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Abstract

An overview of the theoretical and methodological foundations of an approach to quantify-
ing qualitative data is presented. The two cornerstones of the approach, known as alter-
nating least squares and optimal scaling, are explained. It is emphasized that the approach
has two major advantages: a) If a least squares method is known for analyzing quantitative
data then a least squares method can be constructed for analyzing qualitative data; and b)
the approach yields algorithms which are convergent and which have relatively few dif-
ficulties with local minima. A system of programs for quantifying qualitative data with
either the additive, multiple regression, canonical regression, principal components,
common-factor analysis, three mode factor analysis, or multidimensional scaling model is
briefly discussed.

0. Introduction

Perhaps one of the main impediments (o rapid progress in the develop-
ment of the social, behavioral and biological sciences is the omnipresence
of qualitative data. All too often it is simply impossible to obtain numeri-
cal data: the researcher must either settle for qualitative data or no data at
all. Many times it is only possible to determine the category in which a par-
ticular datum falls. The sociologist, for example, obtains categorical in-
formation about the religious affiliation of his respondents; the botanist
obtains categorical information about the family to which his plants
belong; and the psychologist obtains categorical information about the
psychosis of his patient. Even in the best of circumstances it is often im-
possible to obtain anything beyond the order in which the data categories
fall. When the sociologist observes the amount of education of the
respondents in his sample he knows that the observation categories are
ordered, but he is unable to assign precise numerical values to the
categories. When the psychologist obtains rating scale judgments, the
judgments may reasonably be viewed as ordinal, but not always as
numerical.

Given the ubiquity of qualitative data one can understand the long and
persistent interest in its quantification. If one could somehow develop a
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method for assigning «good» numerical values to the data categories,
then the data would be quantified and would be susceptible to more mean-
ingful analysis. Curiosity about the topic is nascent in the classical work
by YuLe (1910), and methods for quantification first began to appear
around 1940. Probably the first widely disseminated procedure was
Fisher’s «appropriate scoring» technique (FiSHER, 1938, pp.285-298)
which was introduced at about the same time as a method proposed by
GUTTMAN (1941). Several authors worked on the problemin the early 50’s
(BURT, 1950, 1953; HAYAsHI, 1950; GUTTMAN, 1953) with this work being
summarized by TORGERSON (1958, pp.338-345). Much work has occurred
recently, with the most important probably being performed by DE
Leeuw (1973), BENzECRI (1973), and NisHisaTo (1973).

In this paper we refer to the process of quantifying qualitative data as
«optimal scaling», a term first introduced by Bock (1960). By our defini-
tion, optimal scaling is a data analysis technique which assigns numerical

Table 1. Programs in the ALSOS System.

Program Analysis Data Primary reference
ADDALS Additivity analysis  Two or three way pE LEEUW, YOUNG &
(Analysis of vari- tables. Nonortho- TAKANE (1976)
ance) gonal and incom-
plete designs per-
mitted
WADDALS Weighted additivity Same as ADDALS  TAKANE, YOUNG, &
: analysis : DE LEEUW, (1980)
CANALS Muitiple and ca- Mixed measurement YOUNG, DE LEEUW &
nonical regression level multivariate TAKANE (1976), DE
data LEEUW & VAN DER
Burao (1978)
HOMALS, Principal compo- Same as CANALS  YOUNG, TAKANE &
PRINCIPALS, nents and homo- DE LEEUW (1978), DE
PRINCALS geneity analysis : LEEUwW & VAN RUCKE-
VORSEL (1980)
FACTALS Common-factor Same as CANALS  TAKANE, YOUNG &
analysis pE LEBUW (1979)
ALSCOMP Three-mode princi- Three way mixed SANDS (1978)
pal components measurement level
analysis , multivariate data
ALSCAL Two or three way Two or three way TAKANE, YOUNG &
multidimensional similarities tables or DE LEEUW (1977)
scaling multivariate data
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values to observation categories in a way which maximizes the relation
between the observations and the data analysis model while respecting the
measurement character of the data. Note that this is a very general defini-
tion: There is-no precise specification of the nature of the model, nor is
there precise specification of the measurement character of the data.
Working with this definition of optimal scaling, the authors of this paper
have developed a system of programs for quantifying qualitative data (see
Table 1). The programs permit the data to have a variety of measurement
characteristics, and permit data analysis with a variety of models. We
refer to this system of programs as the ALSOS system since it uses the
Alternating Least Squares (ALS) approach to Optimal Scaling (OS).

As we will show in this paper, the ALSOS approach to algorithm con-
struction has one very important implication for data analysis: If a proce-
dure is known for obtaining a least squares description of numerical (in-
terval or ratio measurement level) data then an ALSOS algorithm can be
constructed to obtain a least squares description of qualitative data (hav-
ing a variety of measurement characteristics).

The ALSOS system currently includes several programs (see Table 1)
which quantify qualitative data by applying (a) the simple additive model,
(b) the weighted additive model, (c) the multiple regression model, (d) the
canonical regression model, (€) the principal components model, (f) the
common-factor model, (g) the three-mode factor model, or (h) the multi-
dimensional scaling model. For these programs the data may be defined at
the binary, nominal, ordinal or interval levels of measurement (and the
ratio level- with the multidimensional scaling program), and may be
thought of as having been generated by either a discrete or continuous
underlying process. The ALSOS programs also permit any arbitrary pat-
tern of missing data, permit boundary or range restrictions on the vajues
assigned to the observation categories, and permit the use of partial orders
with ordinal data. Information on these programs may be obtained from
the first author.

1. Alternating Least Squares

Each of the ALSOS programs optimizes an objective loss function by us-
ing an algorithm based on the alternanng least squares and optimal scal-
ing principles.

