Professor Yanai and Multivariate Analysis

Yoshio Takane University of Victoria/McGill University

The 24th International Workshop on Matrices and Statistics (IWMS) Haikou, China, May 2015

Professor Yanai in 1992 (Puntanen, Styan, and Isotalo, 2011, p. 307)

Takane

Professor Yanai and Multivariate Analysis

Common threads running through them are:

• projectors,

• singular value decomposition (SVD),

which are main subject matters of Yanai, Takeuchi, and Takane (2011).

Takeuchi, Yanai, and Mukherjee (1982): The Foundations of Multivariate Analysis

Yanai, Takeuchi, and Takane (2011): Projection matrices, generalized inverse matrices, and singular value decomposition

- (1) Constrained principal component analysis (CPCA)
- (2) Khatri's lemma
- (3) The Wedderburn-Guttman theorem
- (4) Ridge operators
- (5) Constrained canonical correlation analysis
- (6) Causal inferences

a

- Sp(X): The space spanned by column vectors of X.
- Ker(X'): The orthogonal complement subspace to Sp(X).
- Orthogonal projectors onto $Sp(\mathbf{X})$: $\mathbf{P}_X = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'$.
- Orthogonal projectors onto $Ker(\mathbf{X}')$: $\mathbf{Q}_X = \mathbf{I} \mathbf{P}_X$.
- Basic properties:

$$\begin{split} \mathbf{P}'_X &= \mathbf{P}_X, \ \mathbf{Q}'_X = \mathbf{Q}_X \ (\text{symmetric}). \\ \mathbf{P}^2_X &= \mathbf{P}_X, \ \mathbf{Q}^2_X = \mathbf{Q}_X \ (\text{idempotent}). \\ \mathbf{P}_X \mathbf{Q}_X &= \mathbf{Q}_X \mathbf{P}_X = \mathbf{O} \ (\text{orthogonal}). \end{split}$$

t

- Let **K** be an *nnd* matrix such that rank(KX) = rank(X).
- K-orthogonal projectors: $\mathbf{P}_{X/K} = \mathbf{X}(\mathbf{X}'\mathbf{K}\mathbf{X})^{-}\mathbf{X}'\mathbf{K}$, and $\mathbf{Q}_{X/K} = \mathbf{I} \mathbf{P}_{X/K}$.
- Basic properties:

 $\begin{aligned} (\mathsf{KP}_{X/K})' &= \mathsf{KP}_{X/K}, \ (\mathsf{KQ}_{X/K})' = \mathsf{KQ}_{X/K} \ (\text{K-symmetric}). \\ \mathsf{P}_{X/K}^2 &= \mathsf{P}_{X/K}, \ \mathsf{Q}_{X/K}^2 = \mathsf{Q}_{X/K} \ (\text{idempotent}). \\ \mathsf{P}_{X/K}' \mathsf{KQ}_{X/K} &= \mathsf{Q}_{X/K}' \mathsf{KP}_{X/K} = \mathsf{O} \ (\text{K-orthogonal}). \end{aligned}$

a

- External Analysis and Internal Analysis.
- External Analysis: Decomposes the main data matrix according to the external information abut the row and columns of the data matrix \implies projection.
- Internal Analysis: Further analyses of decomposed matrices into components ⇒ SVD (singular value decomposition

- Y: The main data matrix.
- G: The row (left-hand) side information matrix.
- H: The column (right-hand) side information matrix.
- The basic decomposition:

$\mathbf{Y} = \mathbf{P}_{G}\mathbf{Y}\mathbf{P}_{H} + \mathbf{Q}_{G}\mathbf{Y}\mathbf{P}_{H} + \mathbf{P}_{G}\mathbf{Y}\mathbf{Q}_{H} + \mathbf{Q}_{G}\mathbf{Y}\mathbf{Q}_{H}.$

• A similar decomposition with K-orthogonal projectors.

