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A Unified Approach to Multiple-set Canonical Correlation Analysis and Principal 

Components Analysis 

 

Abstract 

Multiple-set canonical correlation analysis and principal components analysis are popular 

data reduction techniques in various fields including psychology. Both techniques aim to 

extract a series of weighted composites or components of observed variables for the 

purpose of data reduction. However, their objectives of performing data reduction are 

different. Multiple-set canonical correlation analysis focuses on describing the 

association among several sets of variables through data reduction, whereas principal 

components analysis concentrates on explaining the maximum variance of a single set of 

variables. In this paper, we provide a unified framework that combines these seemingly 

incompatible techniques. The proposed approach embraces the two techniques as special 

cases. More importantly, it permits a compromise between the techniques in yielding 

solutions. For instance, we may obtain components in such a way that they maximize the 

association among multiple datasets, while also accounting for the variance of each 

dataset. We develop a single optimization function for parameter estimation, which is a 

weighted sum of two criteria for multiple-set canonical correlation analysis and principal 

components analysis. We minimize this function analytically. We conduct simulation 

studies to investigate the performance of the proposed approach based on synthetic data. 

We also apply the approach for the analysis of functional neuroimaging data to illustrate 

its empirical usefulness.     

 

Keywords: Multiple-set canonical correlation analysis, principal components analysis, 

functional neuroimaging data.  
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1. Introduction 

Multiple-set canonical correlation analysis and principal components analysis represent 

two data reduction techniques prevalent in many fields including psychology. Multiple-

set canonical correlation analysis (Carroll, 1968; Horst, 1961; Meredith, 1964) is used to 

investigate how low dimensional representations (called canonical variates or variables) 

of several sets of variables are related to one another. It subsumes canonical correlation 

analysis as a special case when only two sets of variables are considered. Although this 

technique has been considered useful in studying interrelationships among multiple sets 

of variables, it is also being paid much attention as a tool for integrating data obtained 

from different sources such as subjects, stimuli, locations, or data acquisition techniques 

(e.g., Correa, Li, Adali, & Calhoun, 2009; Takane & Oshima-Takane, 2002). Principal 

components analysis, on the other hand, is used to examine how a single set of variables 

is explained by its low dimensional representations called principal components.  

These two techniques are technically comparable in the sense that both aim to 

extract a series of weighted composites or components from each dataset for the purpose 

of data reduction. Nonetheless, their central objectives of extracting such weighted 

composites are different: In multiple-set canonical correlation analysis, the weighted 

composites of each dataset are obtained in such a way that they are maximally related to 

the corresponding weighted composites from the other datasets. Conversely, in principal 

components analysis, the weighted composites of a single dataset are obtained to account 

for the maximum variance of the dataset. Due to these distinctive objectives in data 

reduction, they remain separate techniques at large. Multiple-set canonical correlation 

analysis focuses on a simpler description of the association among several sets of 
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variables, whereas principal components analysis concentrates on a summary of the 

variability of a single dataset. Note that multiple-set canonical correlation analysis 

becomes equivalent to principal components analysis when each dataset consists of a 

single variable only (e.g., Gifi, 1990). However, this is not a typical situation to which we 

apply multiple-set canonical correlation analysis.  

In practice, multiple-set canonical correlation analysis and principal components 

analysis have frequently been used in a complementary manner. For example, Correa and 

her colleagues (Correa, Eichele, Adali, Li,  & Calhoun, 2010) applied multiple-set 

canonical correlation analysis to fuse brain imaging data concurrently acquired from two 

different imaging modalities such as functional magnetic resonance imaging (fMRI) and 

electroencephalography (EEG).  Subsequently, they used principal components analysis 

to obtain component loadings relating the canonical variates obtained from multiple-set 

canonical correlation analysis to each individual dataset. This is a two-step approach 

where the two data reduction techniques are carried out sequentially. This approach 

provides no assurance that the low dimensional data representations obtained from one 

technique are also optimal for the objective of the subsequent technique, because the 

former is obtained without reference to the latter (e.g., Arabie & Hubert, 1994; Chang, 

1983). In addition, the two-step approach has no means to control for the degree of 

differential influence that each technique may have on the final solution.   