The OS principle involves viewing observations as categorical, and
then representing each observation category by a parameter. This para-
meter is subject to constraints implied by the measurement characteristics
of the variable (i.e., order constraints for ordinal variables).
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- The ALS principle involves dividing all of the parameters into two
mutually exclusive and exhaustive subsets: (a) the parameters of the
model; and (b) the optimal scaling parameters. We then proceed to op-
timize a loss function by alternately optimizing with respect to one subset,
then the other. We do this by obtaining the least squares estimates of the
parameters in one subset while assuming that the parameters in the other
are constants. We call this a conditional least squares estimate, since the
least squares nature is conditional on the values of the parameters in the
other subset. Once we have obtained conditional least squares estimates
we immediately replace the old estimates of these parameters by the new
estimates. We then switch to the other subset of parameters and obtain
their conditional least squares estimates. We alternately obtain condi-
tional least squares estimates of the parameters in one subset, then the
other subset, until convergence (which is assured under certain conditions
discussed in later portions of this paper) is closely approached. The flow
of an ALSOS procedure is diagrammed in Figure 1. Certain strong corre-
spondences exist between an ALSOS procedure and the NILES approach
to algorithm construction investigated by WoLD & LYTTKENS (1969), the
CANDECOMP algorithm of CARROLL & CHANG (1970), and the class of

INITIALIZE
OPTIMAL SCALING , MODEL ESTIMATION
Obtain conditional least squares ’ Obtain conditional least squares
estimates of optimal scaling estimates of model parameters
porameters N
. ALTERNATE )

Replace old optimal scaling Replace old model bordmﬂon
parameters with new with new ' .

TERMINATE

Fig. 1. Flow of an ALSOS algorithm.
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numerical analysis algorithms known as successive block algorithms (HA-
GEMANN & PoRrscHING, 1975). The main difference between these algo-
rithms and an ALSOS algorithm is the optimal scaling feature of the
ALSOS algorithm. '

2. Quantification with unknown models: Theory
2.1 Introduction

One advantage of combining the ALS principle with the OS principle is
that the OS phase of the algorithm does not need to know the type of
model involved in the analysis. Thus, we can quantify qualitative data
without knowing the specific nature of the model.

For the optimal scaling we need a model space and a data space, in the
terminology of Youna (1975a), to obtain the optimal scaling space (see
Figure 2). .

We assume that there is a model space represented by a vector whose
elements are measured at the cardinal (interval or higher) level. The model
space is not the parameter space. We do not know either the nature of the
model (the combination or functional rule by which the model space is
computed from the parameters), nor do we know the actual values of the

PARAMETER SPACE

p dimensions {(p<n), ene
for each parumeter

[rumerical)

Fig.2. Some aspects of a data theory.
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‘model parameters. All we know is that some parameter values exist some-

where, and that somehow they have been combined together to yield the
model space.
We also assume that there is a data space represented by a vector of

. data. We further assume that the measurement characteristics of the data

(whether it is discrete or continuous, what the measurement level is) are
known.

The goal of OS is to derive an optimal scaling space which has two
characteristics: First, it must perfectly satisfy the measurement character-
istics of the data space; and second, it must have a least squares relation-
ship to the model space, given that the measurement characteristics are
perfectly satisfied.

2.2 Transformations

To fully understand some of the concepts discussed below we must em-
phasize a concept which is crucial to our work: It is our view that all obser-
vations are categorical. That is, we view an observation variable as con-
sisting of observations which fall into a variety of categories, such that all
observations in a particular category are empirically equivalent. Further-
more, we take this «categorical» view regardless of the variable’s mea-
surement characteristics. Put most simply, it is our view that the observa-
tional process delivers observations which are categorical because of the
finite precision of the measurement and observation process, if for no
other reason. For example, if one is measuring temperature with an ordi-
nary thermometer (which is likely to generate interval level observations
reasonably assumed to reflect a continuous process) it is doubtful whether
the degrees are reported with any more precision than whole degrees.
Thus, the obscrvation is categorical: thercarca very large (indeed infinite)
number of uniquely different temperatures which would all be reported as
say, 40°. Therefore, we say that the observation of 40° is categorical.
At this point we need to define a vector of raw observations. We denote
this observation vector as o, with general element o,. (Underlined lower
case letters refer to vectors, and non-underlined lower case letters to
scalars.) We also define the model vector z, with general element z,, and
the optimally scaled observation vector z*, with general element z%. The
vector o is the data space (we assume that the elements in o are organized
so that all observations in a particular category are contiguous). The vec-
tor zand z* arethe model and optimally scaled observation spaces, respec-
tively (we assume that their elements are organized in a fashion having a

155




one to one correspondence with 0). The element z% is the parameter
representing the observation o;.

With these definitions we can formally represent the OS problem as a
transformation problem, as follows. We wish to obtaina transformation ¢
(script letters indicate transformations) of the raw observations which
generates the optimally scaled observations,

flol = 1, W

where the precise definition of ¢ is a function of the measurement charac-
teristics of the observations, and is such that a least squares relationship
will exist between z and z*, given that the measurement characteristics are
strictly maintained. The numerical value assigned to z%, then, is the op-
timal parameter value for the observation o,.

Various types of restrictions are placed on the transformation ¢, with
the type of restriction depending on the measurement characteristics of
the data. We distinguish two types of measurement restrictions, termed
measurement level and measurement process. The process restrictions
concern the relationships among all the observations within a single cate-
gory, whereas the level restrictions concern the relationships among all the
observations between different categories. The measurement implica-
tions of the restrictions are summarized in Table 2, and the restrictions are
shown in Table 3.

There are two types of process restrictions, one invoked when we as-
sume that the generating process is discrete, and the other when we assume
that it is continuous. One or the other assumption must always be made. If
we believe that the process is discrete (sex is an example of a discrete under-
lying process) then all observations in a particular category (female or

Table 2. Measurement characteristics for six types of measurement.

