THE WEIGHTED ADDITIVE MODEL

Yoshio Takane

Reprinted from Law, H.G. et al. (Eds.)
Research methods for multimode data analysls.
New York: Praeger, 1984,




13
The Weighted Additive Model

Yoshio Takane

There are a number of situations in which various attributes of
stimuli are to be weighted differently for different decision pur-
poses. For example, consider a person buying a car. Desirable
properties of a car depend on many factors. Spaciousness may
be an important factor for comfortable weekend driving,. while
cost efficiency—such as gas mileage—may be more important for
commuting. In any case, the person has to decide what is op-
timal for him, considering the various situational demands. sur-
rounding him. One way to achieve this is to express his best
interest as a linear combination of various attributes of cars.
Then the cars can be evaluated and compared on the composite
criterion. The weights to be given to the attributes, of course,
depend on his specific interest.

As another example, suppose a psychology department would
like to set up different admission criteria for different subpro-
grams it offers. Again, this may be done by forming a composite
criterion most suitable for each program, taking into account
various aspects of each applicant's qualifications. For instance,
if the applicant is seeking admission in quantitative psychology,
his score on GRE-Quantitative should be weighed heavily in
forming the composite score. If, on the other hand, the prospec-
tive student is going into clinical psychology, mathematical skill is
perhaps not as important; consequently, it should be weighed
much less. The problem of weighting various attributes of stimuli
into composite scores is called a weighting problem. The problem
is called a differential weighting problem, when two or more
composite scores are derived from the same set of attribute scores
according to multiple criteria. Assuming that the composition rule
is linear, the weighting problem may expressed as:

Comments by Tony Marley have been helpful in revising this
manuscript.
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T

Ykr = Zwk{xr[ ’ (k =1, ..., K) ’ (13-=1)
t=1 .

where yx, is the composite score of stimulus r for criterion k,
X,; is the score of stimulus r on attribute t (assumed known a
priori), and Wy, is the weight attached to attribute ! for criterion
k. The weights are determined in such a way that the derived
composite scores (¥x,) best agree with the criterion variables. If
the criterion variables can be assumed linearly related to the
attribute scores, the weights in (13-1) can be determined by
applying the linear regression analysis separately to each criterion
(k). Thus, there is no need for a new analysis method in this
case.

Note that in (13-1) attribute score x,; is assumed known a
priori. Most often it represents a numerical value designating a
degree to which stimulus r possesses attribute {. However, there
are cases in which attributes are not quantified a priori. For
example, types of cars—such as sedan or wagon—may be an
important factor in deciding which car to buy. But there is no
natural and obvious way of assigning a numerical value to the
attribute.” It should be quantified before it can be used in a
composite criterion. An attribute may sometimes have to be
requantified, even when a priori quantifications exist. For
example, performance on GRE-Quantitative is usually reported in
a numerical form, but there is no assurance that the reported
score is linearly related to criterion variables, such as perfor-
mance in quantitative psychology. However, the linear form of
(13-1) implies that x,; is linearly related to the criterion vari-
ables. Thus, it is necessary to requantify X, in such a way
that it is as linearly related to the criterion variables as possible.

The quantifications of an attribute may generally be expressed
as follows. Let h,q, denote an indicator variable such that:

1, if stimulus r belongs to level g of attribute t
h"’t = (this may be subject r passing item g in test f.);
0, otherwise.

Then the new attribute score x,; is obtained by a linear combina-
tion of the indicator variables; that is,

0,
Xrt = zhrqt“q, ’ . (13-2)
9

where ag, is the score given to the qth level of attribute ¢,
and Q; is the total number of levels in the attribute. Speci-
fically, we are discretizing the attribute into several levels and
assigning new numerical values at these discrete points of the
attribute.

If we substitute the expression (13-2) for X, in (13-1), we
obtain:
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T Q,
Yer = D wke (D hrgpag) » k=1, ...,K , .(133)
t g

This model is called the weighted additive model (WAM) (Takane,
Young, and de Leeuw 1980). In (13-3), the differential weight-
ing problem (13-1) and the quantification problem (13-2) (which
is yet another weighting problem) are combined into one major
problem, in which the two subproblems are solved simultaneously.
In (13-3), both ag, and wk: are estimated so that the derived
composite scores, yx, (k=1, ., . ., K), are best predictive of
all K criteria simultaneously,
When there is only one criterion—that is, K = l—we obtain:

T O
vr = 1 X"’rqt“;t s (13-4)
t q

where a5, = ag,w; . Notice that subscript k has been omitted.
This model is called the simple additive model (SAM). In this
case, we have only the quantification problem, which reduces to a
linear regression problem with hrgela =1, . ..,Q) serving
as the independent variables, ’
Note that in (13-3), a4, is assumed common across all criteria,
just as in (13-1) the same x,, is used for all criteria. If, on the
other hand, aq, is allowed to vary over the criteria, we have:

T G
Yer = 1 Wkt (] hrq,akqy) (13-5)
t q
T Q *
= z Z h’qt (athWkY) = z z hfqtakqt'
t q t q;

where Gth = akgwkt. Note that subscript k is attached to akqr
and a}‘qr, implying that they are unique to each k. Equation
(13-5) indicates that the WAM in this case reduces to the SAM
applied separately to each criterion. The new quantification
parameter, azfq{, can be estimated by applying the linear re-
gression analysis separately to each k, (This is completely
analogous to [13-1], in which the weights are obtained by sepa-
rate regression analyses of y4, to x,; .) This means that a real
significant feature of the WAM lies in the assumption of common ug,
across different criteria. This very feature calls for a new
analysis method specifically designed for this model, since no
conventional multivariate methods apply to this case. In this
chapter, we discuss various aspects of the WAM focusing -on its
empirical motivation, mathematical properties, analytical methods,
and examples of application. :

EMPIRICAL MOTIVATION

As has been emphasized, an important assumption underlying t'he
WAM is that ag, remains constant across different criteria.
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Although this assumption is implicit in almost all the models that
capitalize on a priori quantifications of attributes, it by no means
is always correct. Rather, it is an empirical hypothesis to be
verified or falsified in each specific situation in which the model
is employed. On the other hand, there are many situations in
which the WAM is indeed appropriate. In this section, we discuss
a couple more examples of such situations. Several more examples
will be given in the application section. -

The first example has been modified from Kruskal and Shepard
(1974). Suppose first that a set of cylinders are generated by
combining different altitude levels and base areas. Suppose
further that those cylinders are measured in terms of two physical
variables, side area (Ys) and volume (yy). Let @ and B repre-
sent altitude and base area, respectively. Then we have:

(2 /7 ) a8l/2,

Vs

and
Yy=a B .

By the log transformation, we obtain:

log (ys) = log (a) + 4 log (B) + vy , “(13-6)

and

log (yy) = log (a) + log (B) , (13-7)
where vy = log (2 Vv ). That is, the log-transformed Ys and yy
are both additive functions of log (a) and log (B), disregarding
Y, for the moment. The difference between the two criteria—Ilog
(¥s) and log (Yy)—is produced by a differential weighting of
log (a) and log (B), which themselves remain constant across the
criteria. It can be readily seen that (13-6) and (13-7) are
special cases of (13-1). s

Suppose now that we are ignorant of the exact weighting rules
to obtain the two criteria~—log (¥g) and log (yy)—from log (@)
and log (B), except that the former are both additive functions of
the latter. The problem of finding the differential weights, given
a set of measurements on the four variables, is identical to the
one posed by (13-1). 'Now assume further that actual numerical
values of log (a) and log (B) are not directly observable, but
only discrete levels of altitude and base area of the cylinders are
provided as information. Then, those levels have to be ghanti-
fied before they can be used for log (¢) and log (8) in "(13-6)
and (13-7). The quantifications of the levels should stay in-
variant, just as both log (a¢) and log (8) remain intact in (13-6)
and (13-7). The problem now is equivalent to what we have in
(13-3): Namely, we simultaneously quantify the levels of the
attribute variables (altitude and base area) and estimate the
differential weights to obtain log (ys) and log (yy).

Finally, let us suppose that yg and yy, rather than log (ys)
and log (vvy), arc ohserved as the criterion variables. The
observed criteria cannot be rcpresented by any additive functions
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of log (a) and log (8) without transformations. But suppose we
are ignorant of the transformations that make ys and y, addi-
tively representable by log (a) and log (8). Then we are faced
with an additional problem of finding the transformations. The
transformations may be found by quantifying or requantifying the
criterion variables (possibly with ordinal restrictions) in much the
same way as the attribute variables are quantified.

As a second example, suppose the desirability (u) of various
cars is investigated as a function of their price (p) and fuel
efficiency (g). Although both price and fuel efficiency can be
measured physically, their contributions to the overall desirability
ratings may not be linear. Thus, several price levels and fuel
efficiency levels are chosen, from which a set of hypothetical cars
(such as a car costing $7,000, featuring high fuel efficiency, and
so on) are constructed for the desirability ratings. Let fp(p;)
and fg(g;) represent quantifications of the jth price level (p;)
and the jth fuel efficiency level (g;), respectively. It is likely
that fp is monotonically decreasing with price and fg monotonically
increasing with fuel efficiency, although neither of them may be
linear with their physical correlates. Let the observed rating of
a car characterized by p; and g; be denoted by ujj . Let us
assume that u;; is monotonically related to the sum of fp(pi) and
fG(gi). That is,

flui; ) = fplp;) + fglg;) » (13-8)

where f;, is some monotonic function. (We have tentatively disre-
garded possible measurement errors in [13-8].) This model
implies that after the desirability rating (the criterion variable) is
monotonically transformed by an appropriate transformation, it can
be represented as an additive function of fp and fg (the attribute
variables). Model (13-8) is, in fact, a SAM.

Suppose now that several individuals have rated the desirabil-
ity of the same set of cars, and a substantial amount of individual
differences have been observed. The differences may be due to
possible differences in the attribute functions; that is, the way
price levels and fuel efficiency levels are evaluated may vary
across individuals. In this case, model (13-8) should be applied
separately to each individual. On the other hand, the differences
may only be due to possible differences in relative importance of
the two attributes, while the evaluations of the attributes them-
selves remain more or less constant across the individuals., If
this is the case, we obtain:

fedAuij ) = wepfp(p;) + wiafelgi) » (13-9)

where k refers to the kth individual, The differences among the
individuals are accounted for by a differential weighting of the
attribute variables, fp and fg, which are additive and invariant
across k, Model (13-9) is the WAM. (Note that individual differ-
ences may be allowed in fy, as indicated by subscript k at-
tached.)