In this paper, we propose a unified approach to multiple-set canonical correlation 

analysis and principal components analysis. This proposed approach accommodates the 

two data reduction techniques as special cases. More importantly, it can provide a 

compromise solution by controlling for the contribution of each technique to the final 
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solution. The degree of compromise can be determined by weighing the contribution of 

each technique differentially. This capability can be of particular use in addressing an 

enduring issue in multiple-set canonical correlation analysis, which canonical variates of 

each dataset may not be well representative of the dataset because this technique 

concentrates only on how highly the canonical variates of each dataset are correlated to 

those from other datasets, not on how well they explain the variance of their own dataset 

(e.g., Lambert, Wildt, & Durand, 1988; van den Wollenberg, 1977). By applying the 

proposed approach, we may obtain low dimensional representations of several datasets, 

which are highly related to each other across the datasets and also account for the 

variance of each dataset well.  

Mishra (2009) recently developed a hybrid approach to canonical correlation 

analysis and principal components analysis. The scope of his method is somewhat narrow 

in that principal components analysis was adopted for exclusively overcoming the same 

issue in canonical correlation analysis. Thus, this method adds a non-negative weight 

only to principal components analysis to control for its impact on the solution, while 

assigning no such weight to canonical correlation analysis. Consequently, it is difficult to 

regard the method as a unified approach to canonical correlation analysis and principal 

components analysis because it cannot subsume both the techniques as special cases. The 

method can have only canonical correlation analysis as a special case by setting the 

weight for principal components analysis equal to zero. Conversely, the method appears 

to be more flexible in that it can formulate the integration of principal components 

analysis in three different ways. Nonetheless, in most cases of weighing principal 
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components analysis, this method may be considered a special case of the proposed 

approach, which involves two sets of variables only.  

Dahl and Naes (2006) proposed so-called ridge generalized canonical analysis that 

incorporated a ridge parameter into the matrix eigen-analysis problem for multiple-set 

canonical correlation analysis. This method can be of use in stabilizing solutions by 

shrinking the influence of low-variance components. Computationally, it can also 

embrace the eigen-analysis problems for multiple-set canonical correlation analysis and 

principal components analysis by setting the ridge parameter at 0 and 1, respectively. 

However, it is unknown which optimization criterion is to be maximized by solving the 

eigen-analysis problem with the ridge parameter varying between 0 and 1. In other 

words, the method does not have an optimization criterion formulated under a clear 

objective of analysis. Conversely, the proposed approach provides a single optimization 

function, which is developed under the aim of combining multiple-set canonical 

correlation analysis and principal components analysis into a unified framework.       

In Section 2, we explain the technical underpinnings of the proposed unified 

approach. We present a single optimization function for parameter estimation in the 

proposed approach. The optimization function is equivalent to a weighted sum of two 

criteria for multiple-set canonical correlation analysis and principal components analysis. 

We also show that this function can be optimized analytically. In Section 3, we evaluate 

the parameter recovery capability of the proposed approach and investigate its relative 

performance to multiple-set canonical correlation analysis and principal components 

analysis through the analysis of synthetic data. In Section 4, we illustrate the empirical 

usefulness of the proposed approach by analyzing functional neuroimaging data obtained 
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from several subjects during a working memory experiment. In the final section, we 

summarize the theoretical and empirical implications of the proposed approach and 

discuss potential topics for future research.   

 

2. The Proposed Unified Approach to Multiple-set Canonical 

Correlation Analysis and Principal Components Analysis 

Let Zk denote an N by kp  matrix of variables in the kth dataset ( Kk ,,1 ), where N is 

the number of cases. Let Wk denote a pk by D matrix of weights assigned to each variable 

in Zk, where D is the number of dimensions. Let F denote an N by D matrix of low 

dimensional data representations, often called object scores, which characterize the 

association or homogeneity among all Zk’s. Let Ak denote a D by pk matrix of loadings 

relating F to Zk. Let α and β denote non-negative scalar values.  