Level Process
- Discrete Continuous
Nominal Observation categories represented Observation categories represented
. by asingle real number by a closed interval of real numbers
Ordinal Observation categories are ordered Observation categories are ordered
: and tied observations remain tied  but tied observations become untied
Numerical Observation categories are func- Observation categories are function-
tionally related and all observa- ally related but all observations are
tions are precise imprecise
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male) should be represented by the same real number after the transfor-
mation ¢ (the superscript indicates discreteness) has been made. On the
other hand, if we adopt the continuous assumption (as we probably
should for a weight variable) then each of the observations within a par-
ticular category (97.2 kg, for example) should be represented by a real
number selected from a closed interval of real numbers. In the former case
the discrete nature of the process is reflected by the fact that we choose a
single (discrete) number to represent all observations in the category;
whereas in the latter case the continuity of the process is reflected by the
fact that we choose real numbers from a closed (continuous) interval of
real numbers. Formally, we define the two restrictions as follows: The
discrete restriction is

t*:(0,~0,)~*(z;=2%) )

where ~ indicates empirical equivalence (i.e., membership in the same
category). The continuous restriction is represented as

£°:(0,~0,) > (zi=23) < { ;E} <(zi=1z.) 3)

where z; and z} are the lower and upper bounds of the interval of real
numbers. Note that one of the implications of empirical (categorical)
equivalence is that the upper and lower boundaries of all observationsina
particular category are the same for all the observations. Thus, the bound-
aries are more correctly thought of as applying to the categories rather
than the observations, but to denote this would involve a somewhat more
complicated notational system. Note also that for all observations in a
particular category the corresponding optimally scaled observations are
required to fall in the interval but need not be equal.

We now turn to the second set of restraints on the several measurement
transformations, the level restraints. With these restraints we determine
the nature of the allowable transformations f so that they correspond to
the assumed level of measurement of the observation variables. Thereare,
of course, a variety of different restraints which might be of interest, but
we only mention three here. With these three, we can satisfy the character-
istics of Stevens’ four measurement levels. )

For nominal variables, there are no level restraints: The characteristics
of nominal variables are completely specified by the process restraints.
Since there are two types of processes, there are two types of nominal vari-
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ables; discrete-nominal and continuous-nominal. The discrete nominal
variable is quite common, with the sex of a person being such a variable. It
is clear that this is a nominal variable, and it is reasonable to assume that
the two observation categories (male and female) are generated by a dis-
crete underlying process. An example of a continuous-nominal measure-
ment variable is that of color words. The various observation categories
may be blue, red, yellow, green, etc., which, while nominal, actually re-
present a continuous underlying process (wave length).

For ordinal variables, we require, in addition to the process restraints,
that the real numbers assigned to observations in different categories re-
present the order of the empirical observations:

1°:(0, < 0,) (2% <2z¥) C)

where the superscript on ¢° indicates the order restriction, and where < in-
dicates empirical order. The problem of what to do about ties has already
been handled by the process notion. If the variable s discrete-ordinal (£*°)
then tied observations remain tied after transformation, whereas for con-
tinuous-ordinal (¢=°) variables tied observations may be untied after trans-
formation. The discrete-ordinal case is well exemplified by data obtained
from subjects who order n-1 kinship terms according to their similarity to
the n’th term. A continuous ordinal variable might be the income level of
one’s father, as it is usually obtained in survey data. The observation
categories might be «less than § 5.000,» «$ 5.000-10.000,» «$ 10.000-
20.000,» and «more than $ 20.000,» and one can imagine the continuous
process by which such ordered categories are produced.

For numerical (interval or ratio) variables we require that the real num-
bers assigned to the observations be functionally related to the observa-
tions. For example (other examples are easily constructed) we might re-
quire that the optimally scaled and raw observations be related by some
polynominal rule:

p
2% = Y §,0% %)
q=0

If p = 2, for example, we have a quadratic relationship between the op-
timally scaled and raw observations. When p=1 we obtain the familiar
linear relationship used with interval level variables (and with ratio level
variables when 8§, = 0).

It is important to note that with numerical variables the role played by
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the discrete-continuous distinction is that of measurement precision. If we
‘think that our observations are perfectly precise then we wish that all
observations should be related to the optimally scaled observations by ex-
actly the function specified by equation (5). However, if we think that
there is some lack of precision in the measurement situation, then we may
wish to let the optimally scaled observations «wobble» around the func-
tion specified by equation (5) just a bit. The former case corresponds to
the discrete-interval or discrete-ratio case in which we allow no within ob-
servation category variation, and the latter case corresponds.to the con-
tinuous-interval or continuous-ratio case in which we do permit some
within category variation. Note that this notion is sensible even when
there is only one observation in a particular observation category, as is
usually the case. '

Let us re-emphasize that even though the data are viewed as categori-
cal, it is just as possible to obtain a categorical datum which is measured at
the interval level of measurement but which was generated by a discrete
process, as it is possibleto obtaina categorical datum which is measured at
the nominal level of measurement but which was generated by a con-
tinuous process. There is no necessary relationship between the presumed
underlying generating process and the level of measurement, and in any
case the datum is categorical. . ¥ .

2.3 Geometrical interpretation

Figure 3 presents the geometric relations among the model, data and op-
timal scaling spaces, as well as the parameter space. Note that the model,
data and optimal scaling spaces are pictured as all being components of a
single «problem» space of dimensionality n, with each observation repre-
sented by a dimension of the space. We refer to this space as the «prob-
lem» space because it is in this space that we characterize and solve the
data analysis problem under consideration. Note that the problem space is
a space of real numbers, and that the space hasa dimension for each of the
observations, including missing observations (if there are any). '

We emphasize that the parameter space is not part of the problem
space. The parameter space is of dimensionality p, one dimension for each
of the p parameters. Usually p is much less thann, the reduction in dimen-
sionality representing the parsimony of description inherent in the model.
As shown in the figure, the parameter and model spaces are related by a
rule for mapping from one space to the other, arule which we call thecom-
‘bination rule (YouNg, 1975a). More will be said about this later. -
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PROBLEM SPACE
(Reois of dimensionality n)

Fig.3. Geometry of a data theory.

