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Professor Yanai in 1992 (Puntanen, Styan, and Isotalo,
2011, p. 307)
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Projectors and SVD

Common threads running through them are:

projectors,

singular value decomposition (SVD),

which are main subject matters of Yanai, Takeuchi, and Takane
(2011).
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Takeuchi, Yanai, and Mukherjee (1982): The Foundations
of Multivariate Analysis
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Yanai, Takeuchi, and Takane (2011): Projection matrices,
generalized inverse matrices, and singular value
decomposition
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Topics Covered

(1) Constrained principal component analysis (CPCA)

(2) Khatri’s lemma

(3) The Wedderburn-Guttman theorem

(4) Ridge operators

(5) Constrained canonical correlation analysis

(6) Causal inferences
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Orthogonal Projectors

Sp(X): The space spanned by column vectors of X.

Ker(X′): The orthogonal complement subspace to Sp(X).

Orthogonal projectors onto Sp(X): PX = X(X′X)−X′.

Orthogonal projectors onto Ker(X′): QX = I− PX .

Basic properties:
P′X = PX , Q′X = QX (symmetric).
P2
X = PX , Q2

X = QX (idempotent).
PXQX = QXPX = O (orthogonal).
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K-Orthogonal Projectors

Let K be an nnd matrix such that rank(KX) = rank(X).

K-orthogonal projectors: PX/K = X(X′KX)−X′K, and
QX/K = I− PX/K .

Basic properties:
(KPX/K )′ = KPX/K , (KQX/K )′ = KQX/K (K-symmetric).

P2
X/K = PX/K , Q2

X/K = QX/K (idempotent).

P′X/KKQX/K = Q′X/KKPX/K = O (K-orthogonal).
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CPCA: Two Phases

External Analysis and Internal Analysis.

External Analysis: Decomposes the main data matrix
according to the external information abut the row and
columns of the data matrix =⇒ projection.

Internal Analysis: Further analyses of decomposed matrices
into components =⇒ SVD (singular value decomposition
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External Analysis

Y: The main data matrix.

G: The row (left-hand) side information matrix.

H: The column (right-hand) side information matrix.

The basic decomposition:

Y = PGYPH + QGYPH + PGYQH + QGYQH .

A similar decomposition with K-orthogonal projectors.
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Finer Decompositions (1)

G = [M,N].

(1) PG = PM + PN ⇔M′N = O.

(2) PG = PM + PN − PMPN ⇔ PMPN = PNPM .

(3) PG = PM + PQMN = PN + PQNM .

(4) PG = PM/QN
+ PN/QM

⇔ rank(G) = rank(M) + rank(N).

(5) PG = PGA + PG(G ′G)−B ⇔ A′B = O,
Sp(A)⊕ Sp(B) = Sp(G′).

Analogous decompositions for PH , PG/K , and PH/L.
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Finer Decompositions (2): Explanations

(1) M and N are mutually orthogonal.

(2) M and N are mutually orthogonal, except their common
space. (ANOVA w/o interactions).

(3) Fit one first and the other to the residuals.

(4) M and N are disjoint. Fit both simultaneously.

(5) A matrix of regression coefficients C constrained by
C = AC∗ or by B′C = O.
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Internal Analysis

PCA of terms obtained by the external analysis of Y, e.g.,
PGYPH , which amounts to SVD(PGYPH).
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Khatri’s Lemma (1)

Constrained Correspondence Analysis (CCA).

U: The row representation matrix. (We consider only the row
side.)

Two ways of constraining U: (1) U = AU∗, and (2) B′U = O.

PA = A(A′A)−A′ = I− B(B′B)−B′ = QB .

What happens if non-identity metric K is used?

Let A (p × r) and B (p × (p − r)) be matrices such that
rank(A) = r , rank(B) = p − r , and A′B = O. Then
I = A(A′KA)−1AK + K−1B(B′K−1B)−1B′ (Khatri, 1966).
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Further Remarks

An alternative expression:
K = KA(A′KA)−1AK + B(B′K−1B)−1B′.

Useful for rewriting Q-type projectors into P-type.
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Some Extensions

Let A (p × r) and B (p × (p − r)) be matrices such that
rank(A) = r and rank(B) = p − r , and let M and N be nnd
matrices such that

(i) A′MNB = O,
(ii) rank(MA) = rank(A),
(iii) rank(NB) = rank(B).

Then,
I = A(A′MA)−A′M + NB(B′NB)−B′.

Reduces to the original lemma when M = K and N = K−1.
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The WG Theorem

Let Y (n × p) be of rank r , and let A (n × s) and B (p × s)
be such that A′YB is invertible.

Then,

rank(Y1) = rank(Y)− rank(YB(A′YB)−1A′Y)

= rank(Y)− rank(A′YB) = r − s,

where
Y1 = Y − YB(A′YB)−1A′Y.

Wedderburn (1934) for s = 1. Guttman (1944) for s > 1.
Guttman (1957) reverse.
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The Generalized WG Theorem

When A′YB is not invertible, can we replace it by a
generalized inverse?

Yes, but it requires a condition.

A rank additivity (subtractivity) problem?

rank(Y − YB(A′YB)−A′Y)

= rank(Y)− rank(YB(A′YB)−A′Y). (1)

Does the following always hold?

rank(YB(A′YB)−A′Y) = rank(A′YB) (2)

No. Tian and Styan (2009) showed the following always holds:

rank(Y − YB(A′YB)−A′Y) = rank(Y)− rank(A′YB). (3)

(2) requires a condition, as does (1).
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The ns Condition

Let C = B(A′YB)−A′.

The ns condition for (1)to hold is:

YCYCY = YCY.

