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Summary

Missing data arise in virtually all data analysis situations, and how
to deal with them is one of the most important concerns for every
data analyst. There are at least two conventional approaches to
missing data in PCA. One is based on homogeneity analysis (HA),
and the other on weighted low rank approximations (WLRA). We
review some properties of these two approaches, emphasizing their
similarities and differences, and suggest some extensions. PCA
with missing data is also important as a preprocessing step to ICA
(whitening) when missing data exist.
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Frequently Used Projectors

Orthogonal projectors:

PZ = Z(Z′Z)−Z′ and QZ = I− PZ .

Oblique projectors: Let W be an nnd matrix such that
rank(WZ) = rank(Z).

PZ/W = Z(Z′WZ)−Z′W

and
QZ/W = I− PZ/W .
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Some Notations

X = [x1, · · · , xp] (n × p): The raw data matrix

1n (n × 1): The vector of ones

Dwj (n × n): A diagonal matrix such that its ith diagonal
element is 1 if the ith element of xj is observed, and 0
otherwise

F (n × r): The matrix of component scores

u′j (1 × r) and u′0j (1 × r): Vectors of weights applied to xj
and 1n

A′ = [a1, · · · , ap] (r × p): The matrix of component loadings

x∗j : The jth data vector centered with respect to non-missing
observations
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Homogeneity Analysis

The HA Approach: Minimize

φ =

p∑
j=1

SS(F− xju
′
j − 1nu

′
0j)Dwj

,

wrt to F, u′j , and u′0j (j = 1, · · · , p), where
SS(Z)W = tr(Z′WZ).

Originally proposed to deal with missing data in multiple
correspondence analysis (Meulman, 1982). (Meulman actually
used the centered data x∗j and set u′0j = 0′r .)

The φ is the criterion commonly used in multiple-set canonical
correlation analysis (when each of the p data sets consists of
more than one variable). The meet loss (Gifi, 1990).
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Weighted Low Rank Approximations

The WLRA Approach: Minimize

τ =

p∑
j=1

SS(x∗j − Fa′j)Dwj
,

with respect to F and aj .

Originally proposed by Gabriel and Zamir (1979).

We could have the raw data vector xj and the constant term
−1nmj in the minimization criterion. (This was never done
before.)

The τ is the criterion used in PCA. The join loss (Gifi, 1990).
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The Two Criteria

The two criteria were first(?) introduced by Meredith (1964).

They are simply related (one can be turned into the other)
when there are no missing data (i.e., Dwj = In for all j). In
general, however, they are not simply related (Gifi, 1990).

The minimization of φ leads to closed-form solutions, while
that of τ iterative solutions.
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Two Alternative Solutions for HA

Two alternative solutions (Takane & Oshima-Takane, 2003):
(1) The Missing-Data Passive (MDP) Method
(2) The Test Equating (TE) Method.

The MDP Method: Developed in the context of multiple
correspondence analysis (Gifi, 1990) with missing data.

The TE Method: Developed in the context of test equating
(Shibayama, 1988). University entrance examinations create
incomplete data because not all applicants take the same
examinations.
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The MDP Method (1)

Jn = 1p ⊗ In (np × n)

D1 = Ip ⊗ 1n (np × p)

DX (np × p): The block diagonal matrix with xj as the jth
diagonal block

Dw (np × np): The diagonal matrix with Dwj as the jth
diagonal block

U′ = [u1, · · · ,up] (r × p), and U′0 = [u01, · · · ,u0p] (r × p)

We rewrite the HA criterion as follows (without using a
summation mark):

φ = SS(JnF−DXU−D1U0)Dw .
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The MDP Method (2)

The MDP method minimizes φ in the order of

min
F

min
U|F

min
U0|F ,U

φ

subject to the restrictions that 1′nF = 0′r and F′QF = Ir (Note
1), where Q =

∑p
j=1DwjQ1n/Dwj

.

This leads to the generalized eigen-equation

(J′nQ̃PDX /Q̃
Jn)F = (J′nQ̃Jn)F∆2

to be solved for F, where Q̃ = DwQD1/Dw
(Note 0).
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The TE Method (1)

The TE method minimizes the same criterion, but in different
order. This leads to different restrictions under which φ is
minimized and different parameter estimates.

We rewrite the HA criterion using different symbols for
parameter matrices:

ψ = SS(JnG−DXV −D1V0)Dw .
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The TE Method (2)

The TE method minimizes ψ in the order of

min
V

min
V0|V

min
G |V ,V0

ψ

subject to 1′pV0 = 0′r and V′SV = Ir (Note 1), where

S = D′X Q̃DX .