In the problem space we have, geometrically, represented the model
and optimal scaling spaces as vectors and the data space as a cone. Fur-
thermore, the two vectors and cone all intersect at the origin of the prob-
lem space. We choose the type of representation for each of the three
spaces for specific reasons. We represent the optimal scaling space as a
geometric vector running through the origin to emphasize the fact that the
elements of the algebraic vector z* define a point in the problem space,
and that if we form the geometric vector which connects that point to the
origin of the problem space then all of the other points on the geometric
vector are equivalent to z* at the ratio level of measurement. In terms of
the restrictions discussed above, any point in the optimal scaling space in
Figure 3 is equivalent to any other point. We represent the model space asa
geometric vector for the same type of reasons.

On the other hand, we represent the data space as a geometric cone, not
a geometric vector. Although the representation is different, the reason-
ing underlying the representation is the same: For the data space a cone
properly represents the measurement characteristics, whereas for the
model and optimal scaling spaces a geometric vector is the proper repre-
sentation. If you reflect on the restrictions given in equations 2 through 5,
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you will see they can all be represented geometrically as cones (some re-
strictions imply certain degenerate cones, for example vectors). This point
has been discussed by DE LEEUW, YOUNG & TAKANE (1976) and by DE
Leguw (1975, 1977b). You will note that the optimal scaling vector is
represented as being on the surface of the cone. Since the optimal scaling
and data spaces are completely equivalent in terms of the measurement
characteristics of the data, the optimal scaling vector must be contained in
the data cone. Since the model and optimal scaling spaces are as nearly
alike as possible in a least squares sense, the optimal scaling vector must be
«near» the model vector. Thus it is usually the case that the optimal scal-
ing vector is on the surface of the cone, since the surface is the part of the
cone which is generally closest to the model space. (The only time that the
optimal scaling vector is inside the cone is when the model space also hap-
pens to be in the cone, which only happens when the model perfectly fits
the data.)

Finally, note the angle a between the model and optimal scaling spaces.
The angle a represents the goodness-of-fit between the two spaces, the
smaller the angle the better the fit. When the angle is zero the fit is perfect
(this usually means that the model and optimal scaling vectors are inside
the data cone, but it may mean that the two are on the surface of the cone).
Note that there is a difficulty associated with a model space consisting en-
tirely of zeros. In this case the fit between the model and optimal scaling
spaces is perfect (a=0), but only in a trivial and uninteresting sense, Thus
we must ensure that whatever procedures we adopt will not yield a solu-
tion at the origin of the problem space. Generally, such solutions are
avoided by normalizing the length of the model and optimal scaling vec-
tors to some arbitrary non-zero length. .

3. Quantification with unknown models: Methods

3.1 | lntroduction.

As stated above, the goal of an optimal scaling algorithm is to derive a
space of optimally scaled data which has two characteristics: First, it must
perfectly satisfy the measurement characteristics of the data space; and
second, it must have a least squares relationship with the model space,
given that the measurement characteristics are perfectly satisfied. In this
section we discuss the methods used to obtain the optimal transforma-
tions £%, £°, t*, t=°, and ¢*. Each of these transformation methods satisfies
the stated measurement characteristic and is least squares. Thus each
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Table 4. Optinial scaling methods for six types of measurement.

Level Process
Discrete Continuous
Nominal Means of mode! elements Means of model estimates, followed
by primary monotonic transforma-
tion
Ordinal Kruskal’s secondary monotonic Kruskal’s primary monotonic trans-
tranformations formations
Numerical Simple linear (or non-linear) re- Simple linear (or non-linear) regres-
gression sion followed by boundary estima-
tion

method is an example of our expanded definition of optimal scaling. The
methods are summarized in Table 4.

3.2 Methods

For the two nominal level transformations ¢* (discrete-nominal) and ¢°
(continuous-nominal) the estimation process is very simple and, at least
for t¢, quite well known (FISHER, 1938, pp.285-298). The t* procedure
consists, simply enough, of defining an element z* as the mean of allthe z,
which correspond to observations o, in a particular category. Since the z3%
are the mean of their corresponding z,, we obtain a least squares fit given
the restrictions placed by the measurement characteristics on ¢ (Eq.2).
Formally, z* is stated, under the discrete-nominal restriction, as

t:2* = U(U'Y)'U’z )
where U is a binary matrix with a row for every observation and a column

for every observation category. The elements of U indicate category mem-
bership:

u, = { 1 iffo,incategoryc )

0 otherwise

The continuous-nominal situation is a bit more complex. The added
complexity is introduced because the continuous-nominal situation, as

163




discussed to this point, involves no measurement restrictions. For t° (Eq.
3) we just have the requirement that each optimally scaled observation
should reside in some interval, and we have placed no restrictions on the
formation of the intervals. Thus we could select arbitrarily large upper
and lower boundaries which would permit all optimally scaled observa-
tions to be set equal to all raw observations, thus minimizing the squared
differences trivially and totally.

Naturally, the process proposed in the previous paragraph is meaning-
less. Therefore, we propose an alternative process which involves addi-
tional restrictions on the relationships between the intervals. Specifically,
we propose a procedure which yields non-overlapping contiguous inter-
vals, thus disallowing the trivial circumstances outlined in the previous
paragraph.