Finer Decompositions (1)

•
$$\mathbf{G} = [\mathbf{M}, \mathbf{N}].$$

• $(1) \mathbf{P}_{G} = \mathbf{P}_{M} + \mathbf{P}_{N} \Leftrightarrow \mathbf{M}'\mathbf{N} = \mathbf{O}.$
• $(2) \mathbf{P}_{G} = \mathbf{P}_{M} + \mathbf{P}_{N} - \mathbf{P}_{M}\mathbf{P}_{N} \Leftrightarrow \mathbf{P}_{M}\mathbf{P}_{N} = \mathbf{P}_{N}\mathbf{P}_{M}.$
• $(3) \mathbf{P}_{G} = \mathbf{P}_{M} + \mathbf{P}_{Q_{M}N} = \mathbf{P}_{N} + \mathbf{P}_{Q_{N}M}.$
• $(4) \mathbf{P}_{G} = \mathbf{P}_{M/Q_{N}} + \mathbf{P}_{N/Q_{M}} \Leftrightarrow \operatorname{rank}(\mathbf{G}) = \operatorname{rank}(\mathbf{M}) + \operatorname{rank}(\mathbf{N}).$
• $(5) \mathbf{P}_{G} = \mathbf{P}_{GA} + \mathbf{P}_{G(G'G)^{-}B} \Leftrightarrow \mathbf{A}'B = \mathbf{O},$
 $\mathrm{Sp}(\mathbf{A}) \oplus \mathrm{Sp}(\mathbf{B}) = \mathrm{Sp}(\mathbf{G}').$

• Analogous decompositions for \mathbf{P}_{H} , $\mathbf{P}_{G/K}$, and $\mathbf{P}_{H/L}$.

- (1) M and N are mutually orthogonal.
- (2) **M** and **N** are mutually orthogonal, except their common space. (ANOVA w/o interactions).
- (3) Fit one first and the other to the residuals.
- (4) **M** and **N** are disjoint. Fit both simultaneously.
- (5) A matrix of regression coefficients **C** constrained by $\mathbf{C} = \mathbf{AC}^*$ or by $\mathbf{B'C} = \mathbf{O}$.

• PCA of terms obtained by the external analysis of \mathbf{Y} , e.g., $\mathbf{P}_{G}\mathbf{Y}\mathbf{P}_{H}$, which amounts to $SVD(\mathbf{P}_{G}\mathbf{Y}\mathbf{P}_{H})$.

Takane

- Constrained Correspondence Analysis (CCA).
- U: The row representation matrix. (We consider only the row side.)
- Two ways of constraining U: (1) $U = AU^*$, and (2) B'U = O.

•
$$\mathbf{P}_A = \mathbf{A}(\mathbf{A}'\mathbf{A})^-\mathbf{A}' = \mathbf{I} - \mathbf{B}(\mathbf{B}'\mathbf{B})^-\mathbf{B}' = \mathbf{Q}_B.$$

- What happens if non-identity metric K is used?
- Let $\mathbf{A} (p \times r)$ and $\mathbf{B} (p \times (p r))$ be matrices such that rank $(\mathbf{A}) = r$, rank $(\mathbf{B}) = p - r$, and $\mathbf{A}'\mathbf{B} = \mathbf{O}$. Then $\mathbf{I} = \mathbf{A}(\mathbf{A}'\mathbf{K}\mathbf{A})^{-1}\mathbf{A}\mathbf{K} + \mathbf{K}^{-1}\mathbf{B}(\mathbf{B}'\mathbf{K}^{-1}\mathbf{B})^{-1}\mathbf{B}'$ (Khatri, 1966).

- An alternative expression: $\mathbf{K} = \mathbf{K}\mathbf{A}(\mathbf{A}'\mathbf{K}\mathbf{A})^{-1}\mathbf{A}\mathbf{K} + \mathbf{B}(\mathbf{B}'\mathbf{K}^{-1}\mathbf{B})^{-1}\mathbf{B}'.$
- Useful for rewriting Q-type projectors into P-type.