The key question, then, is whether or not fr and fg remain
constant across different individuals. On an intuitive basis this
seems likely. The ratings concerned with desirability (and not
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preference) and the desirability perceptions are much more apt to
agree, For example, nobody would disagree that .fp is mono-
tonically decreasing and fg is monotonically increasing, although
ultimately this is a question to be answered on an empirical basis.
Whether it is more appropriate to apply the SAM geparately to
each individual or to apply the WAM jointly.to all inflividuals can
only be answered by fitting the two models to the same set of
data and by comparing their goodness-of-fit to the data. If the
fit of the SAM is significantly better than that of thep WAM, it is
not appropriate to assume fp and fg are constant across k.
Otherwise, the WAM is more appropriate, because if uses fewer
parameters than the SAM fitted separately.

£
=

THE MODEL

We now turn to investigating various properties of the WAM. Our
discussion concentrates on formal aspects of the model, but it may
be helpful for the reader to bear in mind some congcrete example
to which the model might be applied.

Basic Properties

We first restate the model in standard notation. For explanatory
convenience, we state the model for the simple two-factor case.
We also introduce new terminologies.

Let a; and B; denote quantifications of the ith level of at-
tribute A and the jth level of attribute B, respectively. They
are sometimes called odditive effects. (Attributes are often
referred to as factors or independent variables.) Let wga and
wxg represent the weights attached to factors A and B, re-
spectively, for the kth criterion variable. (The criterion variable
is often called the dependent variable.) Then the WAM—which
has already been stated in such forms as (13-3) and (13-9)—can
be restated as:

Ykij = Wka% + wikgBj k=1, « . . » K), (13-10)

where yg;j is the model prediction or model value representing
the combined effect of the ith level of factor A (o) and the jth
level of factor B (B;) in the kth criterion variable., We assume
that there are na levels in factor AG=1], ..., na) and ng
levels in factor B (j=1, . . . , ng). An extension of (13-10)
to a higher-order design is straightforward. What have been
referred to as the criteria or criterion variables may represent
whatever sets of observations that need be distinguished and
whose distinction is best characterized by a differential weight-
ing. For example, they may represent subjects, groups, occa-
sions, experimental conditions, and so on. There is an intrinsic
scale indeterminacy in the WAM. That is, for each factor, say A,
the effect of multiplying wxs by some constant ¢ (= 0) is offset
by dividing a; by the same constant. We may remove this inde-
terminacy by requiring
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na ng
! ¢ =n4 and 21 B = ng . (13-11)
i=1 J=

Also, the additive effects can be determined only up to an arbi-
trary origin. We thus require:

naA ng
I =0 and 1 8 =0. (13-12)
i=1 /=1
Consequently,
Z ) Ykij =0 for all k.

I

This amounts to centering the model predictions so that their
mean is equal to zero.

To reemphasize, the WAM (113-10}) postulates that the differ-
ences among K sets of observations arise from a differential
weighting of additive effects that remain constant across the sets.
Reflecting the fact that the WAM was originally introduced for
explaining individual differences in perception (see the application
section), the differential weights, wis and wig, are often called
individual differences weights. When there are no systematic
differences among the sets, the individual differences weights can
be set to unity, and (13-10) reduces to the SAM,

Yeij = aki* Bij, (13-13)

which treats k as a replication factor. At the other extreme, the
additive effects may be completely unique for each set, in which
case each set must be represented separately by the SAM,

Ykij = ki * Byj k=1, ..., K, (13-14)

where ag; and Bk; represent the.additive effects unique to set k.
The WAM lies somewhere between these two extreme cases; it
represents both the common and unique aspects of multijple con-
joint data in one model. (The data supposedly representing the
combined effects of two or more influencing factors are sometimes
called conjoint data after Shepard (19721.) :

We now explore some basic properties of the WAM. We have
already mentioned that in order for the WAM to apply to K sets of
observations, each set has to be represented by the SAM.
Suppose that we have applied the SAM separately to each data set
and obtained estimates of the additive effects, ak; and Bgj,
(k =1, ..., K). From these, can we tell whether the WAM is
appropriate for all sets of observations?

Since the WAM is a special case of the SAM with Ok = WKAG/
(i=1, ..., ng) and Bkj= wkgBj (j =1, . . ., ng) the additive
effects from the SAM have to be Proportional; namely,
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%ki o WkaA for all i, (13-15)
Qg2 Wk A

and
Bkj - wks for all j.

Bk “ Wk“B

The situation is depicted in Figure 13-1, where og; = wia0;
(i=1, . .., ng) are ‘plotted for different values of wyxyq and
connected for each k by line segments. The plots exhibit some
characteristic pattern. Note that the additive effects were tacitly
assumed monotonically increasing in Figure 13-1, but this does
not imply that it is always the case. For the monotonically in-
creasing & , %; is monotonically increasing for a positive wg4 and
monotonically decreasing for a negative wys. The rate of increase
and decrease changes as a function of the absolute value of wyg4.
(Of course, the change rate is higher for a larger value of wyna

Figure 13-1. The Plot of &; =a;w, (i=1, . . ., ng) when
the WAM is Correct
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and vice versa.) All the curves in Figure 13-1 have essentially
the same profile (shape) except that their scatters (Cronbach and
Gleser 1953) are different. In fact, |weal may be interpreted as
variance of ay; over j. All the curves cross with one another
whenever they cross a zero line. (They should cross the zero
line at least once to meet restriction [13-12}.) Note that Figure
13-1 was drawn for an ideal case in which the WAM fits the data
perfectly. In practical situations, it is not possible to observe
error-free data. Consequently, the proportionalities of a;; and
Bxj may hold only approximately.

Some basic properties of the WAM may be directly observed in
the original data themselves, even without estimating o; and Bij-
In order to see this, let us assume some hypothetical parameter
values and see if there is any characteristic pattern appearing in
the model predictions. For simplicity, we assume na=ng= 3;
K=4; a1 =1, ap, =3, and @3 = 4; and By =2, By = 3, and
83 = 5. The four sets of model predictions derived from the
model are given in Figure 13-2, Note that the hypothesized
values of the additive effects do not satisfy (13-11) or (13-12),
but this should not matter for the purpose of examining proper-
ties of the WAM. These restrictions are merely conventional and
the basic properties of the model remain unaffected even if they
are violated. Note also that both a; and B; are monotonically
increasing, but again, this is mere coincidence. In Figure 13-2,
Wkaa; = ag; and WkgBj = Bx; are entered in row and column
marginals of each table, respectively,  Main entries in the table
are the model predictions (yki; ) calculated by (13.-10),

Figure 13-2. FExamples of Predictions from the Weighted Additive
Model (WAM)

k=4 1 -2
k=1 k=2
a
v a 24
2< 6< 8 1< 3< 4
2| 4< 8<10 4 5< 7< 8
A A A A A A A A
w B 3] 5< 9<11 w_B 6 7< 9<10
1B Al A A A 2B Al A A A
41 7<11<13 10 { 11 <13 < 14
k=3 k=4
a a
hET) “ua
-1 > 3> 1< 3< 4
"2 ]-32-5> ¢ =4 [-3<-1< ¢
B v \ AV \ B v v v v
w “3)-4> -6> -7 w =6 1-5<-3<.2
3B viv v 4B viv v oy

-5|-6>-8>-9 -10 | -9 € -7 < -
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Since the WAM is a special case of the SAM for each data set,
all the properties satisfied by the WAM must be satisfled by the
SAM for each k. Let us, therefore, first see what characteristic
patterns may be observed for each data set. They should be the
patterns we expect to observe for each data set to be represented
by the SAM.

Let us start with a quantitative relation among ykjj. It can
be immediately observed that:

Ykij = Vki.* Vk.j= Vk.. for all i and j,
where
ng
Vei. = L ykij’ns
j
na
Vik.j = Z Ykij /A »
1
and
nA ng np ng
Ve.. = L wki/na= 1 wj/ne= 1 I ykij/nang .
! J i

Not surprisingly, this is equivalent to the noninteraction condition
in two-way ANOVA. This condition states that the combined
effect (Ykij) of the ith level of factor A and the jth level of
factor B is a simple addition of a contribution from the ith level
of factor A (Vki.) and a contribution from the jth level of factor
B (Vk.j). (Yk.. = 0 if a; and Bj have satisfied [13-12],)

If the observations are linearly related to the model predictions
(that is, if they are obtained on an interval scale), the above
condition should still be true approximately, if not exactly.
However, it does not provide a wvalid criterion for an additive
representation if the data are only monotonically related to the
model predictions.

Are there any patterns in the table that are invariant over
any monotonic distortion of the model predictions? Observe that
for ecach k, wyaa; is either ascending or descending, depending
on the sign of wgyq. The same is true for wigB;. What is .nore
important is that the model predictions are in the same order as
wka®; within each row, and they are in the same order as wkgB;
within each column. That is, if

Ykij % Ykij®
then

Ykitj % Ykit’ for all i”.
And if

Ykij & Yki‘f »
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then

,Vk//‘ 2 }’ki‘/" for all I“;

for each k.

In the additive conjoint measurement literature (Luce and
Tukey 1964; Krantz et al. 1971), the above condition applied to a
set of observations is called the independence or single cancel-
lation condition. 1t is one of necessary conditions for an additive
representation of ordinal data.

Another necessary condition, called the Thomsen condition,
may not be obvious in the table. This condition states that if

Ykij = Ykpq and Ykpr = Yksj,

then
Ykir = Yksq.,

in terms of the model predictions. This is illustrated in Figure
13-3, where indifference relations in the pPremise are connected by
solid line segments and the indifference relation in the conclusion
by a dotted line segment. Unfortunately, it is difficult to verify
this condition directly, since we may not be able to find stimulus
pairs—(i,/),(p,q) and (p,r),(s,j)—such that they satisfy the
indifference relations postulated in the premise,

The independence and the Thomsen conditions, along with
other conditions not described here (including weak-ordering,

Figure 13-3. Illustration of the Thomsen Condition

r =~

/

T
17/]
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cssentialness, solvability, and so on) ensure a representation of
ordinal data by the SAM. Those are the qualitative properties
that have to be satisfied in order to be representable by the
SAM. Since actual data usually contain errors, it may not be
easy to determine if these properties are met to a satisfactory
degree. Nevertheless, they should serve as rough guidelines.