Our aim is to combine multiple-set canonical correlation analysis (MCCA) and 

principal components analysis (PCA) into a single framework. This means that we seek 

to obtain low dimensional representations (i.e., F) of K sets of variables such that they 

maximize the association among them as in MCCA, while accounting for the variance of 

Zk as much as possible like PCA. This aim can be achieved by minimizing the following 

optimization function, 





K

k

kk

K

k

kkf
11

)(SS)(SS FAZWZF  ,                             (1) 

with respect to F, kW , and kA , subject to the normalization constraint IFF ' for 

identification, and α + β = 1, where SS(H) = tr( HH' ). When α = 1, the first term in (1) is 

equivalent to the homogeneity criterion for MCCA (Gifi, 1990). When β = 1, the second 
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term is equivalent to the criterion for PCA for Z = ],,[ 1 KZZ  . Accordingly, this 

optimization function is a weighted sum of two criteria for multiple-set canonical 

correlation analysis and principal components analysis. However, note that the same 

matrix of object scores (F) appears in both criteria. As a result, by minimizing (1), we can 

obtain F considering the objectives of multiple-set canonical correlation analysis and 

principal components analysis simultaneously.  

 As shown in (1), the proposed approach can deal with multiple-set canonical 

correlation analysis and principal components analysis as special cases: It becomes 

equivalent to multiple-set canonical correlation analysis when α = 1 and β = 0, and 

reduces to principal components analysis for the entire data when α = 0 and β = 1. In 

addition, this approach permits a compromise between the two techniques under α ≠ 0 

and β ≠ 0. We should a priori specify the values of α and β based on our research 

objectives or interests. By specifying α = β = .5, we assume that both techniques 

contribute equally to the final solution. We may also adjust for the influence of the two 

techniques on the final solution by differently weighing the two criteria of (1). For 

example, we wish to weigh the first criterion more heavily than the second (i.e., α > β), so 

that multiple-set canonical correlation analysis has a greater impact on the final solution 

than principal components analysis. This weighting scheme may be of use when we 

believe that it is more important to maximize the association among multiple datasets 

than to account for the variance of each dataset.  

We can solve the minimization problem (1) in closed form. As Wk is involved 

only in the first criterion of (1) and Ak is only in the second, under IFF ' , their least 

squares estimates are given by 
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and 
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Given the estimates of Wk and Ak, F can be estimated as follows. Let 
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symmetric. Putting (2) and (3) into (1), minimizing (1) with respect to F, subject 

to IFF ' , is equivalent to minimizing 
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Minimizing (4) thus reduces to maximizing  
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with respect to F. This maximization is equivalent to calculating the following eigenvalue 

decomposition, 

''
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where IΓΓ ' , and Δ is a diagonal matrix consisting of eigenvalues as elements. Then, F 

is obtained as the first D columns of Γ (e.g., Yanai, 1998).  

 

3. Simulation Studies 

We carry out two simulation studies to investigate the performance of the proposed 

approach based on synthetic data.  

 

3.1. Simulation Study 1 

In the first study, we focused on how well the proposed approach recovered the 

parameter values of Wk and Ak under different sample sizes. We did not evaluate 

recovery of F because the number of object scores changed with sample size. The process 

of generating synthetic data can be summarized as follows: We chose the parameter 

values of Wk and Ak. For each sample size, we drew an N by D matrix of object scores 

(F) from the standard normal distribution and subsequently, normalized it such 

that IFF ' . We also drew an N by D+ pk matrix, denoted by Ek, from a normal 

distribution with mean 0 and standard deviation σ. We then generated an N by pk matrix 

of variables Zk by   1)'('  kkkkkk QQQEYZ , where Yk =  kFAF   , , and Qk = 

 IW   ,k . This way of generating Zk was derived from (1) or minimizing the sum of 

squares of         kkkkkkkkkkk YQZFAFIWZFAWZZFΕ   ,,,,  

for each set of variables. 

For this study, we considered six sample sizes (N = 20, 50, 100, 200, 500, and 

1000). In addition, we specified that K = 4, p1 = p2 = p3 = p4 =10, D = 3, α = β = .5, and 

σ = .03, which was equal to the average standard deviation of Yk at N = 1000. At each 
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sample size, we generated 500 samples, each of which was analyzed by the proposed 

approach. To assess the properties of parameter estimates obtained under the proposed 

approach, we computed the relative biases, standard deviations, and mean square errors 

(MSE) of the estimates of weights and loadings across different sample sizes. In 

particular, the MSE is proportional to the sum of the bias and standard deviation of an 

estimate, indicating how close the estimate is to its parameter value on average (Mood, 

Graybill, & Boes, 1974).  

