2)(j)

])
. (51)

This suggests that we would need to pass the matrix iterates (D2)(j) as well as X(j),

to Algorithm 2. However, we found that passing the matrices X(j) was sufficient to

accelerate the convergence of the overall iteration given by (51).

Remark 3. In Algorithm 4, no initial value for K is needed. Indeed, we can estimate

c by averaging A −X(j)(D̂2 + K̂)(X(j))′. The matrix K̂ is skew-symmetric, and for

such a matrix, we have that u′Ku = 0, for any vector u. Hence, 1′XKX′1 = 0, and

the term in K̂ contributes nothing to the average.

4.2 Off-diagonal DEDICOM/GIPSCAL

Diagonal entries of a square asymmetric table may have different meanings from its

off-diagonal entries. For example, in the case of trade between nations, diagonal ele-

ments represent the amount of domestic trade, and off-diagonal elements the amount of

international trade. The two parts of the table may be governed by different principles.

To account for the difference between the two, Takane (1985) considered incorpo-

rating an additional diagonal matrix into GIPSCAL in a manner similar to uniqueness

in common factor analysis. This model may be written as

A = XBX′ + C + E, (52)

where C is the additional diagonal matrix to be estimated. This model is often called

off-diagonal DEDICOM (ten Berge and Kiers 1989). We may further require C to be

nnd. Matrix B in DEDICOM is analogous to D2 + K in GIPSCAL. In DEDICOM,

however, we do not separate D2 and K because no nnd restriction is imposed on B. For

the purpose of comparing our algorithm with ten Berge and Kiers’ (1989) algorithm for

off-diagonal DEDICOM, we first present an algorithm for this model, and then extend

it to off-diagonal GIPSCAL.

Algorithm 5 (Off-diagonal DEDICOM). Let A be a square asymmetric matrix

of order n. Let X(0) be a given n by p columnwise orthogonal matrix, and let B̂ be a

given nonsingular square matrix of order p (an initial estimate of B). For j = 0, 1, . . .,

compute X(j+1) as follows:

1) Compute Ĉ using

Ĉ = diag(A−X(j)B̂(X(j))′). (53)

2) Update B̂ by computing

B̂ = (X(j))′(A− Ĉ)X(j). (54)

3) Compute X(j+1) using

X(j+1) = U, (55)

where U is such that G = U∆V′ is the SVD of G = (A − Ĉ)′X(j)B̂ + (A −
Ĉ)X(j)B̂′.



13

Again, the above algorithm can be easily combined with the MPE algorithm, which

we call Algorithm 5’. When C = 0 is assumed, (58) reduces to the basic DEDICOM

model, and Algorithm 5 without Step 1 reduces to Takane and Zhang’s (2009) algorithm

for DEDICOM.

Remark 4. The matrix U appearing in Step 3) of Algorithm 5, is unique up to reflec-

tions and permutations of its column vectors. This is not a big problem when acceler-

ation by the MPE method is not incorporated. However, the MPE method is sensitive

to the directions and permutations of singular vectors. This means that columns of

successive U’s should be matched in order and sign.

Remark 5. The diagonal matrix C may further be constrained to be nonnegative defi-

nite. This can be done by replacing Step 1 of the above algorithm by Ĉ = max(diag(A−
X(j)B̂(X(j))′),0).

Remark 6. Similarly to Remark 2, we found that applying MPE to the iterates X(k)

was sufficient, and that it was not necessary to also include the B iterates in the call

to the MPE acceleration routine.

Remark 7. The above algorithm can be easily modified to fit the off-diagonal GIPSCAL

model A = X(D2 + K)X′ + C + E by replacing Step 2) of Algorithm 5 by D̂2 =

max(diag((X(j))′(As−C)X(j)),0), K̂ = (X(j))′AskX
(j), and B̂ = D̂2 + K̂, and Step

3) of Algorithm 5 by X(j+1) = UV′, where U and V are such that G = U∆V′ is the

SVD of G.