The additive representation in turn implies the double-cancella-
tion condition, which is just the Thomsen condition with "="
replaced by "2." (The Thomsen condition is actually a  special
case of the double-cancellation condition; both "z" and "g" imply
"=".) The double-cancellation condition can be directly tested.
We see that it is satisfied by the model predictions, Ykij « How-
ever, even though the double-cancellation condition is satisfied by
a particular data set, this does not imply that the Thomsen
condition is satisfied, although the former is stronger than the
latter. This is because the data are always finite and a par-
ticular condition being satisfied by availoble data points does not
ensure that it is satisfied by all conceivable data points. This
means that we may falsify a condition by observing an instance of
its violation, but we can never completely verify the condition
based on a finite sample of observations. (This is similar to the
statistical hypothesis testing situation in which one can never say
the null hypothesis is true.)

The WAM requires more than is required by the SAM, Let us
again begin with a quantitative property and then relax it into
ordinal properties. We observe that:

(Fki. = V.. Y (Fk+i. = Jk-. ) = constant for all i,

and
(Yk.j = ¥&..)!(k+; - Yk-.) = constant for all j,

which are analogous to (13-15)., Since a column or row mean
minus a grand mean is an estimate of ax; (or Bxj), the propor-
tionalities of the additive effects obtained from the SAM imply the
above condition. (Again, V4 = yg-. =0 if [13-12] were satis-
fied. In this case, the above condition would be much simpli-
ficd.)

The condition should be relaxed for ordinal data. Luoking at
Figure 13~2 across tables, we may observe that the ordering
among the model predictions within each row or column is either
exactly the same or opposite across columns or rows, depending
on whether the signs of the weights are in agreement or in
disagreement. For example, 4 < 8 < 10 in the first row of k = 1,
5 <7 <8 in the first row of k = 2 (same order), and -3 > -5
> =7 in the first row of k = 3 (reverse order). Thus, it may be
stated that if

Ykij 2 Ykij* .

then either

Yk“ij 2 Yk-ij- or Ykeij S Yk*ijs -
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And if

Ykij 2 Yki% s
then either

Yeeij 2 Ye*ivj or Yksij S Yk*i%

The above condition, stated in terms of observed data (instead of
model predictions), is called homogeneous ordering (Sayeki 1972),
and is one of the necessary properties of the WAM. This condi-
tion is analogous to the independence condition for the SAM.

Another necessary condition, which parallels the Thomsen
condition for the SAM, is a version of the Reidemeister condition
(Krantz et al. 1971), a special case of the triple-cancellation
axiom. This condition states that if

Ykij = Ykpq »

Ykir = Ykpt
and

Yk’sr = Yk*ut
then

Yk“*sj = Yk‘uq »

as depicted in Figure 13-4, Again, indifferences in the premise
are connected by a solid line and the indifference in the conclu-
sion is connected by a dotted line. For the same reason that the
Thomsen condition was difficult to verify, this condition may not
be testable in practical situations. However, it has been proven
(Sayeki 1972; Marley 1970) that the homogeneous ordering and the
Reidemeister conditions together with other structural axioms
ensure an existence of a representation of ordinal data by the
WAM. Just as the SAM implied the double-cancellation condition,
the WAM implies the triple-cancellation condition (which is the
Reidemeister condition with "=" replaced by "2"). This condition.
as well as the homogeneous ordering condition, can be directly
tested with observed data.

Geometric Properties

When ny levels of factor A and ng levels of factor B are factor-
ially combined to construct a set of stimuli, we obtain nax ng
stimuli altogether and consequently as many model predictions for
each k. These ngng model predictions can be put into a vector
form according to a certain prescribed order. This vector mav
be denoted by y; (k=1, ..., K). Let Galngng x na) and
Gglnang x ng) denote design matrices for factors A and B, re-
spectively. That is, the rth row of G4 has one in the ith column
and zeroes elsewhere if the rth element of vy (y.,) is related to
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Figure 13—4. Illustration of a Triple-Cancellation Condition

k K
e =
i i
\
N\,
\\\
q c——— .\.\..--
r -
t 1
i P s u

the ith level of factor A. Similarly, the rth row of Gg has one in
the jth column and zeroes elsewhere if y;, comes from the jth
level of factor B. Let a and B be vectors of the additive effects
(a; and B;) for factors A and B, respectively. Then the entire
set of model predictions can be expressed as:

Yk = Gaawga + CGgBwkg k=1, . . . , K) . (13-16)

The above equation indicates that y, is the weighted sum of two
vectors, Gaa and GgB, the former being weighted by wga and the
latter by wyg (k =1, . . ., K). The two constituent vectors
remain the same across k, while the weights applied to the
vectors change over k. This implies, geometrically, that all y's
(k =1, . . ., K) lie in the space spanned by the two constitu-
ent vectors, Gaa and GgB (which themselves are linear combina-
tions of G4 and Gpg, respectively), their directioars being subject
to change as functions of the weights. The situation is depicted
in Figure 13-5 for the case of two criteria (k and k“). In order
to obtain y,, G4a is shrunk or stretched by wis and Ggg by wyg
before being added together. Similarly, Gaa is shrunk by wxe
and Ggpg by wg-g to obtain y,.. This explains the mechanism that
generates two or more distinct vectors of model predictions from
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Figure 13-5. Geometric Interpretation of the WAM

the same attribute vectors in the WAM.

The geometrical relationship between the WAM and the SAM
may be explored in a similar manner. For this, the SAM may be
written in a vector form analogous to (13-16):

Yk = Gaax *+ GgBk » (k=1, . .., K . (13-17)

Let us suppose yx (k =1, . . . , K) is perfectly fit by the SAM
but not by the WAM. (If it can be perfectly fit by the WAM, it
can be perfectly fit by the SAM separately, but not vice versa.)
The relationship between Ggox and Ggwy, is depicted in Figure
13-6. The vector, GaaW,, represents the portion of Gaai that
can be explained by the WAM. In other words, GA“k is decom-
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Figure 13—-6. The Relationship between the WAM and the SAM

Gpoga

GAakA

posed into two parts: Gaawks, the part that can be accounted for
by the WAM; and Gaax- Gauwka, the part that cannot be account-
ed for by the WAM. Furthermore, Gaawk 4 and Gaox - Gaawg g are
mutually orthogonal so that:

S5(Gaox) = SS(Gaaweq) + SS(Gaox - Gaawea) (13-18)

where SS(v) is the sum of squares of elements of vector yv. The
same relation holds for all k~” and also for other factors in the
models.

When there are only two levels in each factor, the WAM and
the SAM are compatible in every way. In this case, a; can
always be written as awgg4.

Relations to Other Models

We have explained the relationship between the WAM and the
SAM. We have also mentioned that when the independent vari-
ables are completely specified—that is, when they are a
priori quantified—the WAM reduces to regression analysis” (linear
or monotonic, depending on the scale level of the dependent
variables). Examples of this class of models are Carroll's (1972)
external unfolding analysis and Srinivasan and Shocker's (1973)
composite criterion model.
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The idea of describing differences between sets of observa-
tions by a differential weighting of additive effects is apparently
not new. In fact, most of the multivariate data analysis methods
can be thought of as techniques to find wvarious optimal linear
combinations of variables according to some prescribed criteria
(McDonald 1968). In particular, when the independent variables
(factors) are completely unspecified in the WAM, we obtain the
bilinear model

r
Ykr = Z Wiefre (13-19)
t=1

where yx, is the model prediction for the kth observation set
(usually subject k) on variable r, fre is the coordinate (conven-
tionally called factor loading) of variable r on factor t, and wg,
is the weight (or factor score) of subject k on factor a. Since
frt and wg; are assumed to be unknown, in this case, both w,
and f,; should be estimated under some identifiability constraints.
The number of factors, T, is the minimum number of hypothetical
attributes (latent traits, factors) necessary to approximate the
observed data to a sufficient degree and is also to be determined
in the course of data analysis. Under a specialized set of identi-
fiability constraints, the bilinear model is called the principal
component analysis. In a sense, fr; is a weight attached to wk:
(responsible for the variation of Ykr over r), just as wge is a
weight attached to f,; (responsible for the variation of Ykr over
k). The roles of wy; and fr¢ are dual in this sense.

A special case of (13-19) has been proposed by Carroll and
Chang (1970) in order to describe subject differences in dissimi-
larity judgments. The proposed model—called INDSCAL—is the
weighted distance model, which is written as:

’ .
2 _ 2
dij = t_z1 Wee (Xie = %00 (13-20)

where dy;; is the Euclidean distance between stimuli 7 and | for
subject k, x;, is the coordinate of stimulus i on dimension t, and
T is the dimensionality of the space in which a set of stimuli are
represented., That (13-20) is a special case of (13-19) can be
readily seen by noting that

fre = (xj¢ - Xjt )2 , (13-21)

where stimulus pair (/,/) is indexed by r. That is, INDSCAL is
a special type of the WAM in which squares of the dimensionwise
differences between two coordinates are taken as additive effects.
The fact that (13-20) is a special case of the WAM provides an
interesting application of the WAM to similarity and dissimilarity
data. In (13-20), the weights are usually restricted to be non-
negative. This is because both (xj, - X/,)Z, (t=1, ., .., 17
and di;; are nonnegative. A minor generalization of (13-20) is
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,
ki = , VKt Ixie = x;e P ,(13-22)
t= :

where p is the Minkowski power (1 5 p).
When f,; in (13-19) is constrained to be

fre = Z hrqtuqt ’
ar

we obtain (13-3), which is the general form of the WAM,

PARAMETER ESTIMATION

In this section, we describe methods for parameter estimation in
the WAM. In the previous section, the basic properties of the
WAM were explored strictly within the context of the model.
However, data analysis is an interplay between the model and the
data. Thus, we first need to discuss various data charatteristics
to be taken into account in developing parameter estimation proce-
dures.