Figure 1 displays the average relative bias, standard deviation, and mean square 

error of the estimates of weights and loadings across different sample sizes. We 

considered absolute values of relative bias greater than ten percent indicative of an 

unacceptable degree of bias (e.g., Bollen, Kirby, Curran, Paxton, & Chen, 2007; Lei, 

2009). As shown in this figure, the proposed approach on average yielded positively 

biased estimates of weights and loadings. Nonetheless, the degrees of relative bias were 

acceptable for all sets of estimates because they were smaller than ten percent in absolute 

value. Moreover, the parameter estimates of the proposed approach were generally 

associated with quite small standard deviations across all the sample sizes. Lastly, the 

proposed approach involved very small average MSE values of all parameter estimates 

across the sample sizes. The average MSE values of the estimates tended to decrease with 

sample size increased.   

Thus, the proposed approach seemed to recover parameters sufficiently well. The 

estimates of the proposed approach had a positive yet tolerant level of bias, while they 

involved a very small level of variability. Consequently, the mean square errors of the 
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estimates were nearly zeros, indicating that the estimates were quite close to the 

parameters on average.  

_________________________________ 

Insert Figure 1 about here 

_________________________________ 

 

3.2. Simulation Study 2 

In the second study, we investigated the relative performance of the proposed approach, 

as compared to MCCA and PCA. In particular, we compared the capability of these three 

methods to recover parameters under different values of α altering from .05 to .95. The 

three methods entail different sets of parameters: F and Wk in MCCA, F and Ak in PCA, 

and F, Wk and Ak in the proposed approach. Thus, we concentrated on how well the 

methods recovered F, which was the only common set of parameters among them. As 

stated earlier, however, recovery of F can be affected by sample size. To avoid this issue, 

we fixed N = 100 for the second study. For each value of α, we generated 500 random 

samples based on the same data generation procedure used for the first simulation study.  

To examine the relative accuracy of object score estimates obtained from the three 

methods, we calculated the average mean absolute deviations (MAD) between true and 

estimated object scores for each value of α.  Figure 2 exhibits the average MAD values 

for the three methods across different values of α. As expected, when α became close to 

zero, the proposed approach resulted in MAD values similar to those from PCA. In such 

cases, MCCA yielded larger MAD values than the other methods. Conversely, when α 

approached one, the proposed approach resulted in MAD values similar to those from 
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MCCA, whereas PCA produced the largest MAD values. Moreover, the proposed 

approach tended to provide smaller MAD values than MCCA and PCA across all the 

values of α. This indicates that the proposed approach recovered the common set of 

parameters (object scores) better than MCCA and PCA. 

_________________________________ 

Insert Figure 2 about here 

_________________________________ 

 

4. An Application to Functional Neuroimaging Data 

In this section, we apply the proposed approach to functional neuroimaging data in order 

to demonstrate its empirical usefulness. The present example is part of fMRI data 

obtained from a verbal working memory study (Cairo, Woodward, & Ngan, 2006; 

Metzak, Riley, Wang, Whitman, Ngan, & Woodward, 2011). fMRI records signal 

variation in blood-oxygen level dependent (BOLD) signal, which is correlated with signal 

variation in blood flow. The basic element of spatial measurement in fMRI is referred to 

as a voxel, which is, for the data analyzed in the current study, a 4 × 4 × 4 mm cube of 

imaged neural matter. BOLD signal changes are recorded over scans in every voxel in the 

brain.  

 

4.1. The Data  

In this application, four women subjects, who were right-handed, healthy and native 

English speakers (age range 18-35), performed a variable load delayed recognition 

working memory task while undergoing fMRI. The variable load delayed recognition 
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memory task consisted of encoding, maintenance, and retrieval phases and four different 

memory load conditions. During a single trial of this task, the subjects viewed a string of 

2, 4, 6 or 8 different uppercase consonants for 4 seconds (the encoding phase), which 

they were instructed to remember over a short 6-second delay (the maintenance phase). 

Following the delay, a single lowcase consonant was shown for 1 second. Subjects were 

asked to decide whether this letter had been included in the preceding letter string (the 

retrieval phase). The probe stage was followed by an inter-trial interval of 6 seconds in 

duration. Each stimulus run consisted of 214 scans of the entire brain, and the timing of 

stimulus presentation was identical for all subjects. The BOLD signals in 23,621 voxels 

of the whole brain were extracted from each of the 214 scans collected from each subject.  