Remark 8. Incorporation of an additive constant described in section 4.1, and off-

diagonal DEDICOM/GIPSCAL described in section 4.2 may be combined. It should

not make very much difference whether we update ĉ or Ĉ first.

Algorithm 5’ was compared to ten Berge and Kiers’ (1989) algorithm for off-

diagonal DEDICOM. The data were generated exactly as in Experiment 1 (three levels

of n (10, 20, 30), and each entry of the data tables generated by the uniform random

number between -.5 and .5), but all analyses were conducted with p = 3. Algorithm 5’

used the same initialization procedure and convergence criterion as in Experiment 1.

Ten Berge and Kier’s algorithm used the same initialization procedure as Algorithm

5’, but used a convergence criterion similar to the one used in Trendafilov’s algorithm.

That is, an improvement in fit between two successive iterations is less than 10−7.

The results are reported in Table 2. The basic construction of the table remains the

same as in Table 1. The MPE method seems to have a considerable advantage over ten

Berge and Kiers’ (1989) algorithm for off-diagonal DEDICOM. The former is about 3

times faster than the latter. The average quality of the solutions is comparable between

the two algorithms. Note that, as the authors themselves note, it is difficult to impose

the nnd restriction on C in ten Berge and Kiers algorithm, whereas it is straightforward

to do so in Algorithm 5’. Also, ten Berge and Kiers’ algorithm is not easily extensible

to GIPSCAL, whereas Algorithm 5’ is, as has been demonstrated above.

4.3 Three-way GIPSCAL

So far, it is assumed that there is a single square asymmetric table to be analyzed by

GIPSCAL. In some cases, however, there may be more than one such table available,

possibly obtained under different conditions. Trendafilov (2002) proposed a model for



14

Table 2 Off-diagonal DEDICOM: The comparison of the mean cpu time between Algorithm
5’ and ten Berge and Kiers (1989) minres algorithm.

n Algorithm 5’ (k = 10) minres
10 cpu 0.0141 0.0500

fit (.4338) (.4398)
20 cpu 0.0198 0.0598

fit (.6904) (.6913)
30 cpu 0.0435 0.1221

fit (.7851) (.7854)

such data, called three-way GIPSCAL. Suppose there are N square asymmetric data

matrices of order n. The three-way GIPSCAL model is written as

Ai = X(D2
i + Ki)X

′ + Ei (56)

for i = 1, . . . , N . This model postulates an X (the matrix that relates latent “objects” to

observed objects) common to all N data matrices, while accounting for their differences

by allowing a distinct D2
i and Ki for each data matrix. This model is an extension of

the INDSCAL model for N symmetric tables to N square asymmetric tables.

In the three-way GIPSCAL model, we minimize

f(X,D2
1, . . . ,D2

N ,K1, . . . ,KN ) =

N∑

i=1

SS(Ei) =

N∑

i=1

SS(Ai −X(D2
i + Ki)X

′), (57)

where SS(Ei) = tr(E′iEi). Following a similar line of reasoning to Section 2.1, we arrive

at the following algorithm.

Algorithm 6 (Three-way GIPSCAL). Let A1, . . . ,AN be n by n asymmetric

matrices, and let X(0) be an n by p columnwise orthogonal matrix. For j = 0, 1, . . .,

compute X(j+1) using the following steps:

1) Compute D̂2
1, . . . , D̂2

N using

D̂2
i = max(diag((X(j))′Ai,sX

(j)),0), (58)

and K̂1, . . . , K̂N using

K̂i = (X(j))′Ai,skX
(j), (59)

where Ai,s = (Ai + A′
i)/2 and Ai,sk = (Ai −Ai)/2.

2) Let

G =

N∑

i=1

(A′
iX

(j)B̂i + AiX
(j)B̂′i), (60)

where B̂i = D̂2
i + K̂i for i = 1, . . . , N . Then, compute

X(j+1) = UV′, (61)

where U and V are such that G = UDV is the SVD of G.

It is straightforward to accelerate Algorithm 6 with the MPE method. We call this

accelerated algorithm Algorithm 6’.