The Data

The necessity of discussing data characteristics stems from the
fact that the model predictions are usually not directly observ-
able. The observed data typically contain a sizable amount of
errors., In addition, some systematic distortions may be under
effect in a measurement process. For example, if the data are
collected by a rating scale, they may be distorted monotonically
(relative to the model predictions) towards the ends of the scale
due to possible floor and ceiling effects. The observed data in
this case will not possess interval-scale properties. In this small
section, we briefly discuss some of the data characteristics to be
considered in fitting the model. These considerations are not
restricted to the WAM, and more comprehensive treatments of this
topic can be found in Young (1981) and Takane (1982).

We first discuss the distinction made in terms of scale levels of
measurement. (This is basically the distinction made by WAD-
DALS, a least-squares procedure for fitting the WAM.,) The
simplest case is the one in which the data are obtained on an
interval scale or higher. In this case, it is assumed that yx;; is
only error-perturbed and that no systematic distortion is exerted
on the error-perturbed model prediction. That is,

YRij = Ykij * €kij o (13-23)

where e(;; is an error random variable and yj;; is directly
observable. The model fitting in this case only involves the
estimation of parameters in the WAM (namely, the additive effects
and the differential weights). Most often, the estimation is
accomplished by minimizing the overall size of exij (that is,
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z e,f,-,-) without further assuming any distributional properties on
e, ::
kij*

The interval information contained in YEi; may get lost to

varying degrees in an observation process. Some monotonic
distortion may be in effect. For example, the subject may report
only rank orders among yg;,; . Thus, only ordinal information is

preserved. The data are said to be measured on an ordinal scale
in this case. The ordinal data have to be monotonically trans-
formed back to y¥;; before they can be subjected to a repre-
sentation by the model. Specitically,

fm(Okij ) = YEi; = Ykij + €kij (13-24)

where Ox;; is the observed data and fm, is some monotonic func-
tion. The model fitting in this case involves a monotonic trans-
formation of the observed data as well as the model estimation.
Again this is most often done by minimizing the overall size of
€kij- The WADDALS algorithm to be described in the next sec-
tion is primarily aimed at ordinal data, although it can be used
for other data as well. The ordinal scale assumption is suf-
ficiently flexible, so that almost any data can be analyzed under
this assumption (with an exception to be described shortly). If
the data happen to be measured at a higher scale level, an ap-
proximately linear transformation is usually found for f,, which is
indeed the correct transformation in this case. One should note,
however, that some efficiency is bound to get lost if one makes a
weaker measurement assumption than needs to be made.

In certain extreme cases, only nominal information may be
obtained. At the nominal scale level, two observations are either
indifferent or distinct. For example, we may ask the subject to
classify yf;; into several unordered categories. Observations
that are in the same category are considered indifferent, while
those in different categories are considered distinct. Nominal
observation categories have to be quantified before the data can
be represented by the model. This quantification is sometimes
called a nominal transformation and can be done just as the levels
of the additive factors are quantified in the WAM,

In all the above cases, the data can be arranged in a matrix
form for each set (assuming that there are only two factors) in
the same way as the model predictions are arranged in Figure
13-2. In the interval case, yxj; is replaced by y¥ij » and in the
ordinal case, it is replaced by ©0ki; (which is assumed mono-
tonically related to y%;; ). In the nominal case, it is replaced by
the category number into which yEij is classitied. Multiple sets
of observations, each arranged in a matrix form, compose a
multimode data set.

The data characteristics discussed above are based on the
scale levels of measurement. However, in certain situations,
other characteristics of the data may be more meaningful. For
example, there are many different ways of collecting the data,
and each method may require a different mental process by which
the observed data are generated. If a model for this process can
be constructed, the observed data can be more directly related to
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its unobservable counterpart, the model. Takane (1982) incorpo-
rated a specific process model for each of three reprasentative
types of data collection methods—categorical ratings, ‘pair com-
parisons, and directional rank orders—in fitting the additive
model. We briefly discuss each of these data collection methods
in turn. N

In the categorical rating method, the subject is asked to rate
yvfij on a rating scale having a relative small number of observa-
tion categories (say, up to 7 or 9). Thus, only category mem-
bership of yf;; is observed. Since categories are usually or-
dered, the data may be analyzed as mere ordinal data. Alterna-
tively, a specific process model of categorical judgments may be
incorporated. Through this model, and under some distributional
assumption on eg;;, the probability of a certain categorical ob-
servation can be derived as a function of model parameters. The
categorical rating data may be represented in a matrix form with
each element in a matrix representing a category numbeér. When
many replicated observations are made for each yf;; , it may be
economical to represent the data in a frequency form, in which
observed frequencies of categorical observations are given along
with stimulus indices, i and j, and k. .

In the pair comparison method, the subject is presented two
stimuli at a time and asked to judge which one "dominates" the
other according to some prescribed criterion. Thus, only pair-
wise ordinal information about yf;; and yf;-- (that is, either yf;;
> vkjsj- or ykii < yki+s+ ) is obtained. The pair comparison data
may be analyzed as partial rank-order data. On the other hand,
a specific process model for pair comparison judgments may be
constructed. The probability of yki; > yf;<- or y¥i; < yki+-
can then be derived as a function of model parameters. The pair
comparison data cannot be represented in a matrix form, since
two stimuli are involved in each judgment. This type of data can
be represented most naturally in a frequency form in which
frequencies of comparative judgments are provided along with
stimulus indices, i/ and j, and k. .

In the directional rank-order method, the subject is’ asked to
rank order a set of stimuli in a specified direction—either from
the largest to the smallest, or vice versa. All stimuli generated
by factorial combinations of the levels in all factors may be rank
. ordered in this way. It is important that the ranking is made in
a specified direction. Otherwise, it is extremely difficult to con-
struct a process model that relates yk;; to an observed ranking.
Under the directionality of the ranking process, the probability of
observed rank orders can be derived in a relatively straight-
forward manner. The directional rank-order data may be repre-
sented in a matrix form with rank numbers as entries of matrices.
The frequency representation is usually not convenient, since
almost all rankings are unique, unless the number of stimuli to be
rank ordered is relatively small. The directional rank-order data
can also be analyzed as mere ordinal data.

A category response model may also be constructed for nominal
data. For example, the log-linear model (Andersen 1980; Bishop,
Fienberg, and Holland 1975; Bock 1975; Goodman 1978) for anal~
ysis of contingency tables can be thought of as the SAM with the
logistic response function (Luce's [1959] choice model) and the
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multinomial probability model for unordered categorical responses,
It may be interesting and worthwhile to extend the log-linear
model using the WAM. (See the application section for more
detail.)

A Brief Overview of the Existing Methods
for Additivity Analysis

A number of estimation procedures are available for the SAM.
When the data are measured on an interval scale or higher, the
SAM reduces to an ANOVA model without interaction terms, which
is in turn a special case of the general linear regression model
with dummy independent variables (Draper and Smith 1981). A
number of procedures have been developed for ordinal data—
MONANOVA (Kruskal 1965), ADDIT (Roskam 1968), ADDALS (de
Leeuw, Young, and Takane 1976), and MORALS (Young, de
Leeuw, and Takane 1976)—which all use Kruskal's (1964a, 1964b)
least-squares monotonic transformation as part of their algorithm.
CM-I (Conjoint Measurement I) by Lingoes (1973), on the other
hand, uses Guttman's rank-image transformation (Guttman 1968).
A procedure by Ramsay (1977) and the one by Winsberg and
Ramsay (1980) use smoother transformations such as power and
spline transformations. The nominal data lead to a special case of
discriminant analysis in which independent variables are also
categorical. Hayashi's (1952) Quantification Method II and Car-
roll's (1973) CCM (Categorical Conjoint Measurement) have been
developed specifically for this situation. However, by appropriate
codings of dummy variables, the same analysis could be performed
by canonical correlation analysis.

Fitting procedures are much more limited for the WAM. To the
best of my knowledge, WADDALS and MAXADD (Takane et al.
1980; Takane 1982) are the only two that are available at the
moment. MAXLIN is now under development, which generalizes
MAXADD to the general weighted linear (not restricted to addi-
tive) model. De Sarbo, Carroll, Lehmann, and O'Shaughnessy
(forthcoming) recently proposed a three-way multivariate conjoint
analysis method, which, as its special case, subsumes the WAM.
Their procedure, however, is restricted to interval-scale data.

In this section, we discuss WADDALS and MAXADD in some
detail. An excellent review of the algorithms for the SAM has
been provided by Rao (1977).

ADDALS

As an introduction to WADDALS, we first discuss the ADDALS
algorithm (de Leeuw et al. 1976; Young 1981) for the SAM.
WADDALS works within the same algorithmic framework as AD-
DALS, known as alternating least-squares.

Let us write the SAM in a vector form for a single set of
observations, analogous to (13-16) and (13-17). Let y denote the
vector of model predictions:

y = Gaa + Ggb . (13-25)
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This vector is fitted to the vector of error-perturbed model
predictions, which is denoted by y*. We primarily focus on the
case in which y ¥ is measured on an ordinal scale. (Later, we will
discuss whatever modifications are necessary for the nominal
case.) We would like to estimate both model parameters—a and
g—and a monotonic function—f,, in (13-24)—in such a way that
the discrepancy between y* and y is a minimum. This may be
expressed as:

p= (y* -y)” (y* ~y)yy*, (13-26)

which is to be minimized with respect to a, 8, and y*, where y*
is monotonically related to 0, ADDALS minimizes this by alter-
nating the following two least-squares steps, until successive
values of ¢ exhibit no significant improvement. The positive
square root of ¢ is called stress.

Step 1. Model Estimation:
Obtain y that minimizes ¢ for fixed y* (such that
y*y* = 1).

Step 2. Optimal Scaling:
Obtain y* that minimizes the numerator of é for fixed
vy, and normalize y* so that y*“y* =1,

In the initial iteration, o is centered and normalized and used for
y*. In Step 1, y is obtained by obtaining the least-squares
estimates of a and B, which are:

(G’4Ga) " G ay* (13-27)

"
a

and

8= (GgGe)1GBY* .

If the elements y* are rearranged in a matrix form so that its
(i,j)th element is y,’-"/- corresponding to y;; in (13-13), a and B
are just the vectors of row and column means, respectively, of
this matrix. The least-squares estimate Y* in Step 2 is obtained
by applying Kruskal's least-squares monotonic regression algo-
rithm (Kruskal 1964b) to vy.