Thus, we had four sets of variables, each of which was composed of 23,621 cases, 

representing voxels, and 214 variables, indicating scans measured for each subject. The 

BOLD signal was realigned, spatially normalized and smoothed prior to analysis using 

Statistical Parametric Mapping (SPM2). 

Furthermore, a design matrix was developed that explicitly reflected a finite 

impulse response modeling BOLD signal changes to the stimulus presentation scheme of 

the experiment for each scan. Each set of the original data was then decomposed into a 

portion explained by this design matrix and the residual portion unexplained by the 

design matrix (Metzak, Feredoes, Takane, Wang, Weinstein, Cairo, Ngan, & Woodward, 

2011; Woodward, Cairo, Ruff, Takane, Hunter, & Ngan, 2006). Technically, this 

decomposition was carried out by regressing each set of the data on the design matrix 

(e.g., Takane & Shibayama, 1991). We used only the portion of the data explained by the 
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design matrix for actual analyses. This allowed analyzing the data that were directly 

relevant to the experimental conditions.  

 

4.2. Analysis Objectives  

The main objective of our analysis was to integrate signal variation in four subjects’ 

BOLD signal into highly-correlated low dimensional representations so as to identify 

regions of the brain, which were commonly activated among the subjects who were 

performed the same working memory task. This technically required low dimensional 

data integration of brain voxels over multiple subjects. Thus, multiple-set canonical 

correlation analysis might be a sensible choice to achieve the main objective (e.g., Correa 

et al., 2010). However, at the same time, we sought to obtain these low dimensional 

representations (or object scores) in such a way that they also explained the data 

sufficiently well. This would be our secondary objective of analysis.  

A wide range of effortful cognitive tasks consistently lead to not only increases in 

activity in fronto-parietal brain regions but also concomitant decreases in activity in 

ventro-medial brain regions (Fox, Snyder, Vincent, Corbetta, Van Essen, & Raichle, 

2005). These anticorrelated networks have been coined the task-positive and task-

negative network, respectively (Fox et al., 2005). Due to the emergence of these networks 

in past working memory research (Metzak, Feredoes, Takane, Wang, Weinstein, Cairo, 

Ngan, & Woodward, 2011a; Metzak et al., 2011b), we expected variations in these 

networks to emerge in the current analysis.  

 

4.3. Analysis Results 
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At first, we had applied the proposed approach to the data under α = β = 0.5. This means 

that both criteria for multiple-set canonical correlation analysis and principal components 

analysis in (1) had the same degree of influence on yielding the final solution. In this 

application, we found that the PCA criterion was responsible for 99% of the optimization 

function value, while the MCCA criterion accounted for only 1%. Thus, if we adopt such 

an equal weighting scheme, the PCA criterion would have a dominant effect on the final 

solution, forcing the solution to be almost identical to the PCA solution. This analysis 

would not be well suited to fulfilling our main objective.   

Accordingly, we decided to set α = .99 and β = .01; in other words, the MCCA 

criterion was to have a disproportionately favorable effect on the final solution over the 

PCA criterion. In this way, we might be able to balance out the influence of MCCA and 

PCA on the final solution. In the present application, we concentrate on the first two-

dimensional solutions (i.e., D = 2) because it was difficult to interpret the subsequent 

dimensions. More importantly, as will be shown below, investigating the first two 

dimensions offers sufficient insights for the basic questions of analysis. 

Figure 3 exhibits five slice images constructed from the (voxel) object scores that 

were calculated based on the leading dimension. The far-right sagittal brain image 

indicates which slices of the brain the first four images represent. All the images display 

the dominant 5% of the object scores mapped onto a structural brain image template. In 

this case, all the dominant object scores were positive, displayed in red and yellow. The 

images of these object scores represent functional networks that were positively 

activated in all four subjects during the experiment, suggesting that these regions were 

likely to be functionally connected across the subjects. These regions include the 
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bilateral dorsolateral prefrontal cortices, dorsal anterior cingulate cortex, bilateral 

precental gyri, bilateral inferior frontal cortices, bilateral inferior and superior parietal 

cortices, and bilateral inferior occipital gyri.  