The continuous-nominal transformation ¢ involves the following two-
phase process: In the first phase we treat the data as though they are dis-
crete-nominal and perform a complete ALSOS analysis based on this as-
sumption. When this process has terminated we enter the second phase in
which we treat the data as though they are continuous-ordinal (see below)
and perform a second complete ALSOS analysis using Kruskal’s primary
least-square monotonic transformation. Note that in neither phase do we
actually assume that the data are continuous-nominal. However, the
assumptions which are used do not violate the continuous-nominal nature
of the data. In the first phase we use the categorical information to obtain
the least squares quantification of each category. In the second phase the
quantification from the first phase is used to define an order for the ob-
servation categories. This order is then used to help define interval bound-
aries. Two things should be noted: First, the procedure outlined here
yields a least squares quantification which is consistent with, but slightly
stricter than, the continuous-nominal restrictions specified in Eq.3.
Specifically, the procedure yields non-overlapping intervals, whereas the
restrictions specified by Eq.3 would permit overlapping intervals. Sec-
ond, the procedure outlined here is not the same as the pseudo-ordinal
procedure discussed by pE LEEUW, YOUNG & TAKANE (1976), but is a
newer procedure which avoids the problems mentioned in that paper.
Specifically, the new procedure does not suffer from the oscillations and
discontinuities present in the former procedure.

The two ordinal transformations ¢*° (discrete-ordinal) and ¢*° (contmu-
ous-ordinal) are defined by Kruskal’s least squares monotonic transfor-
mation. Our discrete process corresponds to his secondary procedure, and
our continuous process to his primary procedure. YounNG (1975a) has
shown that both transformations may be formally stated as -
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°:z* = YUY Uz ®

In the continuous-ordinal case U is a binary matrix indicating the z which
must be tied to satisfy the ordinal restrictions, and in the discrete-ordinal
case U is a binary matrix indicating the z which must be tied to satisfy both
the ordinal and categorical restrictions. KRUSKAL (1964) has shown that

the discrete-ordinal case is least squares, and DE LEEUW (1975) has shown .

that the continuous-ordinal case is least squares. DE LEEUW (1977a) has
also developed a third least squares monotonic transformation.

The least squares solution for z* under the restrictions of the ¢° trans-
formation is well known. The ¢° transformation can be written in matrix
notation as

*:z* = US (10)

where U is a matrix with a row for each observation and with p + 1 col-
umns, each column being an integer power of the vector o of observations.
The first column is the zero’th power (i.e., all ones), the second column is
the first power (i.e., is g itself), the third column is the squares g’, etc. The
least squares estimate of z* is :

izt = WU ' Uz : (11

It is important to note that for all of the types of measurement charac-
teristics discussed here, the corresponding transformation ¢ may be view-
ed as though we are regressing the model space z onto the observation
space o in a least squares sense and under the appropriate measurement
restrictions. In particular, each ¢ can be represented by a projection
operator of the form

E=UUy'y (12)

where the particular definition of U depends on the measurement charac-
teristics, as noted above. This means that we can make the important
point that

z* = Ez. (13)

When we formally note that the least squares notion is defined (under suit-
able normalization conditions) as
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¢ = @-2'@*-2 19
and when we define F =1 - E, then we see that
¢'=zF - - )

emphasizing the fact that each of the transformations can be viewed as op-
timizing a relationship between the model space and some linear combina-
tion of the very same model space, where the linear combination is deter-
mined by the measurement restrictions. This point has been emphasized in
a more restricted situation by Young (1975), and was first noted in the pre-
sent context by TAKANE, YOUNG & DE LEEUW (1976). Geometrically, the
projection operator projects the model space z onto the nearest surface of
the data space cone (see Figure 3).

3.3 Normalization

As was mentioned at the end of section 2.3, a trivial (and undesireable)
way of minimizing (14) is to set the model space z equal to zero. Then z* is
also equal to zero for all of the transformations, and hence ¢2 is zero. It is
for this reason that the parenthetical remark referring to «suitable nor-
malization conditions» is made just prior to Eq. (14).

Several different normalizations are used in the ALSOS programs. All
of the normalizations are introduced to avoid solutions represented by the
origin of the problem space (see Figure 3) or other types of trivial solu-
tions. The several normalization conditions have been discussed by Krus-
KAL & CARROLL (1969), b LEEUW (1977b), SANDS (1978) and by Youna
(1972). Two of these conditions are equivalent to defining either

(z.-2'(z.-2
¢ = ————, (16)

z'z
or

-2’ (-2
by = ——— (17

Ly

Zy Zy
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where z, and z, are the «normalized» versions of z* which optimize ¢,and
2 . .

., respectively. That is, :

z, = az*, (18)
and
Z, = bz, ' 9

where a and b are non-negative real numbers.

By looking at Figure 4 we may understand the relationships between ¢2,
¢: and ¢f,, and the relationships betweenz*, z.and z;. This figure presents,
in more detail, a portion of the problem space shown in Figure 3. Specifi-
cally, we are looking down at a portion of the surface of the data cone,
with the surface represented by the irregularly shaped area. Above the
cone’s surface is shown the model vector Z. Note that it emanates from the
origin of the problem space and data cone, the origin denoted 0.0. Theor-

Fig.4. Normalization geometry.
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thogonal projection of the model vector onto the surface of the cone gives
z*, the unnormalized optimally scaled data. As we saw in the previous sec-
tion, this projection is represented by Eq. (12) which minimizes ¢’ (Eq.
14), the unnormalized index of fit. Geometrically, the projection
minimizes the angle a between z and z*, and thus the length of the vector
of residuals r, and, thus Eq. (14) which is simply the square of the length of
the residuals vector Furthermore, z* also minimizes ¢,, since the
denominator of ¢. is constant with respect to z*. Thus, in Eq. (18),a=1.