15

Remark 9. The above algorithm for three-way GIPSCAL can easily be modified to ac-

commodate an additive constant and the diagonal modification discussed in the previous

two subsections.

We compare Algorithm 6’ with Trendafilov’s (2002) algorithm for three-way GIP-

SCAL. His algorithm for three-way GIPSCAL works similarly to our description of

his algorithm for two-way GIPSCAL in Section 2.3. We interpret the LS loss func-

tion (57) as an energy functional E(Y) = f(X,D2
1, . . . ,D2

N ,K1, . . . ,KN ), where

Y ∈ Y := O(n, p) × D(p) × . . . × D(p) × Sk(p) × . . . × Sk(p). A gradient dynamic

system like (37) is formed, and again the gradient is understood in the sense of con-

tinuous manifolds. The resulting set of differential equations are also similar to (44) –

(46). (Matrices As,Ask,D2, and K should have an additional subscript i, and in (44)

the gradient has to be summed over i.)

In our final numerical experiment, we compared Algorithm 6, Algorithm 6’ (k = 5,

10, 15, and 20), and Trendafilov’s. As in Experiment 1, the data were generated by

uniform random numbers between -.5 and .5 for a fixed N (N = 10), but varying n

at three levels (5, 10, and 20). These data were analyzed with dimensionalities p = 2

for n = 5, p = 3 for n = 10, and p = 4 for n = 20. For Algorithms 6 and 6’, initial

estimates for X remained the same as in Experiment 1. The convergence criterion

was also similar to the one used in Experiment 1, although it was normalized by the

sum of squared norms of the N data matrices. Trendafilov’s algorithm used the same

convergence criterion as in Experiment 1. Initial estimates were also obtained similarly

to Experiment 1, except that for X, matrix As is replaced by the average of Ai,s over

i, and for D2
i and Ki (i = 1, . . . ,N), As and Ask are replaced by Ai,s and Ai,sk,

respectively.

The results are given in Table 3. Again the basic construction of the table remains

the same as in Table 1. Algorithm 6’ with k = 10 is roughly 10 times faster than

Trendafilov’s algorithm across all conditions. This is despite the fact that the latter

used a more lenient convergence criterion, and a semi-rational starting point. The

quality of solutions in terms of average fit is slightly better for Algorithms 6 and 6’

than Trendafilov’s, although the difference is relatively minor in all cases.

Table 3 The mean cpu time by Algorithms 6 and 6’ and Trendafilov’s (2002) algorithm for
three-way GIPSCAL.

Algorithm 6’
n p Algorithm 6 k = 5 k = 10 k = 15 k = 20 Trendafilov
5 2 cpu 0.0652 0.0435 0.0358 0.0430 0.0506 0.3250

fit (.8203) (.8210) (.8208) (.8210) (.8203) (.8244)
10 3 cpu 0.1407 0.1106 0.0876 0.0712 0.0897 0.8849

fit (.8683) (.8686) (.8687) (.8684) (.8682) (.8701)
20 4 cpu 0.4567 0.2318 0.2251 0.2015 0.2746 3.1930

fit (.9198) (.9199) (.9199) (.9199) (.9200) (.9204)

As in Experiment 1, we also investigated the seriousness of suboptimal solutions for

three-way GIPSCAL. Probabilities of suboptimal solutions were obtained in a manner

similar to those in two-way GIPSCAL. (Algorithm 6’ with k = 10 was run 50 times

for each data set with 50 random initials to identify a globally optimal solution for

each data set. The optimal solution was then compared to a solution obtained in a



16

single run, and the probabilities of suboptimal solutions were calculated over the 250

data sets in each condition.) These probabilities are .268, .632, and .812 for the three

conditions in Table 3. The probability of suboptimal solutions goes up very quickly, as

more parameters are estimated. (In this case, we are not sure which is more influential,

n or p.) That the probability of suboptimal solutions is over .80 is rather daunting.

However, this is for completely random data. It should be much smaller for data with

some three-way GIPSCAL structures.