Some Extensions

- Let A (p × r) and B (p × (p r)) be matrices such that rank(A) = r and rank(B) = p - r, and let M and N be nnd matrices such that
 - (i) $\mathbf{A'MNB} = \mathbf{O}$, (ii) rank(\mathbf{MA}) = rank(\mathbf{A}), (iii) rank(\mathbf{NB}) = rank(\mathbf{B}). Then,

$$\mathbf{I} = \mathbf{A}(\mathbf{A}'\mathbf{M}\mathbf{A})^{-}\mathbf{A}'\mathbf{M} + \mathbf{N}\mathbf{B}(\mathbf{B}'\mathbf{N}\mathbf{B})^{-}\mathbf{B}'.$$

• Reduces to the original lemma when $\mathbf{M} = \mathbf{K}$ and $\mathbf{N} = \mathbf{K}^{-1}$.

The WG Theorem

- Let Y (n × p) be of rank r, and let A (n × s) and B (p × s) be such that A'YB is invertible.
- Then,

$$rank(\mathbf{Y}_1) = rank(\mathbf{Y}) - rank(\mathbf{Y}\mathbf{B}(\mathbf{A}'\mathbf{Y}\mathbf{B})^{-1}\mathbf{A}'\mathbf{Y})$$
$$= rank(\mathbf{Y}) - rank(\mathbf{A}'\mathbf{Y}\mathbf{B}) = r - s,$$

where

$$\mathbf{Y}_1 = \mathbf{Y} - \mathbf{Y} \mathbf{B} (\mathbf{A}' \mathbf{Y} \mathbf{B})^{-1} \mathbf{A}' \mathbf{Y}.$$

• Wedderburn (1934) for s = 1. Guttman (1944) for s > 1. Guttman (1957) reverse.

a

The Generalized WG Theorem

- When **A'YB** is not invertible, can we replace it by a generalized inverse?
- Yes, but it requires a condition.
- A rank additivity (subtractivity) problem?

rank(
$$\mathbf{Y} - \mathbf{YB}(\mathbf{A}'\mathbf{YB})^{-}\mathbf{A}'\mathbf{Y})$$

= rank(\mathbf{Y}) - rank($\mathbf{YB}(\mathbf{A}'\mathbf{YB})^{-}\mathbf{A}'\mathbf{Y}$). (1)

• Does the following always hold?

$$rank(\mathbf{YB}(\mathbf{A}'\mathbf{YB})^{-}\mathbf{A}'\mathbf{Y}) = rank(\mathbf{A}'\mathbf{YB})$$
(2)

• No. Tian and Styan (2009) showed the following always holds:

$$rank(\mathbf{Y} - \mathbf{Y}\mathbf{B}(\mathbf{A}'\mathbf{Y}\mathbf{B})^{-}\mathbf{A}'\mathbf{Y}) = rank(\mathbf{Y}) - rank(\mathbf{A}'\mathbf{Y}\mathbf{B}).$$
 (3)

• (2) requires a condition, as does (1).

The ns Condition

• Let $\mathbf{C} = \mathbf{B}(\mathbf{A}'\mathbf{Y}\mathbf{B})^{-}\mathbf{A}'$.

• The *ns* condition for (1)to hold is:

$\mathbf{Y}\mathbf{C}\mathbf{Y}\mathbf{C}\mathbf{Y}=\mathbf{Y}\mathbf{C}\mathbf{Y}.$

- Equivalent conditions: $(\mathbf{Y}\mathbf{C}\mathbf{Y}\mathbf{Y}^{-})^{2} = \mathbf{Y}\mathbf{C}\mathbf{Y}\mathbf{Y}^{-} \Leftrightarrow (\mathbf{Y}^{-}\mathbf{Y}\mathbf{C}\mathbf{Y})^{2} = \mathbf{Y}^{-}\mathbf{Y}\mathbf{C}\mathbf{Y}.$
- $(\mathbf{YC})^2 = \mathbf{YC}$ or $(\mathbf{CY})^2 = \mathbf{CY}$ (sufficient but not necessary).
- **CYC** = **C** (sufficient but not necessary). Even stronger than idempotency of **YC** or **CY**.