However, z* does nof minimize ¢.,, even though it minimizes (l;2 and 4):,
as weshall now demonstrate. Recall that a, the angle between zand z*, has
been minimized by orthogonally projecting z onto the cone’s surface. It is
simple to see that

£ orr
¢. = Sin'a =— = —, (20)
z -z z
Furthermore, we can also see that
2 | £, lz ) {8 8
Sin“a = s = , - (21)
Izl” z'z
and, since
Iy = Z,-2, (22)
we see that
, (z-2)'(zo-2)
Sinfae = — oo, (23)

LY

Zy Zy

Thus the vector z. minimizes ¢ (Eq. 17). Furthermore, when z*isusedin
¢. and z; in ¢,, it is the case (from Eqs. 20 and 23) that

o = b, 24
Thus, these two apparently different formulas are in fact equivalent, and

it is arbitrary which normalization is chosen! However, sometimes the
nature of the model dictates that one of the two normalizations is prefer-
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able. In ALSCAL, for example, the model dictates the use of ¢f, for cer-
tain types of data. Thus ¢:, is used.

We have not, however, discovered how to obtain z, from z*; that is, we
still need to determine the value of bin Eq. (19). The value of b is obtained
by noting that

) z*'z*
Cos' a =— ,’ , (25)
zz
and that
z’z
Cos'a = ——. (26)
Z,'2,
Thus
Zz vzt
or e = 4 (27)
z,'z, 'z
and
(z'2)(z'z
'z, = _—.)__:_) (28)
(z*'z%)
Noting that the values within parentheses are scalars, we see that
. (Z'(2*' 2* )2’z (z'z 2’z
z,'z, = 2 2 2 z*| | z* €2 . (29)
(z*'z*)(z*'z%) (z*'z%) @*'z%)
Thus, it follows that
(z'z
z, = |z* 2 (30)
(z*'z%)
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Therefore, in Eq. (19) we see that

z'2d)

T @z

A little study of Figure 4 will reveal that

1 1

b= = —

Cos’a 1-¢,

Thus we also note that

1
o, = 1"5

Finally, the orthogonality of z* and r allows us to also show that

_ @

T

(31

(32)

(33)

(34)

These relationships among the various expressions for b were first noted
by SANDs (1978). The fact that optimizing the unnormalized loss function
by a projection operator is simply related to the more difficult problem of
optimizing a normalized loss function was first discussed by DE LEEUW
(1975) and DE LEEUW, YOUNG & TAKANE (1976) and proved by DE LEEUW

(1977b).

Both SanDs (1978) and pE LEEUW (1977b) also discuss relations be-

tween ¢1,

(z:-2)'(z.-2)

 @-D'e-D

¢2

" -and

(z:-29'@-2

§ =

(Za-Z)' (Zi-Zd)
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where the bar over asymbol indicates a constant vector of means of thein-
dicated vector. Reasoning like that presented above leads to the conclu-
sion that

Z =2z* 37
and that

(z-2)(z-2) -
+ Z.

(z*-2*)'(z*-2%)

(3%

z, = (2*-2)

3.4 Partitions

The final point to be made in this section concerns what we term «mea-
surement partitions». In some sets of data all of the observations are
thought of as having been generated by a single measurement device. Fur-
thermore, with some of these sets of data the measurement device gen-
erates data in such a way that all of the observations are reasonably assum-
ed to be on the same measurement scale. For example, when a subject
makes similarity judgments concerning pairs of stimuli, then all of the
judgments can reasonably be thought of as having been generated by a
single «device» (the subject) and as having been generated on asingle scale
(the rank order of the similarity judgments). However, for other types of
data it is clearly the case that the data are generated by several measure-
ment devices, or on several scales. For example, when we obtain measure-
ment about sex, age, hair color, income, educational background and
political preference from a set of people, we would probably think of each
measurement variable as being derived from a unique measurement
device. In this case we would wish to partition the data space into a set of
mutually exclusive and exhaustive subspaces (one for each variable)
whereas in the first case we would simply view the entire data spaceas a
single space. While the notion of partitions most clearly relates to multi-
variate data, the notion is also uscful for other types of data. For cxample,
Coowmss’ (1964) notion of conditional similarities data (for which a sub-
ject rank orders the similarity of n-1 «comparison» stimuli with respect to
the n’th «standard» stimulus, and then does this n times, each time witha
different stimulus as the «standard») is in our view a situation in which a
single measurement device (the subject) generates n different measure-
ment scales (the rank orders). For this type of data the notion of measure-
ment partitions is also of great use. '
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‘When the data are partitioned, the OS phase of an ALSOS procedure is
slightly more complicated than when they are not partitioned, but only
slightly. The difference is that we must perform the OS and normalization
for each partition separately, one partition at a time. Since the partitions
are mutually exclusive, and since the OS is performed for each partition
separately, the measurement characteristics of one partition need bear no
special relationship to those of another partition. This means, for exam-
ple, that with the procedures oriented towards multivariate data
(CANALS, HOMALS, PRINCALS, FACTALS, ALSCOMP and MO-
RALS) we can analyze data with any mixture of measurement charac-
teristics. :

Note that for partitioned data the overall loss function is defined as the

root-mean-square of the loss functions for each partition. Thus, if (bf
" denotes the normalized loss function for the i’th of p partitions, we define
the overall loss as » -

‘1 p 2 Y12 '
o=\ X & )" (39)
Py , : ‘

There is a very important consideration here, however, which must not
be overlooked. It is sometimes imperative that right after performing the
optimal scaling for a particular subset we immediately replace the old op-
timal scaling with the new optimal scaling. As will become clear from the
next portion of this paper, the immediate replacement is imperative when
the subsets are not independent (where independent will be defined later).
Such independence is, in fact, not generally a characteristic of multivari-
ate data, thus in the programs which analyze such data the replacement is
made immediately. This point has been emphasized in YOUNG, DE LEEUW,
& TAKANE (1976). : :