The above iteration scheme has been proven to be convergent
(de Leeuw et al. 1976). This may be easily seen by noting that
¢ can never get larger, since conditional least-squares estimates
are obtained in each step. Furthermore, ¢ is bounded below
(p 2 0). By a standard theorem, in functional analysis, a mono-
tonically decreasing sequence is bound to converge. The con-
vergence point may not be a local minimum of ¢ in general, but
this is guaranteed by the continuity of ¢ (Kruskal 1971).

That Step 2 really minimizes ¢ with respect to vy* is assured
by the following theorem, which is stated without proof:
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THEOREM 13-1. On the minimization of normalized least-
squares criteria.

Let Q(a) = a-a,
¢*{x1,x2) = Qly(x,) -2 (x,)],
6*(x1,%x,)/Qly (x,)],

i

Py (x1,%5)

and

@z (%,%5) ¢*(x1,x2)/O[Z(X2)].

Let xl(” and xz(” minimize By

2. Let x{? and x,'? minimize ¢* subject to the restriction
that Q[y(x,'2)] = 1, '

3. Let x1‘3) and x2(3) minimize ¢* subject to the restriction
that Qfz(x,'3)) = 1.

4. Let x'" and x," minimize .

The four sets of solutions are essentially equivalent, That is,
X, 1(1:) x1'*) are proportional to each other, and so are x,(1
= X9 .

The denominator of ¢ in (13-26) is just a normalization factor for
preventing ¢ from converging to 0 by shrinking the size of y and
y*. The above theorem shows that it does not matter by which,
y or y*, the normalization is done and that the normalization is
effected by first obtaining y*, which minimizes the numerator of
8, and then by actually normalizing this y* so that y*-y* = 1,

The above algorithm is not completely free from difficulties.
There are problems of convergence to a nonglobal minimum,
nonuniqueness of the minimum reached, and a possible degeneracy
of solutions., These problems are not restricted to the ADDALS
algorithm but are discussed here only because it happens to be
the first algorithm discussed in this chapter.

The convergence point attained by ADDALS may not be the
global minimum of ¢, Only a convergence to a local minimum is
ensured. There is no definitive way to get over this problem.
Good initial starts often help, but there is no guarantee that they
always work. It is thus advisable to obtain several solutions from
different initial starts, and if they do not all agree, choose the
one that gives the smallest value of .

No general conditions have been established for the uniqueness
of the parameter estimates. The local minimum attained may not
be a strong minimum but merely a weak local minimum in the
sense that we may find ¥* and ¥y, such that d(Y* ,y) = o(¥* V)
sufficiently near y* and y, but y* = y* and Y==Y. A general
recommendation is to obtain many observations. With an increas-
ing number of observations (relative to the number of parameters
to be estimated), the seriousness of the problem decreases. As
more observations are made, the region of y* and y, in which ¢
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is equal, gets smaller in size, until it can be virtually considered
as a unique point., The best way to obtain more observations,
without increasing the number of model parameters, is to obtain
replicated observations.

A solution is said to be degenerate when ¢ = 0 and the ele-
ments of y* split into two or more equivalence groups. A de-
generate solution occurs when rows or columns are not ordinally
connected in the following sense:

DEFINITION 13-1. Order Connectedness

Rows (columns) of a data matrix are said to be ordinally
connected when in each row (column) there is at least one
element that is larger than at least one element in the other
rows (columns) and there is at least one element that is
smaller than at least one element in the other rows
{columns).

Rows and columns cannot be unconnected simultaneously. The
following simple numerical example (3 x 3) shows what happens
when rows or columns are unconnected:

4 2 1

Rows of this data split into two groups between the first and
second rows (indicated by the line). Rows are unconnected here.
These data can be perfectly fit by: ’

i
0 0 o0
2 2
Bj
-1 -1 -1 -1
-1 (-1 -1 -1

The model predictions split into two groups in the same way as
the data split. Since monotonicity is perfectly satisfied in this
case, we obtain ¢ = 0. Although the fit is perfect, the solution
is trivial.

Note that the above data satisfy the independence condition,
one of the necessary conditions for an additive representation.
In fact, "too clean" data (the data that can be perfectly repre-
sented by the additive model) are less likely to be ordinally
connected than moderately noisy data and are thus not particu-
larly suitable for ordinal additivity analysis. For ADDALS to
work it is necessary that the data contain a moderate degree of
error. The best way to avoid the degenerate solution is to
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increase the number of levels so that the levels are sufficiently
close to generate "confusions" among rows and columns. Repli-
cated observations are also helpful in creating ordinal connect-
edness in the data.

Some modifications are necessary to the standard ADDALS
algorithm when the design is not balanced and/or the data are not
ordinal. When there are missing observations, we may make the
design artificially balanced by assigning them an arbitrary value
(say, zero) initially and by assigning model predictions subse-
quently. This treatment is not described in the original ADDALS
paper (de Leeuw et al. 1976), but this approach has been taken
in the WADDALS algorithm.

When the data are nominal, the quantification of the observa-
tion categories may be expressed as:

y* = 86 , (13-28)

where S is a matrix of dummy variables. Specifically, $ = [s;; |
where

1, if stimulus / is responded by category j,

Sij .
" 0, otherwise,

and © is the quantification vector of the observation categories.
The least-squares estimate of © is obtained by:

€= (s’s)-ls-y. (13-29)

Kruskal's monotonic regregsion algorithm in Step 2 should be
replaced by (13-28) with © obtained by (13-29). The iterative
procedure in this case is known to be equivalent to obtaining
eigenvectors of a certain matrix, which is exactly what is done by
Quantification Method II or CCM.

WADDALS

Having discussed the ADDALS algorithm in the previous section,
there is only one more step necessary to arrive at the WADDALS
algorithm (Takane et al. 1980), in which an additional set of
parameters, namely the differential weights, have to be estimated.
WADDALS minimizes the least-squares critefion:

1l

$w= 1 [V =Y OF =Y IvEyEl . (13-30)

Note that ¢, is essentially the sum of individual least-squares
criteria, like the one for ADDALS ([13-26]), summed over K.
The positive square root of mean ¢w (¥ @ /K) is called stress in
WADDALS. The WADDALS algorithm is again based on the alter-
nating least-squares principle. It minimizes ¢, alternately with
respect to model parameters (a, 8, Wiaq, Wgg) and with respect to
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data transformations (y{). The model estimation phase now
consists of two subphases, one estimating the weights and the
other estimating the additive effects. So the basic iterative cycle
is:

Step 1. Model Estimation:

Obtain v (k =1, . . . , K) that minimizes éy for
fixed y& (such that y2°y} =1 for k =1, . . ., K).
This consists of the following two substeps.

1. Estimate the weights (wia, wigl for k =1,
.« .+, K for fixed ¥} and for fixed additive
effects.

2, Estimate the additive effects (e, B) for fixed y3
and for fixed weights.

Step 2. Optimal Scaling:

Obtain vy (k =1, . . . , N) that minimizes ¢, for
fixed Yy and normalize them so that y}"yg = 1 for
k=1,..., K.

In the initial iteration, we set yz =0, (k=1, . .., K), which

are to be centered and normalized. Initial estimates of the addi-

tive effects are obtained by applying the SAM, treating k as a

replication. They are then normalized so as to satisfy (13-11).
The weights are estimated as follows. Let

[wia wis]
w = . »
[WKka  wks|
X = [Gaa, Gg B8] ,
and
Y= Iy, o 0, v2]
Then,
W= (X“X)"1X Y*,
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The least-squares estimates of the additive effects are obtained
by

&= ( G'awGan) ' Gany" ,
for a, where ¥** = (Yf*, . . . , ¥¥°), and

—

wia Ga

Gaw= . . .

wka Ga |

The estimate of B is similarly obtained. Once & and 8 are ob-
tained, they are normalized to satisfy (13-11), and the weights
are adjusted for the normalization. Then the model predictions
are calculated:

Y=[y1,...,yN]=XW.

Finally, y} (k =1, . . . , K) are obtained by applying Kruskal's
monotonic regression to each y, separately. (If the data are
nominal, the least-squares nominal transformation is applied
instead.)

The two phases are repeatedly applied until convergence is
attained. The convergence is assumed to have been reached
when the reduction in ¢, from one iteration to the next becomes
negligible (for instance, 0.0005). The first two iterations of the
WADDALS algorithm are shown in Figure 13-7 for hypothetical
sets of data. The reader is encouraged to follow through the
iterations in order to obtain a concrete image of how WADDALS
works., Similar example iterations are shown for ADDALS in
Young (1981).

In Figures 13-8 and 13-9, the plots of estimated ax; and B/
from ADDALS and those of estimated wgaa; and wggB; from WAD-
DALS are shown. The data analyzed were the hypothetical data
sets given in Figure 13-7, Figure 13-8 indicates that the data
are not perfectly suitable for the WAM. However, the design is
very small (3 x 3); the estimates are based on only three obser-
vations each. Since these estimates are not likely to be very
reliable, it may still be worthwhile to apply the WAM. Figure
13-9 exhibits the characteristic patterns of proportionality among
wiax; and wggBj. (Compare them with Figure 13-1.) '

Stress values obtained from separate ADDALS analyses of the
two sets are .198 for kK = 1 and .194 for k = 2. The joint stress
is computed by [{(.198)2 + (.194)2}/2]1/2, which turns out to be
.196. The stress value obtained from WADDALS is .208, a slight
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Figure 13-7. Example of WADDALS Iterations |

INLTIALIZATION PHASE Fir
RAW DATA strase -{—lzﬂ - 255
e T OPTIMALLY SCALED DATA
15 2 32 7 (Normalized and arranged in the original formet
6 8 9 “ 8 9 to be used in the next iteration)
21 -8 14 -4k -.03 .18
OPTIMALLY SCALED DATA -.52 =.18 -.21 -37 -.37 a8
(Originsl data just centered and normalized) .13 .42 .58 -.09 32 .60,
-.26 -.13 .26 -.52 .0 .13
-52 .0 -.39f |-.26 -139 26 ITERATION TWO
23 .9 .82 -.13 .39 .52 MODEL ESTIMATION
INITIAL ESTIMATES OF ADDITIVE EFFECTS WEICHTS va v
(Normalized) k=1 .29 .20
-.39 L3 k=2 |15 .25
4. (-.93) ] -( .zz) ADDITIVE EFFECTS (Normslized)
1.37 1.10 _.”) (-1.21)
aef-1.00) ¢af -l02
ITERATION ONE 13 12
MODEL ESTIMATION SCALE ADJUSTED WEIGHTS
WEIGHTS v vy (No significant change)
k=1 [.zs .u] OPTIMAL SCALING
k=2 .13 -24 RAW DATA (Arranged in an ancending ordef)
AUUITIVE EFFECTS (Normaltzed) a2 e 5 8 7 BY
- 3% -1.30 kel
s e [-1.02 pefl 6 MODFL ESTIMATES (Normalized)
136 T (=49 =10 .29 .11 =10 .71 .09 .40 ,%9)
SCALE ADJUSTED WEIGHTS
(No signiticant change) UPFTTMALLY SCALED DATA