___________________________________ 

Insert Figure 3 about here 

___________________________________ 

Figure 4 displays five slice images of the object scores of the voxels 

corresponding to the second dimension. Again, the far-right sagittal brain image indicates 

which slices of the brain the first four images are. All the images present the dominant 

5% of the object scores. Interestingly, all these dominant scores were negative scores, 

displayed in blue. This indicates that the functional network for the second dimensional 

solution comprised the elements of task-negative (i.e., default) networks. The task-

negative network is a system of functionally connected brain regions that are thought to 

reduce activation during the memory task. Here this is characterized by decreased 

activation in the bilateral postcentral gyri, ventral anterior cingulate cortex, posterior 

cingulate gyrus, bilateral angular gyri, bilateral insular cortices, and bilateral primary 

auditory cortices.  

___________________________________ 

Insert Figure 4 about here 

___________________________________ 

The solutions in Figures 3 and 4 provide useful information with respect to the 

brain regions commonly activated among the four subjects and their characteristics. For 

comparison purposes, nonetheless, we also present the solutions obtained from multiple-
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set canonical correlation analysis. This analysis corresponds to applying the proposed 

approach under α = 1 and β = 0. We do not provide the solutions obtained from PCA 

only, or equivalently the proposed approach under α = 0 and β = 1, because our main 

objective (i.e., integrating signal variation in each subject’s brain voxels into low-

dimensional representations that are highly correlated across subjects) could not be 

achieved by using PCA alone, which focuses solely on a single dataset. 

Figure 5 shows five slice images constructed from the voxel object scores that 

were calculated based on the leading dimension obtained from multiple-set canonical 

correlation analysis. The far-right sagittal brain image indicates which slices of the brain 

the first four images represent. All the images present the dominant 5% of the object 

scores. In this case, a majority of the dominant object scores were positive, indicating 

that the images of these object scores are likely to represent task-positive networks that 

were positively activated in all four subjects during the experiment. These regions 

include the left inferior frontal gyrus, dorsal anterior cingulate cortex, bilateral 

postcentral gyrus, bilateral inferior parietal cortex, bilateral thalamus and bilateral 

cerebellum. Thus, it seems that the first dimensional solution obtained from multiple-set 

canonical correlation analysis bears a strong resemblance to that in Figure 3. 

___________________________________ 

Insert Figure 5 about here 

___________________________________ 

Figure 6 displays five slice images of the object scores of the voxels 

corresponding to the second dimension obtained from multiple-set canonical correlation 

analysis. All the images present the dominant 5% of the object scores where positive 
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scores are in red and yellow, and negative scores are in blue. The functional network for 

the second dimension contained the elements of both task-positive and negative 

networks. The task-positive network is dominated by increased activation in the right 

inferior frontal gyrus, dorsal anterior cingulate cortex, and bilateral superior parietal gyri. 

The task-negative network is characterized by decreased activation in the ventral anterior 

cingulate cortex, posterior cingulate cortex, bilateral angular gyri, bilateral primary 

auditory cortices, bilateral inferior temporal cortices, insular cortex, primary visual cortex, 

posterior inferior gyrus, inferior occipital gyrus, middle frontal gyrus, posterior cingulate 

gyrus, primary auditory cortex, primary motor cortex, lateral premotor area, and primary 

somasensory cortex. Thus, the second dimension from multiple-set canonical correlation 

analysis resulted in a different solution from that in Figure 4. In the previous analysis, the 

same dimension involved task-negative networks only.  

It is difficult to compare these two analyses directly because they had different 

objectives of analysis under different weighting schemes. The previous analysis under α 

= .99 and β = .01 appears to provide a more interpretable solution than multiple-set 

canonical correlation analysis, because it shows that the first dimension was related 

exclusively to task-positive networks and the second was only to task-negative networks, 

suggesting that the task-positive networks explain the variance of each subject’s brain 

activity well in the first dimension, whereas the task-negative networks account for the 

variance well in the second dimension. Conversely, the multiple-set canonical correlation 

analysis results produced a better formed task-negative network, and functional networks 

involving both the task-negative and task-positive aspects have been reported in previous 

analyses of similar working memory tasks (Metzak et al., 2011a,b). 
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___________________________________ 

Insert Figure 6 about here 

___________________________________ 

 

6. Concluding Remarks 

We proposed a unified approach to multiple-set canonical correlation analysis and 

principal components analysis. This approach permits handling these two widely used 

data reduction techniques in an integrated and interactive manner. As stated in the 

Introduction section, the proposed approach can be used to address a long-standing issue 

inherent to multiple-set canonical correlation analysis, i.e., no available mechanism for 

extraction of canonical variates such that they also explain the variance of their own 

dataset well.  