If, in fact, the partitions are not independent, then there is one addi-
tional consideration. Let’s say, for the multivariate data case, that we
have completed a cycle of optimal scaling and replacement for each vari-
able. Now let’s say that we repeat the optimal scaling of one of the vari-
ables. If we do this then the second optimal scaling of the variable does not
yield the same quantification as the first optimal scaling. Why is this?
Because the variables are not independent. The quantification obtained
by optimally scaling one variable depends on the quantification of each of
the other variables. While this sounds somewhat bothersome, it can be
shown (DE LEEUW, YOUNG & TAKANE, 1976) that were we to perform «in-
ner» iterations («inner» with respect to the scheme in Figure 1) of thecycle

172

AR i e Bk



of optimal scaling and replacement, then this process would convergetoa
point where the quantifications would no longer change upon repeated
optimal scaling. In our work we do not perform such inner optimal scaling
iterations, however, only performing the process once for each variable
(or partition) before switching to the model estimation phase (see Figure
1). Our experience has been that such inner iteration only serves to de-
crease the overall efficiency of the procedure, and we have proven (DE
LEeguw, 1977b) that the number of inner iterations has no effect on the
eventual convergence point. Since performing only one inner iteration (in-
stead of iterating to convergence) can be viewed as a type of relaxation
procedure, it may be that the improved overall efficiency is related to the
same factors which often times cause relaxation procedures to be more ef-
ficient than non-relaxation procedures (HAGEMAN & PORSCHING, 1975).

4. Quantifying data having unknown measurement characteristics

It was stated above that one of the chief advantages of combining the ALS
and OS principles is that the OS phase of an ALSOS algorithm does not
need to know the type of model involved in the analysis. A parallel and
equally important advantage of combining ALS and OS is that the model
estimation phase of an ALSOS algorithm does not need to know anything
about the measurement characteristics of the data. -

" The practical effect of this aspect of an ALSOS procedure is enormous:
If a least squares procedure exists for fittinga particular model to numeri-
cal (i.e., interval or ratio) data, then we can use that procedure in com-
bination with the OS procedures discussed in the previous section to devel-
op an ALSOS algorithm for fitting the model to qualitative data. That’s
all there is to it! If we can obtain a least squares description of numerical
data we can obtain a least squares description of qualitative data. All we
have to do is alternate the numerical least squares procedure with the OS
procedure which is suited to the measurement characteristics of the data
being analyzed. ) o
" There is one hooker: The ALSOS procedure does not guarantee con-
vergence on the globally least squares solution, rather it guarantees con-
vergence on a particular type of local least squares solution. The par-
ticular local optimum upon which an ALSOS procedure converges is de-
termined by only one thing, the initialization process. It is possible that
two different types of initialization procedures will lead an ALSOS proce-
dure into two different local optima, perhaps giving radically different
results. For this reason, and since each phase in an ALSOS procedure is a
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conditional least squares solution (conditional on the current values of the
parameters in the other subset), we refer to the convergence point of an
ALSOS procedure as the conditional global optimum, emphasizing that
the convergence point is more than simply a local optimum, but may not
be the overall global optimum. (The convergence properties of an ALSOS
algorithm have been discussed by bE LEEUW, YOUNG & TAKANE (1976)
and pE LEEUW (1977b) who prove that such a procedure is indeed con-
vergent if (a) the function being optimized is continuous; and (b) if each
phase or subphase of the algorithm optimizes the function.)

Since the initialization procedure is of such importance in the overall
process, it is important to employ the «best» initialization that is avail-
able. In all of the programs in the ALSOS system, we define «best in-
itialization» to mean that we should clearly optimize something relevant
to the problem being solved. We take this something to be the fit of the
model to the raw data. Thus, each of the ALSOS programs is initiated by
applying the numerically least squares procedure to the raw data under the
assumptions that the raw data are quantitative. At least in the multidi-
mensional scaling situation, this procedure has been found to reduce the
frequency of local minima solutions (NULL & YOUNG, 1978).

The procedure for obtaining the conditional least squares estimates of
the model parameters are the familiar procedures used to obtain ordinary
least suares estimates when the data are numerical. The only differenceis
that the procedures are applied to the vector z* of optimally scaled data
(which is numerical, after all) instead of to the vector o of raw observa-
tions. Since we are applying the numerical model estimation procedure to
the optimally scaled data and not to the raw data we are not violating the
measurement assumptions of the raw data, whatever they might be. We
are not even using the raw data in the model estimation phase, thus we do
not need to know its measurement characteristics. Equally important, we
do not have to think up a new way of trying to fit the model to qualitative
data, we simply use existing procedures for fitting it to quantitative data.

The procedure for ADDALS, the algorithm for applying the simple ad-
ditive model (i.e., no interaction terms) to qualitative data is an excellent
example of the simplicity of the model estimation process in'an ALSOS
algorithm (DE LEEUW, YOUNG & TAKANE, 1976). The procedure for ob-
taining the best estimates for the parameters of the additive model

Zijx = a+B+y+n . : (40)

(where we have reorganized the previous model vector z with element z,in-
to a three-way table with element z,,) is very well known: We obtain row
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means to estimate a,, column means to estimate B, plane means to
estimate v, and the grand mean to estimate p. The only difference is that
we base the means on the optimally scaled datum z%;, instead of the raw
datum oy, (both now represented in tabular format). It is important to’
note that with the additive model we do not need to define any type of in-
ner iterations, even when the data are incomplete.

Most of the rest of the procedures that we have developed on the
ALSOS principle are equally simple in the model estimation phase. The
CANALS procedure (DE LEEUW & VAN DER BURG, 1978) applies the mul-
tiple or canonical regression model to mixed measurement level multivari-
ate data (YOUNG, TAKANE, & DE LEEUW, 1976). The model estimation
phase is identical to a standard multiple or canonical regression algo-
rithm, except that it is-applied to the optimally scaled data, not the raw
data.. The PRINCALS and HOMALS procedures apply the principal
components model to mixed measurement level multivariate - data
(Young, TAKANE & DE LEEUW, 1978; DE LEEUW & VAN RIJCKEVORSEL,
1980), and involve nothing more than a standard eigenvalue decomposi-
tion of the optimally scaled data in the model estimation phase.