OPTIMAL SCALING (-.68 -.20 -, 20 -.20 ~.20 .13 .15 .40 .5%)

RAW DATA (Arranged in an ascending order) kel:
(4} 2

345 6 7 8 9 NODEL ESTIMATES (Normatized)
kel: (-.39 -.22 -.53 -.0) -.08 .25 .11 .28 .61)
MODEL ESTIMATES (Normalized) OPTIMALLY SCALED DATA
(=51 =11 -.31 =.07 -.27 .18 .09 .42 .38) (=239 =.37 =.37 =06 -.06 .18 .18 .28 .61)

OPTIMALLY SCALED DATA
FIT
(=.51 .21 =.21 =17 =.17 .13 .13 .42 .58) 'V ‘10T
stress -J—-—z— = .27
- OPTIMALLY SCALED DATA

MODEL ESTIMATES (Normalized) (Normalized and arranged in the original: format
(-.42 -. 16 -.55 =.08 ~.02 .24 .11 .3) .57) to be used in the next fteratlon)

OPTIMALLY SCALED DATA .20 .20 s =40 -.06 A9
(=.42 =.35 -.35 .08 .02 .17 .17 .31 .57) -.50 -.20 -.20 -.38 -8 .19

15 40, 6) -. 06 .29 .82

k=22

Continue to the next column

increase from .196. The difference represents the portion of
variability in the data that can be represented by the SAM but
not by the WAM, Whether the difference is statistically signifi-
cant or not is difficult to determine; there is no definite crite-
rion, but when the design is as small as this, a difference of
.012 seems quite large. :

The comments made for ADDALS concerning the nonglobal
minimum, the weak minimum, and the degeneracy of solutions are
also valid for WADDALS. The last two of these problems are less
serious in WADDALS, since the number of observations to number
of parameters ratio is generally much larger in the WAM.

A necessary condition to avoid a degenerate solution is much
weaker for the WAM. Ordinally connected rows (or columns)
define a partition of rows (columns) in the data matrix. Within
each subset in the partition, rows (columns) are connected, while
rows (columns) in different subsets are not connected. When the
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Figure 13-8. Estimates of Additive Effects in SAM Obtained from
Hypothetical Data Sets

a 8

14

Figure 13-9. Estimates of Additive Effects Multiplied by Weights
in the WAM*

WA Wia B8

*Derived from the same hypothetical data sets as in Figure
13-8,

partition consists of only one set of all rows (columns), the data
are said to be rowwise (columnwise) connected.
DEFINITION 13-2

Two subsets of connected rows (columns) are connected if
at least one element in one subsct is larger and at lecast one
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element in the same set is smaller than at least one element
in the other subset.

Unconnected subsets for some k should be connected for at least
one k-(z k).

MAXADD

WADDALS, as discussed in the previous section, works reasonably
well as a descriptive device, It is better suited for obtaining
crude estimates based on relatively weak assumptions (monoto-
nicity, no distributional assumptions). However, it can provide
very little information pertinent to model evaluations, such as
assessing the reliability of the estimates, comparing the goodness-
of-fit between two models, and so forth., The MAXADD procedure
developed by Takane (1982), on the other hand, allows wvarious
statistical inferences that have not been possible previously.

The MAXADD procedure is capable of fitting both the SAM and
the WAM to categorical rating, pair comparison, and directional
rank-order data. In MAXADD, nonmetric data are viewed as
incomplete data (Dempster, Laird, and Rubin 1977). A metric
process conveying complete information about the model is as-
sumed to underlie such nonmetric data. The metric information is
presumed to get lost in an observation process, leaving us only
ordinal or nominal information. A specific information reduction
mechanism is postulated for each specific type of data; through
this mechanism, the likelihood of observed nonmetric data is
stated as a function of model parameters. Model parameters are
then determined so as to maximize the likelihood of the observed
data. Procedures similar to MAXADD have been developed for
multidimensional scaling (Takane 1978, 1981; Takane and Carroll
1981).

We discuss the model linking the unobserved metric process to
the observed nonmetric data for each of the three data collection
methods mentioned above. In the categorical rating method, each
category is represented by an interval specified by its upper and
lower boundaries. Let the upper and lower boundaries of the mth
observation category be denoted by by, and bg(n-1), respective-
ly. We assume that y;; is put into category m whenever its
corresponding error-perturbed model prediction falls in an in-
terval bounded by by (m-1) and bgy. Let py;jm denote the proba-
bility of this event. Then

Pkijm = Prob (bk(m-1) < ykij < bem - (13-31)
Define

Fiijm = Prob (yt;i < bgm - (13-32)
Then pgijm = Fkijm = Fkijim-1). Under the distributional as-

sumption that yf;; is logistic, (13-32) can be more explicitly
written as:

Feijm = (1 + exp {-sk (bem = yxij )YI7' (13-33)
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where s; is a dispersion parameter, Let Zkijm denote the ob-
served frequency with which y,;; is put into category m. The
joint probability (py;; ) of Zxijm (m =1, . .., M) can be stated
as:

M Zkijm ‘ '
Pkij =mf1 (Pkijm) . (13-34)

Finally, the joint probability of the total set of category judg-
ments is obtained by the product of the above pkij over i, [, and
k, assuming that the judgments are all statistically independent.

In the pair comparison case, we may assume that yk;; is
judged to be larger than yk,, whenever yEij exceeds y¥,,. The
probability (pf;;,, ) that yi;; is judged larger than ykyy is then
written as:

pl:i/'uv = Prob (yti/ > yEkud) (13-35)

Prob (yti; = Yikuy > 0) ,

which, assuming that ykij - ykuy is logistic, can be more expli-
citly stated as:

PRijuv = [1 + exp {=se(yis; = yku)1™t . (13-36)

Let Z,;;,, denote the frequency with which Ykij 1is judged larger
than y,,,. Then the joint probability (Pkijuv) of Zijjyy and
Ziyyij can be stated as: ‘

Zkijuv Niijuv = Zkijuv
Peijuv = PEijuy) (- pEijuy) v (13-37)

where Neyjyy = Zkijuv * Zkuvije The joint probability of the
total set of pair comparison judgments is obtained by the product
of Prjjyy .

In /:ﬁe directional rank-order method, each ranking is per-
formed in a specified direction, either from the largest to the
smallest or from the smallest to the largest. In this case, we may
assume that each ranking is obtained by successive first choices.
Suppose that the ranking is perf?rmed from the largest to the
smallest among M stimuli, Let Yk m) denote the model prediction
judged to be the mth largest, and yx'"™ the corresponding error-
perturbed model prediction. We assume that when yx(™ is chosen
as the mth largest element, the m - 1 successive first choices
have already been made and the corresponding m - 1 stimuli have
been deleted from the comparison set. We assume that ylm) g
chosen as the largest element from the remaining M - m + 1
stimuli. We also assume that this event occurs whenever yk"")"
exceeds all other error-perturbed model predictions remaining in
the comparison set. Then
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pi!™= Prob (yi!mM*> y, tmeis Ly sy, M) (13-38)

vhere pi!™ is the probability that yk(’") is chosen as the""largest
slement among the M - m + 1 elements. Using Luce's (1959)
hoice model, px!™ can be more explicitly stated as:

4 ,
pilm= 1+ T exp (~sklysl™ -y}t . (13-39)

j=m+1

Assuming that each successive choice is performed independently,
the probability of a ranking is obtained by the product of p« m)
over m=1, ..., M-1, The joint probability of multiple
rankings, on the other hand, can be stated as the product of the
probabilities of individual rankings. A rationale and the condition
for the statistical independence of successive first choices are
given in Takane and Carroll (1981).

In all cases, the likelihood function is stated as a function of
model parameters. Their estimates are determined in such a way
as to maximize the likelihood function. Let L denote the likeli-
hood function. Then, we would like to solve likelihood equations,

9 In L
Y] =0,
for 8, the parameter vector. MAXADD uses the Fisher scoring
algorithm for solving the likelihood equations. This algorithm,

starting from some initial estimates, updates the parameter esti-
mates by solving :

elg) 1 (@le) Y(ela+l) - @la) ) =u( eld) ) (13-40)

for @(a+1), where €(@ is a step-size parameter, ©@!9*1and @(q) are
new and old parameter estimates, respectively, and

“(o) - (2JnL)

and

1(e)

e [(%h) G -

which is called Fisher!s information matrix. Updating of equation
(13-40) is iteratively applied until convergence is reached. Initial
estimates are obtained by the same procedure used in ADDALS
and WADDALS, except for pair comparison data. In. the pair
comparison case, estimates of y;; are first obtained by applying
a least-squares procedure for the ordinary Luce model to ob-
served frequencies, Zk;jyy, and then these estimates aré used to
obtain initial estimates of model parameters. The reader is re-
ferred to Takane (1982) for more details of the algorithm,
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As has been emphasized, one of the major advantages of the
MAXADD procedure is its statistical inference capability. The
Moore-Penrose inverse of the information matrix evaluated at the
maximum likelihood estimates of parameters is known to give
asymptotic variance-covariance estimates of the parameter esti-
mates (Ramsay 1978). These estimates provide information con-
cerning the reliability of the derived estimates.

The asymptotic chi-square statistic derived from the likelihood
ratio principle may be used for various model comparisons. Let
Lo and L) represent the two likelihoods obtained under hypothesis
Hg (which postulates a more restricted model) and hypothesis H,
(which postulates a less restricted model), respectively. Then

)(2 = 2(In Ll - In Lo)

follows asymptotically the chi-square distribution with degrees of
freedom equal to the difference in the number of parameters in
the two models. Observed values of x? are compared with appro-
priate critical values of chi-square to test a significant difference
between the two models.