We investigated the parameter recovery capability of the proposed approach 

through the analysis of synthetic data. In general, the approach resulted in parameter 

estimates that were quite close to their parameters. Moreover, it was found to recover 

object scores better than MCCA and PCA.  

As illustrated in the empirical application section, we can adjust for weighting 

schemes for multiple-set canonical correlation and principal components analysis in the 

proposed approach. This may be of help in conducting an analysis that is better suited for 

our research objectives. In addition, the weighting feature of the proposed approach 

allows exploring alternative solutions under more diverse hypotheses. Nevertheless, 

choices of the scalar weights are contingent on how to set the objectives of analysis. This 

means that it is difficult to select the values of the scalar weights in an automated manner. 
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In practice, we suggest that the researcher begin by adopting equal weights (i.e., α = β = 

.5) because these values were to recover parameters sufficiently well, as provided in our 

simulation study, and then probe alternative solutions based upon differential weighting.   

We may further extend and refine the proposed approach. Firstly, we may 

consider a nonlinear version of the proposed approach for the analysis of discrete data. In 

this nonlinear version, discrete data may be converted to be continuous through the 

adoption of a certain type of data transformation such as optimal scaling (Bock, 1960; 

Young, 1981). The nonlinear extension will include nonlinear multiple-set canonical 

correlation analysis and nonlinear principal components analysis as special cases (Gifi, 

1990). Moreover, we may extend the proposed approach to deal with functional data. Due 

to advances in technology, in various areas of psychology, data are being collected in the 

form of curves, surfaces or images as a function of time, space, or other continua; for 

example, eye-tracking data (e.g., Jackson & Sirois, 2009), music cognition data (e.g., 

Vines, Nuzzo, & Levitin, 2005), facial temperature data (e.g., Jang & Lee, 2009), event-

contingent social interaction data (e.g., Moskowitz, Russell, Zuroff, Bleau, Pinard, & 

Young, 2006), etc. A functional version of the proposed approach will be a promising 

tool that integrates functional multiple-set canonical correlation analysis (Hwang, Jung, 

Takane, & Woodward, in press) and functional principal components analysis (Rice & 

Silverman, 1991; Ramsay & Silverman, 2005, chapter 8) into a single framework. Lastly, 

we may develop a constrained version of the proposed approach, which imposes a variety 

of linear constraints (e.g., zero, non-additivity, or equality constraints) on both criteria of 

(1) in a manner similar to Takane and Shibayama (1991). This constrained version will 

embrace constrained principal components analysis (Takane & Hunter, 2001; Takane & 
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Shibayama, 1991) and constrained canonical correlation analysis (Takane & Hwang, 

2002) as special cases. Future studies are warranted to investigate the technical and 

empirical feasibility of these extensions. 
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Figure 1. The average relative bias (RBIAS), standard deviation (SD), and mean square 

error (MSE) of weight and loading estimates obtained from the proposed approach. 
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Figure 2. The average mean absolute deviations of object score estimates (MAD(F)) 

obtained from the proposed approach ( ____ ), MCCA ( __ . __ ), and PCA ( _ _ _ ), 

under different values of α. 
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Figure 3. The first dimensional solution obtained from the proposed approach under α = 

.99 and β = .01. 

 

 

 

 

 

 

 

 

 

Figure 4. The second dimensional solution obtained from the proposed approach under α 

= .99 and β = .01. 
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Figure 5. The first dimensional solution obtained from multiple-set canonical correlation 

analysis or equivalently the proposed approach under α = 1 and β = 0. 

 

 

 

 

 

 

 

 

 

Figure 6. The second dimensional solution obtained from multiple-set canonical 

correlation analysis or equivalently the proposed approach under α = 1 and β = 0. 

 

 