The only procedure which involves a fairly complicated model estima-
tion phase is the ALSCAL algorithm (YOUNG, TAKANE & LEWYCKY]J,
1978) for performing individual differences multidimensional scaling
(TAKANE, YOUNG & DE LEEUW, 1977). However, the complexity of the
model estimation phase lies in the very nature of the model: There are
several sets of parameters which are not mutually independent (as, for ex-
ample, are the several sets of parameters of the additive model), and which
are not all linearly related to the loss function (as is also the case in the ad-
ditive model). These characteristics of the model can be seen from the
equation defining the model: '

t

Zyy = x v,,w,,(x,_—y,.)z 41)
a=1 .

where, again, z; is a tabular reorganization of the model space vector z,
with subscripts i and j referring to objects or events about which we have
some sort of similarity information, and subscript k referring tosituations
(subjects, experimental conditions, etc.) under which the similarity infor-
mation is observed. The parameters v,, are «stimulus weights» of the
asymmetric Euclidean model (Younc 1975b), w,, are subject weights of
the individual differences model discussed by CARROLL & CHANG (1970)
and HorAN (1969), x,, are stimulus-object points in a Euclidean space,
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and y,, are ideal points for CooMss’ unfolding model (1964) or attribute
points for preference data.

When we say that the several sets of parameters are not mutually in-
dependent we mean that we need to know the values of one of the sets of
parameters in order to derive the best estimate of another set of para-
meters. When parameters are not independent the values of the para-
meters in one set effect the values estimated for the parameters in the other
set. This way of looking at the difficulty immediately suggests a solution
to the problem, however. All we have to do is to define an ALS «inner»
iteration which estimates parameters, one set at a time. Thus, for
ALSCAL, which is based on the model in Eq.41, the inner iteration has
four phases each using the values of the parameters in three of the sets (and
the optimally scaled data) to obtain conditional least squares estimates for
the parameters in the fourth set. Once the parameters in a set are estimated
they are immediately used to replace their old values, and the procedure
moves on to another one of the four model parameter sets. This four
phase ALS procedure is iterated until convergence is obtained.

Actually, ALSCAL does not use the inner iteration procedure outlined
in the previous paragraph. It would be very slow to require the inner itera-
tions of the model estimation phase to converge before going on to the op-
timal scaling phase. Experience again shows that we should only cycle
through the four phases of the inner iteration once, defining that to be a
complete model estimation phase. Note that the considerations about
non-independent data partitions apply in precisely the same fashion to

non-independent model parameter sets.

The second source of complexity in the ALSCAL algorithm is thc non-
linear relationship between the stimulus-object points x,, and y,, and the
model space z,;,. We do not go into this problem here except to say that the
solution we use is to apply the ALS principle yet a third time (defining
what might be called «innermost» iterations) to estimate the conditional
least squares value for a single point’s coordinates, one coordinate at a
time, under the assumption that all of the other coordinates are constant.
This innermost iteration involves n X t phases, one for each of the n points
on each of the t dimensions.

We have gone into fairly great detail concerning the ALSCAL algo-
rithm because it involves an important source of complexity which does
not arise in the other algorithms: The parameters of the model are not
mutually independent. The algorithm, then, serves to illustrate one
method for coping with parameter dependence, namely the use of inner
iterations to reapply the ALS principle. The algorithm also serves to il-
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lustrate that we do not have to iterate the inner iterations until con-
vergence is reached (one «iteration» can suffice).

As mentioned above, the notion of inner iteration is involved in the
ALSOS system in one other critical place: the method for optimally scal-
ing data which are partitioned into dependent partitions. When we view
the observation categories as parameters and the optimal scale values
assigned to each category as parameter values, then we see that we need
knowledge of some parameter values in estimating other parameter
values. This is precisely the definition of dependence given above, except
that the problem occurs in the optimal scaling phase of the algorithm in-
stead of in the model estimation phase. Note that data partitions are not
always dependent (for example, the data partitions discussed by DE
LEEUW, YOUNG & TAKANE (1976) for ADDALS, and by TAKANE, YOUNG
& pE LEEUW (1977) for ALSCAL are independent) just as parameters are
not always dependent. However, when dependence exists the ALS inner
iteration approach is a viable approach to deal with the problem.

5. Conclusions

The combination of alternating least squares and optimal scaling which
forms the foundation of the ALSOS approach to algorithm construction
has two primary advantages: (a) If a least squares procedure is known for
analyzing numerical data, then it can be used to analyze qualitative data
simply by alternating the procedure with the optimal scaling procedure
appropriate to the qualitative data; and (b) under certain fairly general
circumstances the resulting ALSOS algorithm is convergent and will have
relatively few difficulties with local minima. .

We do not mean to imply that an ALSOS algorithm is the be-all and
end-all of algorithms. Itis not. It is simply arelatively straight forward ap-
proach to algorithm construction which has certain nice convergence pro-
perties. The resulting algorithm may not be very simple. With ALSCAL,
for example, even though each step is not very complicated, the overall
structure is rather complex due to the necessity of inner and innermost
iterations. Furthermore, in some circumstances there are some indeter-
. minacies of construction which may have great effect on the overall speed
of the algorithm (such as in the number of inner iterations performed on
each outer iteration). Finally, perhaps the biggest drawback is that the
ALSOS approach does not guarantee convergence on the global op-
timum, only on the conditional global optimum. Since the convergence
point is conditional on the initialization point, it is sometimes the case that
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the initialization procedure can become very complicated, and may be
very crucial. We would conclude, however, that the ALSOS approach to
algorithm construction is both more flexible and equally or more robust
than previous approaches to quantifying qualitative data.
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