The asymptotic chi-square can only be used when one of the
two models compared is a special case of the other. When this is
not the case, the following statistic will be helpful:

AIC(r) = -2 In (L) + 2n_,

(Akaike 1974), where L ; is the maximum likelihood of model 7 and
Ny is the effective number of parameters in the model. A smaller
value of AIC indicates a better fit.

Some caution should be exerted when one wants to rely on the
statistical inference features of MAXADD. These are all based on
the asymptotic properties of the maximum likelihood estimates,
which do not strictly hold in many practical situations. It is
necessary to have a lot of replications. In the most typical
situations, the number of observations to number of parameters
ratio must be at least 15 to completely rely on these statistics.
Otherwise, one has to examine the behavior of these statistics
case by case using Monte Carlo techniques.

The same example data sets that were previously analyzed by
ADDALS and WADDALS were reanalyzed by MAXADD, assuming
that the data were directional rank orders. Two analyses were
performed—one under the assumption that the rankings were made
from the smallest to the largest and the other under the assump-
tion that the rankings were done in the reverse direction. (In a
practical situation, one usually does only one analysis, whichever
an experimental paradigm dictates.) Results are presented in
Figure 13-10. The two analyses give similar results; not only are
the values of the likelihood function quite similar, but estimates
of the model parameters are also similar. These estimates also
agree well with those obtained by WADDALS.

An example of some use of statistical inference features of
MAXADD will be given in the application section.
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Figure 13-10, Summary of MAXADD-4 Analyses of the Data for
WADDALS .

(1) Assuming that the rankings are performed from the smallest to the lareest:

LL = -13.6
n, = 5

AIC = 37.3

Additive effects (Normalized)

-.520 -1.27%
1= -.879 do= .108
1.399 1.167

Weights (Normalized)

“A “B
k=1 . 789 L6195
k=2 .H79 .816
(I1) Assuming that the rankings are performed from the largest to the smallests
LL = -13.9
n, = 5
AIC = 37.7

Additive effects (Normalized)

-.220 -1.287
n=1-1.100 co= 137
1.320 1.151

Weights (Normalized)
I-IA UB

= .892 L452

= .64 773

k=1
k=2

EXAMPLES OF APPLICATION

In this section, we discuss some applications. Some of these
examples have been presented elsewhere; others are only pro-
visional, in that no real data have yet been analyzed, but they
are included here to demonstrate possible uses of WADDALS or
MAXADD. They also indicate how the two procedures can be
. effectively applied to actual data analysis situations. We focus on
the WAM here, but the reader can find interesting applications of
the SAM in Anderson (1981), Cliff (1959), Green and Rao (1971),
Johnson (1974), and Wallsten (1976). Green and Srinivasan
(1978) give an excellent overview of various current issues on the
additive conjoint measurement.

Psychophysical Data

Portions of this example have been presented elsewhere (Takane
et al. 1980; Takane 1982). In fact, it served as an original
motivating factor for developing the WADDALS procedure, the
first computer program ever developed for the WAM,

Some developmental psychologists believe that the way large-
ness of rectangles is judged changes with the subject's age. For
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example, younger children tend to put more emphasis ‘on the
height than the width of rectangles when they make perceived
largeness judgments. This tendency decreases as they get older
(Kempler 1971). Let us assume (although this assumption itself is
susceptible to an empirical test) that children's perception of the
rectangle area is obtained by simple addition of contributions from
the height and the width. That is, it is representable by the
SAM for each child or age group.

The developmental change described above may clearly be
described by the WAM., Let Wiy and wgw denote the differential
weights put on the height and the width, respectively, in the kth
age group. It is expected that wy > Wew initially and that wyy
decreases while Wiy increases as k increases, until wyy becomes
nearly equal to wyy.

In order to test this hypothesis, Kempler (1971) constructed a
set of 100 rectangles by factorially combining 10 height levels and
10 width levels, each ranging from 10 inches to 14.5 inches in
half-inch intervals. Sixteen to 25 children in each of four age
groups (Ilst-, 3rd-, 5th-, and 7th-graders) judged each of the
100 rectangles "large" or "small." (This is a two-category judg-
ment.) For each age group, the number of times each rectangle
is judged large (that is, the number of children who make this
judgment) was counted and used as an ordinal measure of the
perceived largeness and additivity analyses were applied.

Since the WAM presupposes a representation by the SAM for
each age group, the simple additivity analysis was conducted
first. In all cases, satisfactory stress values were obtained
(< .2). Since the estimates of the additive effects in the SAM
were found roughly proportional, the weighted additivity analysis
was performed by WADDALS. As expected, the weights attached
to the height tended to decrease, while those for the width in-
creased rather consistently with age level (see Figure 13-11).
The stress value obtained from WADDALS (.190) was not very
different from the joint stress value obtained from the SAM (.172)
applied separately to each age group. Thus, for Kempler's data,
the WAM was indeed appropriate. Takane et al. (1980) discuss
other possible models for Kempler's data and how they can be
dismissed on the grounds of model comparisons. They also report
extensive Monte Carlo studies on stress values to be used in
evaluating the goodness-of-fit of the WAM,

The above analysis used group data, ignoring possible indi-
vidual differences within each group. Thus, it did not reveal a
true source of the group differences found. To do so, individual
data have to be analyzed. Kempler's individual data (original
two-category judgments) were thus analyzed separately for each
age group by MAXADD using both WAM and SAM. The WAM was
consistently found to fit the data better, implying that there were
significant differences in the weights within each group. Figure
13-12 shows the estimated subject weights for each of the four
age groups. There are indeed marked individual differences in
the weights. What is more interesting, however, is that there
seem to be some systematic differences in the weight structures
across the groups. The plots of the weight estimates tend to
converge toward the dotted lines (the 45° lines between horizontal
and vertical axes) as the age level goes up. For example, in
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Figure 13-11., Individual Differences Weights Obtained from
WADDALS Analyses of Group Data :

Weights
®
® [ ]
[ J
A
A
A
4q
e height
a Width -
A M
1 3 5 7
Grade

grade 1, several children put disproportionately large weights on
the height. (There are two children who base their largeness
judgments almost exclusively on the height factor.) As the age
level goes up, the number of those extreme children decreaces.
The children themselves also tend to be less extreme. In grade
7, a majority of children put approximately equal emphasis ‘'on the
two factors. Thus, the group differences found in the previous
analysis seem largely due to the compositional differences among
the groups. That is, each group consists of heterogeneous
subjects, but the degree of heterogeneity within each group
clearly decreases with age.

In the analysis of the group data, the additive effects were
found to be constant across the groups.. In fact, this was the
basis for applying the WAM to all age groups simultaneously.
Can they still be assumed constant across the different age
groups with the individual data? (Remember that in the above
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Figure 13-12, Individual Differences Weights Obtained from
MAXADD Analyses of Individual Data

Grade 1 Grade 3

Nj_i\ Hii
\\//

7
’
4

/ //’
WIOTH WIOTH
Grade 7
HEIGHT
L\X/
/
yd
WIDTH / \x WIOTH

analysis the WAM was applied separately to the four age groups,
which tacitly assumed that the additive effects were constant
across the subjects within the groups.) In order to answer this
question, the WAM was applied to the entire set of individual data
and the goodness-of-fit of this model was compared with that of
the WAM applied separately to each group. The AIC from the
joint analysis was 49,2 (+ constant), while the joint AIC from the
separate analyses was 51.6 (+ constant). Thus, it was concluded
that the WAM fitted to the entire set of individual data was the
better-fitting model. The additive effects can indeed be assumed
constant across the age groups.

Similarity and Dissimilarity Data

Medin and Schaffer (1978) have proposed a model called the cue
context model for classification learning. In their model, simi-
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larity between stimuli / and j is defined as:

T
S,'I'=r=[

t

Xije (13-41)

where s;; is the similarity between stimuli / and j, and

X... = 1, if stimuli /i and j share feature t,
"t &,, (0 < & < 1) otherwise.

The X;j;: thus denotes the featurewise similarity between stimuli /
and j. The overall similarity (s;; ) is defined as the product of
the featurewise similarities. Since 0< 8, 81 for t=1, .. .,
T, we have 0 < s5;; £ 1. Let

r
dij = -log 55 = -Z In X;;p (13-42)
t=1

The d;; represents a dissimilarity between i and j. (It is an
inverse monotonic transformation of s;; .) Since part-dissimilarity
functions (Green and Srinivasan 1978), which are

0, if stimuli /i and j share feature t,

dije = -In Xjje = | 6;, otherwise,

are nonnegative (-ln ©, X 0), the overall dissimilarity (d;; ) is
also nonnegative. Furthermore, it can be proven that: ’

dj;

0 (Minimality),

djj di; (Symmetry),

and

djj + djx 2 djk (Triangle Inequality),

so that d;; in (13-42) can formally be considered as the distance
between stimuli /i and j. Define

_ } 0, if stimuli i and j share feature t,
giit 1, otherwise,

and

8;“=-1n9 .
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Then dj;; = gij; ©F, and therefore:
T T
dij = 1 dije = ) gijt OF . (13-43)
t=1 t=1

This indicates that d;;, which is a kind of distance as defined in
(13-42), is a special case of the SAM.

Note that if we define d? =-Ins;; for any p (21) in
(13-42), dij can be regarded as the Minkowski p-metric. (When
p = 2, we obtain the Euclidean distance; when p =1, as in the
above discussion, we have the city-block distance.) We also
define d‘,’,’t = -In Xjj¢ in this case. That p can be any value not
less than unity reflects the fact that there is only one interval
defined for each dimension.

Suppose now that we may allow individual differences in sij in
the following manner:

’
mooxike (13-44)
t=1 Ut

Skij
where si;; is the similarity between stimuli i and j for individual

k, and wy, is the weight attached to feature t by individual k.
Let

' T
d%ij = -In sgji = <) wg, In Xjje for (p 2 1),
t=1

Again, dg;; can be proven to be a distance function within
each k. We obtain, analogous to (13-43),

d%ii = 1 Gijr Ofwie » (13-45)
t

which is a special case of the WAM. This is also a special case of
(13-22), in which

Gijt ©F = |xit ~ xj¢ |P .

Thus, sets of similarity or dissimilarity data for stimuli charac-
terized by a set of known features may be analyzed using either
WADDALS or MAXADD, depending on what assumptions we are
willing to make on our data.