5 Concluding remarks

In this paper, we have discussed several related algorithms for analysis of square asym-

metric tables. We studied GIPSCAL, GIPSCAL-c, off-diagonal DEDICOM/GIPSCAL,

and three-way GIPSCAL. For each model, we have given an iteration which converges

to a stationary point, and an MPE acceleration of the same algorithm. We have also

compared our algorithms with respective algorithms by Trendafilov (2002), and in the

case of off-diagonal DEDICOM, with ten Berge and Kiers’ (1989) minres-like algorithm.

Our numerical experiments show that our new MPE algorithms are very efficient and

compare favorably with existing algorithms.

It should be noted that monotonic convergence is not assured of the proposed

MPE algorithms, and consequently no theoretical proof of convergence is given. This is

obviously a weakness of the algorithms. However, nonmonotonic convergence is rare in

practice, and nonconvergence is even rarer. We therefore argue that the benefit of the

proposed algorithms far exceeds the weakness, as amply demonstrated in the empirical

studies reported.

In addition to the speed advantage, the MPE method is easily adaptable to other

similar situations. There are many models in science other than GIPSCAL that may

potentially benefit from the MPE method. The MPE method has been successfully

incorporated into iterative algorithms for two-way single-domain DEDICOM (Takane

and Zhang 2009), and orthogonal INDSCAL (Takane et al. 2010). We can readily give

a couple more examples from quantitative psychology (in which the second author of

this paper is a specialist): Communality estimation in common factor analysis, and

orthogonal and oblique factor rotation problems. It will be of great interest to compare

the MPE algorithms with non-accelerated algorithms for these problems.

6 Acknowledgment

We would like to thank Nicolay Trendafilov at Open University who kindly provided

MATLAB codes for his algorithm, and Henk Kiers at the University of Groningen for

providing Kiers and Takane’s algorithm for generalized GIPSCAL.

References

Chino N (1990) A generailzed inner product model for the analysis of asymmetry. Behav-
iormetrika 27:25-46
Constantine G A, Gower J C (1978) A graphical representations of asymmetric matrices.
Appl Stat 27:297-304



17

Harshman R A (1978) Models for analysis of asymmetrical relationships among N objects
or stimuli. Paper presented at the First Joint Meeting of the Psychometric Society and the
Society of Mathematical Psychology, Hamilton, Ontario
Harshman R A, Green P E, Wind Y, Lundy M E (1981) A model for the analysis of
asymmetric data in marketing research. Market Sci 1:205-242
Jennrich R I (2001) A simple general procedure for orthogonal rotation. Psychometrika
66:289-306
Kiers H A L, Takane Y (1994) A generalization of GIPSCAL for the analysis of nonsym-
metric data. J Classif 11:79-99
Loisel S, Takane M (2009) Fast indirect robust generalized method of moments. Comput
Stat and Data An 53:3571-3579
Loisel S, Takane Y (2010) Minimal popynomial extrapolation in MATLAB and in R. Sub-
mitted for publication
Smith D A, Ford W F, Sidi A (1987) Extrapolation methods for vector sequences. SIAM
Rev 29:199-233
Takane Y (1985) Diagonal estimation in DEDICOM. In Proceedings of the 13th Annual
Meeting of the Behaviormetric Society, pp. 100-101. Behaviormetric Society of Japan, Tokyo
Takane Y, Jung K, Hwang H (2010) An acceleration method for ten Berge et al.’s algorithm
for orthogonal INDSCAL. Contr Stat 25:409-428.
Takane Y, Zhang Z (2009) Algorithms for DEDICOM: Acceleration, deceleration, or nei-
ther? J Chemometr 23:364-370
ten Berge J M F, Kiers H A L (1989) Fitting the off-diagonal DEDICOM model in the
least squares sense by a generalization of the Harman and Jones Minres procedure to factor
analysis. Psychometrika 54:333-337
Trendafilov N (2002) GIPSCAL revisited: A projected gradient approach. Stat Comput
12:135-145