This leads to the generalized eigen-equation

D′X (Q̃−Q∗ + Q∗PD1/Q∗)DXV = SV∆2

to be solved for V, where Q∗ = DwQJn/Dw
(Note 0).
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The Relationship between the Two (1)

X∗ = [Q1n/Dw1
x1, · · · ,Q1n/Dwp

xp]

Q =
∑p

j=1DwjQ1n/Dwj
= J′nQ̃Jn.

The generalized eigen-equations solved in the two methods
can be rewritten as

X∗S−1X∗
′
F = QF∆2,

and
X∗
′
Q+X∗V = SV∆2.

Note for the latter we used
D′X (Q̃−Q∗QD1/Q∗)DX = D′X (Q̃PJn/Q̃

)DX = X∗
′
Q+X∗

(Note 2).
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The Relationship between the Two (2)

These two eigen-equations are simply related. They are both
simply related to GSVD(Q+X∗S−1)Q,S denoted as
Q+X∗S−1 = F∆V′.

More specific relationships between parameters:
F = Q1nG∆−1.
U = V∆ (V = U∆−1).
The relationship between U0 and V0 is rather complicated in
general. When there are no missing data, we have
U0 = (V0 − 1p1′nG/n)∆, or G = F∆ − 1n1′pU0∆−1.
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WLRA

The WLRA method allows very flexible weighting schemes in
low-rank approximations to data matrices.

Let x∗ = vec(X∗), and x0 = vec(FA′). Consider minimizing

τ = (x∗ − x0)′W∗(x∗ − x0),

where W∗ is an np by np nnd weight matrix.

This minimization cannot be solved in closed form except for
special cases in which W∗ = L⊗K, where L is a p by p nnd
matrix and K is an n by n nnd matrix, in which case the
problem reduces to GSVD(X∗)K ,L.
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General Solutions

x0 can be rewritten in two alternative ways:
x0 = (A× In)vec(F) = (Ip ⊗ F)vec(A′), which form a basis for
an iterative updating of f = vec(F) and a = vec(A′).

Let A∗ = A⊗ In. Then f can be updated by
f = (A∗

′
W∗A∗)−1A∗

′
W∗x∗ for fixed A.

Let F∗ = Ip ⊗ F. Then a can be updated by
a = (F∗

′
W∗F∗)−1F∗

′
W∗x∗ for fixed F.

An ALS (alternating least squares) algorithm, which is
monotonically convergent.
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Simplification (1)

When W∗ is diagonal, the algorithm can be simplified
considerably.

The τ can be rewritten as

τ =

p∑
j=1

SS(x∗j − Faj)Dwj
.

The aj can be separately updated.
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Simplification (2)

x∗
′

i : The ith row vector of X∗

f ′i : The ith row vector of F

Dw ′i
: The diagonal weight matrix whose jth diagonal element

is 1 if the jth element of x∗
′

i is observed, and 0 otherwise.

Then, τ can be rewritten in another way as

τ =
n∑

i=1

SS(x∗
′

i − f ′iA
′)Dw′

i

,

and f ′i can be separately updated.
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Including the Constant Term

It is possible to include a constant term as in HA. However,
the algorithm becomes a bit unwieldy.

Suppose the data are not centered. This requires the constant
term −1nmj to be included in the criterion. We minimize
τ∗ =

∑p
j=1 SS(xj − Faj − 1nmj)Dwj

with respect to mj and aj ,

which leads to mj = (1nDwj1n)−11′nDwj (xj − Faj), and
aj = (F′QjF)−1F′Qjxj , where Qj = DwjQ1/Dwj

. This matrix

is not diagonal. The τ∗ is no longer separable with respect to
i . A full version of the algorithm is necessary.
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Concluding Remarks

I tend to favor the HA approach:
1. Closed-form solutions
2. Nested solutions
3. No need to prescribe the number of components

Monte Carlo experiments are necessary to compare the two
approaches systematically.
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Note 0

The U0 and U in the MDP method are given by:

U0 = (D′1DwD1)−1D′1Dw (JnF−DXU),

and
U = (D′X Q̃DX )−1D′X Q̃JnF.

The GandV0 in the TE method are given by:

G = (J′nDwJn)−1J′nDw (DXV + D1V0),

nd
V0 = −(D′1Q

∗D1)+D′1Q
∗DXV,

where + indicates a Moore-Penrose inverse.
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Notes 1 & 2

Note 1. These restriction are necessary, although arbitrary in
form, because Jn and D1 are not disjoint, and the
homogeneity criterion can be trivially made zero by setting all
parameter matrices to zero matrices.

Note 2. Takane and Zhou (2012; Lemma 3). Let Z = [M,N].
Then,

Q[M,N]/K = QM/KQN/KQM/K
= QN/KQM/KQN/K

.
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