Model (13-45), however, reduces .to an even simpler form by
redefining ©f, = ©fw,,. We then obtain:

d%ij = I gije O (13-46)
t
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which amounts to applying the SAM separately to each k. This is
because there are only two levels in each feature (present or
absent). In this case, the WAM and the SAM are completely
equivalent. For the same reason a correct value of the Minkow-
ski power cannot be identified. In order to empirically dis-
tinguish the WAM from the SAM, and also between: different
values of p, we must have at least three levels in each feature
(factor, dimension). When there are three levels—say 4, g, and
s—then there are three intervals defined—(i,q), (g,s), and
(i,s). Contributions of these intervals should satisfy«~a special
relationship under the Minkowski power distance model:

8i5° + g = s}, (134

where §;; indicates the effect of the difference between two
levels, i and q. (Under the Minkowski hypothesis, this is indeed
the pth power of the length of an interval bounded by i and j.)
If we use (13-47) as constraints while systematically varying the
value of p, we should be able to identify the best-fitting: p value.
Takane (1982) reports this type of study with the SAM.

It may be noted in passing that the multiplicative rule in
(13—41) in defining the overall similarity between two stimuli is
quite similar to the multiplicative competitive interaction (MCI)
model (Nakanishi and Cooper 1974) for preference choice data, to
which we now turn.

Preference Data

Applications of the WAM to preference data are rather scarce,
due, perhaps, in part to the fact that the WAM postulates an
identical ideal point (Coombs [1964] 1976) along each stimulus
attribute across individuals. In situations in which the prefer-
ence functions are single-peaked, this is hard to justify; in many
cases, there are individual differences in the ideal point. How-
ever, just as the ideal point model reduces to the vector prefer-
ence model when the ideal points are located infinitely far away
from the origin (Carroll 1972), the additive model in this limiting
case posits monotonic preference functions for the additive ef-
fects. Just as in a number of situations the vector preference
model is appropriate (Green and Srinivasan 1978), there are a lot
of situations in which the preference functions (often called
part-worth functions in the marketing research literature; see,
for example, Green and Srinivasan 1978) can be assumed mono-
tonic and common across individuals, thus making the WAM appro-
priate. The WAM in this case can be thought of as a special type
of the vector preference model, which involves quantifications of
attributes as well as weighting. _

Phipps and Carter (1982) applied the WAM to neighborhood
preference data of homeowners using lot size, landscaping, and
neighboring housing as stimulus attributes. Along each of the
three attributes, the preference function was found to be mono-
tonic. The individual difference weights obtained from the
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weighted additivity analysis were then related to various demo-
graphic variables of the individuals, such as education, C, P,
Whaley (personal communication), of Bell Northern Research, also
reports an application of WADDALS in marketing research called
tradeoff analysis (see Johnson 1974). Unfortunately, details of
the study cannot be presented, due to its proprietary nature.
Nonetheless, in this study, there were five factors to be con-
sidered, but judgments were taken only for two factors at a time.
From these incomplete data, WADDALS could successfully obtain
estimates of parameters in the WAM.

Several preference models can be considered as special cases
of the WAM. We will discuss only two of them, the muitiplicative
competitive interaction (MCI) model (Nakanishi and Cooper 1974)
and the additive-difference model (Tversky 1969) for preference
data.

The MCI model posits that the overall utility of stimulus r (y,)
is a powered multiplicative function of stimulus attributes (X,;).
That is, i

. _
yr = 1 X3, (13-48)

which can be readily extended to

T
yir = Xk, (13-49)

where wg, is an individual-difference weight. Taking the log of
(13-49), we obtain:

T e
log ykr = ] Wi log (Xr¢) , (13-50)
t=1

which is linear with respect to log (X, ). Suppose now that log
(X;¢) is unknown and that it should be quantified. Then

Q,

log (Xrt) = Z hrqt“qt .
Gr=1

Putting this into (13-50), we obtain:

r
log yx = t_zl Wkt Zl h’qt“qt . (13-51)

which is precisely the WAM (see {13-3])., In (13-51), we may
just observe an ordinal measure of the dependent variable rather
than log y4, itself (such as Ykr).- Then it must be monotonically
transformed before it can be fitted by the WAM.
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We now turn to the additive-difference model. There are
actually two versions of the model: (a) a symmetric version
designed for dissimilarity data (Tversky and Krantz 1970); and
(b) a skew-symmetric version (Tversky 1969) designed for domi-
nance data. It is this latter version that we discuss here for
preference data.

When we compare two or more stimuli in terms of preference,
we may first evaluate overall stimulus preferences by combining
various stimulus attributes and then compare them across the
stimuli to arrive at a relative preference judgment, that is,
how much we like one stimulus over the other. The additive
model is appropriate if the stimulus attributes are combined in an
additive fashion. Alternatively, we may first compare the stimuli
within attributes and then, based on the attribute by attribute
comparisons, form an overall preference judgment. In this case,
an additive representation no longer holds except under a special-
ized condition (Tversky 1969).

Let us suppose for simplicity that the attributewise comparison
process is subtractive and that the subsequent integration proc-
ess is weighted additive. Then we obtain the following model: .

Yiijuv = WkaVa (@; = o) + wegbg (8, - 8) , (13-52)

where Y's are some monotonic skew-symmetric functions (¥(-x)
= -y(x)), and yg;j,y is the relative preference of stimulus (i,f)
(the stimulus representing the combined effect of the ith level of
factor A and the jth level of factor B) in comparison with stimu-
lus (uv,v) by individual k. The above model is called the weight-
ed additive-difference model for preference data (Takane 1982).
The additive-difference model reduces to the difference between
two additive models when ¥'s are linear (in which case y's can
further be assumed to be identity functions), since we obtain:

Yeijuv = Wkald = 0y) + weg(8; - 8,) (13-53)

(wia0; + wigBi) = (w0, + wigB,)

= Ykij T Ykuv

Thus, the WAM is a special case of the weighted additive-differ-
ence model in which {'s are linear. In this special case, the two
models are completely equivalent; consequently, the two compari-
son processes, stimulus-by-stimulus and attribute-by-attribute,
are not empirically distinguishable.

In general, (13-52) is not reducible to (13-53). However, in
some sense, the weighted additive-difference model can also be
considered as a special case of the weighted additive model, We
redefine differences between levels of additive factors (that is,
aj - ay, 8 - By, and so on) as new levels of additive factors.
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Then we can directly estimate their effects in the context of the
additive model. Let %y = V¥a(a; ~ a,) and Bjy = va(B; - 8,).
Then (13-52) can be rewritten as:

Yeijuv = Wgaaj, + WkaB;y , (13-54)

where «;, and Biy represent the additive effects of newly defined
levels of additive factors. We may require

iy = =0;, for all i and y (13-55)

(the same for 8), which follows from the skew-symmetry of yu.
It follows from (13-55) that:

aij =0 for all /. -(13~56)

This implies that if two stimuli share the same level of an attri-
bute, the contribution of that attribute is zero in the comparison
Process. In order to pPreserve the monotonicity of y's, we may
impose order restrictions, such as:

%y 3 ajg and Qs S o,

where level u is between / and s. In any case, the goodness-
of-fit of (13-54) can be directly compared with that of (13-53),
This comparison should provide important insight into the nature
of stimulus comparison processes,

Note that restriction (13-55) leads, strictly speaking, to a
nonadditive model (though it is still linear), since we obtain model
predictions such as: v

Ykijiv = -Wkaa;y + WkgBiy
Ykivuj = Weaaj, - WkgBjy ,

and so forth, Unfortunately, the nonadditive model cannot be
directly fitted by WADDALS or MAXADD. Necessary modifications
should not be too difficult, however, MAXLIN, for the general
weighted linear model, is now under development, which should
be able to handle this kind of situation.

Analysis of Contingency Tables

Tables of joint frequencies of responses to two or more multicate-
gory items are called contingency tables. The log-linear model
(Bishop et al. 1975) has been quite popular for analysis of the
contingency tables.

Let fij denote the observed frequency of joint occurrences of
the ith category (level) of item (factor) A and the ith category of
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item B. (For simplicity, we only deal with a two-item situation.)
Then, the log-linear model states that:

pij =f;;IN = a;!‘ﬂ;."Yli"l. , (13-57)
where N=J ) fij (the total number of observations),
i
a} and B* are main effects of the ith category of
item A and the jth category of item B, respectively,
and Y;"/- is an interaction effect between i and j.

There are too many parameters in the above model, so that con-
straints such as

* = * = ¥ = , =
Nop=Ner=1v; }IY’/ 1

are imposed to identify the model parameters. Taking the log of
(13-57), we obtain: '

log pij = 9; + B +Yjj , (13-58)
where

a; = log a.;!‘ ,

B; = log B;!‘ ,

and

Yif

j = log Y

with
Jaj =18 =)vi=1v=0
i i i H

If we assume that there is no interaction effect in (13-58), we
obtain the SAM,

log pij = a;j + B; , (13-59)
which may equivalently be written as:
pij = exp (a; + 8;) . (13-60)

This latter form of the model suggests that it is a special ‘case of
Luce's (1959) choice model,
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s

Pij =exp (a; +8;)/] | exp (aj- + gj-) , (13-61)
i’ g

with the denominator scaled to be unity. Model (13-61) can be
obtained alternatively by assuming that the cell (i,j) is chosen
with the probability proportional to its response strength relative
to those of other cells, That is, if we take the SAM (ai + )
for the representation of (i,/) cell and use the model of first
choice, similar to the one used in the directional ranking method,
we obtain (13-61). Model (13~61) also has some resemblance to
the Rasch model (Andersen 1980) in mental testing situations.

The extension of (13-59) or (13-60) to the WAM is rather
straightforward; we obtain:

Pkij = exp (wkaa; + wkgBj) . (13-62)

The WAM in this case implies no interaction between item A and
item B at all k's and hence no three-way interaction. It does
imply a special type of two-way interaction between ; and
k(wiaa;) and between j and k(wegB;).

CONCLUSION

In this chapter, we have discussed various aspects of the WAM.,
We have seen that a wide variety of existing models can be
thought of as special cases of the WAM. Although examples of its
application are not yet sufficient, we believe that they will quick-
ly grow in number in the near future. We hope that this discus-
sion will serve to disseminate the basic idea behind the model and
to encourage more applied work in the social sciences,
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