The WG Decomposition

•
$$\mathbf{Y} = \mathbf{Y}\mathbf{B}(\mathbf{A}'\mathbf{Y}\mathbf{B})^{-}\mathbf{A}'\mathbf{Y} + (\mathbf{Y} - \mathbf{Y}\mathbf{B}(\mathbf{A}'\mathbf{Y}\mathbf{B})^{-}\mathbf{A}'\mathbf{Y}).$$

• Let $\tilde{\mathbf{A}}$, $\tilde{\mathbf{B}}$ be matrices such that
(i) $\operatorname{Sp}(\tilde{\mathbf{A}}) \subset \operatorname{Sp}(\mathbf{Y}),$
(ii) $\operatorname{Sp}(\tilde{\mathbf{B}}) \subset \operatorname{Sp}(\mathbf{Y}'),$
(iii) $\operatorname{rank}(\mathbf{A}'\mathbf{Y}\mathbf{B}) + \operatorname{rank}(\tilde{\mathbf{B}}'\mathbf{Y}^{-}\tilde{\mathbf{A}}) = \operatorname{rank}(\mathbf{Y}),$
(iv) $\mathbf{A}'\mathbf{Y}\mathbf{Y}^{-}\tilde{\mathbf{A}} = \mathbf{A}'\tilde{\mathbf{A}} = \mathbf{O},$
(v) $\tilde{\mathbf{B}}'\mathbf{Y}^{-}\mathbf{Y}\mathbf{B} = \tilde{\mathbf{B}}'\mathbf{B} = \mathbf{O}.$

• Then, $\mathbf{Y} = \mathbf{Y}\mathbf{B}(\mathbf{A}'\mathbf{Y}\mathbf{B})^{-}\mathbf{A}'\mathbf{Y} + \tilde{\mathbf{A}}(\tilde{\mathbf{B}}'\mathbf{Y}^{-}\tilde{\mathbf{A}})^{-}\tilde{\mathbf{B}}'.$

Livisersity of Victoria

э

- R_X(λ) = X(X'X + λP_{X'})⁻X', where P_{X'} = X'(XX')⁻X is the orthogonal projector onto Sp(X'). (P_{X'} = I if X is columnwise nonsingular.)
- The ridge LS estimation $\min_{\mathbf{c}} = \phi_{\lambda}(\mathbf{c})$, where $\phi_{\lambda}(\mathbf{c}) = SS(\mathbf{e}) + \lambda SS(\mathbf{c})_{P_{X'}}$ and $\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{c}$. (We assume, w/o loss of generality, that $Sp(\mathbf{c}) \subset Sp(\mathbf{X'})$.)

- Let $\mathbf{S}_X(\lambda) = \mathbf{I} \mathbf{R}_X(\lambda)$.
- $\mathbf{R}_X(\lambda)$ and $\mathbf{S}_X(\lambda)$ have properties similar to those of \mathbf{P}_X and \mathbf{Q}_X .
- For example:

$$\begin{aligned} & \mathsf{R}_X(\lambda)\mathsf{K}_X(\lambda)\mathsf{R}_X(\lambda) = \mathsf{R}_X(\lambda) \text{ (i.e., } \mathsf{K}_X(\lambda) = \mathsf{R}_X(\lambda)^+.), \\ & \mathsf{R}_X(\lambda) - \mathsf{R}_X(\lambda)^2 = \mathsf{R}_X(\lambda)\mathsf{S}_X(\lambda) = \mathsf{S}_X(\lambda)\mathsf{R}_X(\lambda) \ge \mathsf{O}. \\ & \mathsf{R}_X(\lambda)\mathsf{K}_X(\lambda) = \mathsf{P}_X, \text{ etc.} \end{aligned}$$

• Similar decompositions of $\mathbf{R}_X(\lambda)$ to those of \mathbf{P}_X .