Equivalent conditions:
(YCYY−)2 = YCYY− ⇔ (Y−YCY)2 = Y−YCY.

(YC)2 = YC or (CY)2 = CY (sufficient but not necessary).

CYC = C (sufficient but not necessary). Even stronger than
idempotency of YC or CY.
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The WG Decomposition

Y = YB(A′YB)−A′Y + (Y − YB(A′YB)−A′Y).

Let Ã, B̃ be matrices such that
(i) Sp(Ã) ⊂ Sp(Y),
(ii) Sp(B̃) ⊂ Sp(Y′),
(iii) rank(A′YB) + rank(B̃′Y−Ã) = rank(Y),
(iv) A′YY−Ã = A′Ã = O,
(v) B̃′Y−YB = B̃′B = O.

Then, Y = YB(A′YB)−A′Y + Ã(B̃′Y−Ã)−B̃′.
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Ridge Operator: Definition

RX (λ) = X(X′X + λPX ′)
−X′, where PX ′ = X′(XX′)−X is the

orthogonal projector onto Sp(X′). (PX ′ = I if X is columnwise
nonsingular.)

The ridge LS estimation minc = φλ(c), where
φλ(c) = SS(e) + λSS(c)PX ′ and e = y − Xc. (We assume,
w/o loss of generality, that Sp(c) ⊂ Sp(X′).)
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Ridge Operator: Some Properties

Let SX (λ) = I− RX (λ).

RX (λ) and SX (λ) have properties similar to those of PX and
QX .

For example:
RX (λ)KX (λ)RX (λ) = RX (λ) (i.e., KX (λ) = RX (λ)+.),
RX (λ)− RX (λ)2 = RX (λ)SX (λ) = SX (λ)RX (λ) ≥ O.
RX (λ)KX (λ) = PX , etc.

Similar decompositions of RX (λ) to those of PX .
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Ridge Metric Matrix

Ridge metric matrix: KX (λ) = PX + λ(XX′)+.

Then, RX (λ) can be rewritten as:

RX (λ) = X(X′KX (λ)X)−X′.
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Generalized Ridge Operator

Generalized ridge operator:

R
(W ,L)
X (λ) = X(X′WX + λL)−X′W, where L is an nnd matrix

such that Sp(L) ⊂ Sp(X′), and W is an nnd matrix such that
rank(WX) = rank(X).

Generalized ridge metric matrix:

K
(W ,L)
X (λ) = PX + λX(X′WX)−L(X′WX)−X′W.

Then, R
(W ,L)
X (λ) = X(X′WK

(W ,L)
X (λ)X)−X′W.
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Decompositions of Total Association

Total association between X and Y: tr(PXPY ).

X = M + N, M′N = O does not guarantee PX = PM + PN .

cf. X = [M,N], M′N = O leads to PX = PM + PN .

We need orthogonal decompositions of PX and PY to derive
additive decompositions of the total association.
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Two Orthogonal Decompositions of Projectors

(1) Let A, B, and W be matrices such that
Sp(A) = Ker(H′X′PGX), Sp(B) = Ker(H′X′QGX), and
Sp(W) = Ker(X′G). Then,

P[X ,G ] = PPGXH + PPGXA + PQGXH + PQGXB + PGW .

(2) Let K, U, and V be matrices such that
Sp(K) = Ker(H′X′X), Sp(U) = Ker(G′XH), and
Sp(V) = Ker(G′XK). Then,

P[X ,G ] = PPXHG + PXHU + PPXKG + PXKV + PQXG .
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Constrained Canonical Correlation Analysis

Similar decompositions of P[Y,GY ].

Take one term each from a decomposition of P[X,GX ] and that
of P[Y,GY ], apply SVD to the product of the two, e.g.,

SVD(PQGX
XHX

PYHYUY
).
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Confounding Variables

Causal inferences without randomization. How to eliminate
the effects of confounding variables.

y: The dependent variable.

x: The independent variable.

U: The confounding variables.

Regression analysis (1): y = xa1 + Uc + e1. The OLS
estimate of xa1 is given by

xâ1 = Px/Qu
y (4)

.

On the other hand, consider the regression of x onto U, i.e.,
x = Ud + e2. The OLS estimate of Ud is given by

Ud̂ = PUx. (5)
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Linear Propensity Scores

We call PUx linear propensity scores. Residuals from the
above regression QUx represent the portions of x left
unaccounted for by U.

We next consider using PUx instead of U in the first
regression, i.e., y = xa2 + PUxb + e3. the OLS estimate of
xa2 is given by

xâ2 = Px/QPUx
y, (6)

where QPUx = I− PUx(x′PUx)−1x′PU .

Since QPUxx = x− PUx(x′PUx)−1x′PUx = QUx, we obtain

Px/QPUx
y = Px/QU

y. (7)

This means (4) and (6) are equivalent.
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Instrumental Variable (IV) Estimation

Regression analysis: y = xa3 + e4. The IV estimate of xa3
with z = QUx as the IV is given by

xâ3 = Px/Pz
y = Px/QU

y. (8)

Since Pz = QUx(x′QUx)−1x′QU and x′Pz = x′QU , this is
identical to (4) and (6).
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Instrumental Variable

It can also be easily verified that z defined above satisfies the
following properties required of a IV:
(i) z′U = 0 (z and U are uncorrelated),
(ii) z′x 6= 0 (z and x are correlated),
(iii) z′Q[U,x]y = 0 (i .e., z has a predictive power on y only
through x).

(i) and (ii) are trivial. That it also satisfies (3) can be seen
from:

z′Q[U,x]y = x′QUQ[U,x]y = x′Q[U,x]y = 0. (9)
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Thanks

Thanks for your attention.
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