- Ridge metric matrix: $\mathbf{K}_X(\lambda) = \mathbf{P}_X + \lambda (\mathbf{X}\mathbf{X}')^+$.
- Then, $\mathbf{R}_X(\lambda)$ can be rewritten as:

$$\mathbf{R}_X(\lambda) = \mathbf{X}(\mathbf{X}'\mathbf{K}_X(\lambda)\mathbf{X})^{-}\mathbf{X}'.$$

• Generalized ridge operator:

 $\mathbf{R}_{X}^{(W,L)}(\lambda) = \mathbf{X}(\mathbf{X}'\mathbf{W}\mathbf{X} + \lambda\mathbf{L})^{-}\mathbf{X}'\mathbf{W}$, where **L** is an *nnd* matrix such that $Sp(\mathbf{L}) \subset Sp(\mathbf{X}')$, and **W** is an *nnd* matrix such that rank($\mathbf{W}\mathbf{X}$) = rank(\mathbf{X}).

• Generalized ridge metric matrix: $\mathbf{K}_{X}^{(W,L)}(\lambda) = \mathbf{P}_{X} + \lambda \mathbf{X} (\mathbf{X}'\mathbf{W}\mathbf{X})^{-} \mathbf{L} (\mathbf{X}'\mathbf{W}\mathbf{X})^{-} \mathbf{X}'\mathbf{W}.$

• Then, $\mathbf{R}_X^{(W,L)}(\lambda) = \mathbf{X}(\mathbf{X}'\mathbf{W}\mathbf{K}_X^{(W,L)}(\lambda)\mathbf{X})^-\mathbf{X}'\mathbf{W}.$

t

- Total association between **X** and **Y**: $tr(\mathbf{P}_X\mathbf{P}_Y)$.
- $\mathbf{X} = \mathbf{M} + \mathbf{N}$, $\mathbf{M'N} = \mathbf{O}$ does not guarantee $\mathbf{P}_X = \mathbf{P}_M + \mathbf{P}_N$.
- cf. $\mathbf{X} = [\mathbf{M}, \mathbf{N}]$, $\mathbf{M}'\mathbf{N} = \mathbf{O}$ leads to $\mathbf{P}_X = \mathbf{P}_M + \mathbf{P}_N$.
- We need orthogonal decompositions of \mathbf{P}_X and \mathbf{P}_Y to derive additive decompositions of the total association.

Two Orthogonal Decompositions of Projectors

• (1) Let A, B, and W be matrices such that $Sp(A) = Ker(H'X'P_GX)$, $Sp(B) = Ker(H'X'Q_GX)$, and Sp(W) = Ker(X'G). Then,

$$\mathbf{P}_{[X,G]} = \mathbf{P}_{P_G XH} + \mathbf{P}_{P_G XA} + \mathbf{P}_{Q_G XH} + \mathbf{P}_{Q_G XB} + \mathbf{P}_{GW}.$$

• (2) Let \mathbf{K} , \mathbf{U} , and \mathbf{V} be matrices such that $Sp(\mathbf{K}) = Ker(\mathbf{H}'\mathbf{X}'\mathbf{X})$, $Sp(\mathbf{U}) = Ker(\mathbf{G}'\mathbf{X}\mathbf{H})$, and $Sp(\mathbf{V}) = Ker(\mathbf{G}'\mathbf{X}\mathbf{K})$. Then,

$$\mathbf{P}_{[X,G]} = \mathbf{P}_{P_{XH}G} + \mathbf{P}_{XHU} + \mathbf{P}_{P_{XK}G} + \mathbf{P}_{XKV} + \mathbf{P}_{Q_XG}.$$

- Similar decompositions of $\mathbf{P}_{[\mathbf{Y},\mathbf{G}_{Y}]}$.
- Take one term each from a decomposition of $P_{[X,G_{\chi}]}$ and that of $P_{[Y,G_{\gamma}]}$, apply SVD to the product of the two, e.g.,

$$SVD(\mathbf{P}_{\mathbf{Q}_{G_{\chi}}XH_{\chi}}\mathbf{P}_{YH_{Y}U_{Y}}).$$

Confounding Variables

- Causal inferences without randomization. How to eliminate the effects of confounding variables.
- y: The dependent variable.
- x: The independent variable.
- U: The confounding variables.
- Regression analysis (1): y = xa₁ + Uc + e₁. The OLS estimate of xa₁ is given by

$$\mathbf{x}\hat{a}_1 = \mathbf{P}_{\mathbf{x}/Q_u}\mathbf{y} \tag{4}$$

• On the other hand, consider the regression of x onto U, i.e., $x = Ud + e_2$. The OLS estimate of Ud is given by

$$\mathbf{U}\hat{\mathbf{d}} = \mathbf{P}_U \mathbf{x}.$$
 (5)

Linear Propensity Scores

- We call P_Ux linear propensity scores. Residuals from the above regression Q_Ux represent the portions of x left unaccounted for by U.
- We next consider using P_Ux instead of U in the first regression, i.e., y = xa₂ + P_Uxb + e₃. the OLS estimate of xa₂ is given by

$$\mathbf{x}\hat{a}_2 = \mathbf{P}_{x/Q_{P_U^{\times}}}\mathbf{y},\tag{6}$$

where $\mathbf{Q}_{P_{U}x} = \mathbf{I} - \mathbf{P}_{U}\mathbf{x}(\mathbf{x}'\mathbf{P}_{U}\mathbf{x})^{-1}\mathbf{x}'\mathbf{P}_{U}$.

• Since $\mathbf{Q}_{P_U \mathbf{x}} \mathbf{x} = \mathbf{x} - \mathbf{P}_U \mathbf{x} (\mathbf{x}' \mathbf{P}_U \mathbf{x})^{-1} \mathbf{x}' \mathbf{P}_U \mathbf{x} = \mathbf{Q}_U \mathbf{x}$, we obtain

$$\mathbf{P}_{x/Q_{P_Ux}}\mathbf{y} = \mathbf{P}_{x/Q_U}\mathbf{y}.$$
 (7)

This means (4) and (6) are equivalent.

Regression analysis: y = xa₃ + e₄. The IV estimate of xa₃ with z = Q_Ux as the IV is given by

$$\mathbf{x}\hat{a}_3 = \mathbf{P}_{x/P_z}\mathbf{y} = \mathbf{P}_{x/Q_U}\mathbf{y}.$$
 (8)

• Since $\mathbf{P}_z = \mathbf{Q}_U \mathbf{x} (\mathbf{x}' \mathbf{Q}_U \mathbf{x})^{-1} \mathbf{x}' \mathbf{Q}_U$ and $\mathbf{x}' \mathbf{P}_z = \mathbf{x}' \mathbf{Q}_U$, this is identical to (4) and (6).

- It can also be easily verified that z defined above satisfies the following properties required of a IV:
 (i) z'U = 0 (z and U are uncorrelated),
 (ii) z'x ≠ 0 (z and x are correlated),
 (iii) z'Q_[U,x]y = 0 (*i.e.*, z has a predictive power on y only through x).
- (i) and (ii) are trivial. That it also satisfies (3) can be seen from:

$$\mathbf{z}'\mathbf{Q}_{[U,x]}\mathbf{y} = \mathbf{x}'\mathbf{Q}_U\mathbf{Q}_{[U,x]}\mathbf{y} = \mathbf{x}'\mathbf{Q}_{[U,x]}\mathbf{y} = 0.$$
(9)

Thanks for your attention.