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1. Introduction:

Multidimensioral scaling (MDS) is a data analysis technique to locate a set of points in a
multidimensional space in such a way that points corresponding to similar objects are located close
toge<her, while those corresponding to dissimilar objects are located far apart. To take a simple
example many roadmaps have a matrix of inter-city distances; Put simply what MDS does is to recover
a map based on the inter-city distances. Given a map it is relatively easy to measure a euclidian
distance between the cities. However, the reverse operation, that of recovering a map from inter-
city distances (or locating the cities in such a way that their mutual distances best agres with a
giver set of distances) is no easy matter. MDS, roughly speaking, is a method to perform this
reverse operation.

Let us look at Figure 1B. This is a matrix of airplane distances between 1O U.S. cities
(Kruskal & Wish, 1978). Given a matrix of this sort it would be difficult to find geographic loca-
tions of these cities, unless we are very knowledgable about the geography of North America. Most
of us know that the 10 cities should be located as in Figure 1A. This is because we aliready have a
fairly accurate internalized map of North America, but it would still be considerably difficult for
those who do not know very much about the geography of North America to figure out thé relative
locations of thess cities. A researcher is deemed like those who do not know the geography; the
role of MDS is to construct a map like this from a matrix like the one in Figure 1B for those who
do not know the "geography" in certain areas. In the remaining time I would like to elaborate this
role of MDS through various examples. .

2. Morse Code Signals

Objects represented in a map do not have to be intrinsically geometrical. The first example
illustrates this point (Figure 2). This is called a confusion matrix (Rothkopf, 1957). (It looks
confusing!) Stimuli are 36 Morse Code signals. Signals are presented successively in pairs, and
subjects are asked to judge whether the two stimuli are the "same" or "different". The relative
frequencies with which row stimuli are judged the "same" as column stimuli are entered in this
table. For examrle, we find that

A (=) A (=) 92%
A (e =) K (--=) 22%
A () T(-) 6%

The most impressive aspect of this table is the overwhelming array of numbers. It is difficult,
if not impossible, %o finé a hidden structure underlying a confusion process between the Morse
Code signals by merely inspecting the table.

Figure 3 presents a result of MDS of these data (Shepard, 1963). MDS locates the stimulus
points in such a way that more confusable (or more similar) stimuli are located close to sach
othey, while less confusable stimuli are located far apart. The advantage of MDS analysis is
rather obvious in this case. If we look at the figure it is readily apparent that:

1. A process mediating the confusions between the Morse Code signals is two dihensional.

2. One is the total number of comporents in a signal (i.e., the number of dots plus the number of
dashes), and the other is the ratio of the number of dots to the number of dashes in a signal
i.e., Which is more predominant?)
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As can be seen, as we go from the bottom to the top of the ligure signals have more componeats.
Stimuli with the same number of components are relatively confusable. Points are more crowded
toward the top of the figure, but this merely reflects the fact that a more variety of signals caz
be composed with more components, and are thus more confusable.

Within the same number of components, symbols on the right have more dashes and fewer dots
than those on the left. Stimuli with the same number of dots and the same number of dashes are
more confusable, particularly when they are mirror images of each other. Two signals are said %o
be mirror images of each other when they have exactly the same number of components of each kird,
but the components are arranged in exactly reverse orders. In the figure, stimuli which are mir=or
images of each other are indicated by connected line segments.

3. Japanese Kana Characters

Figure 4 is an MDS configuration of 46 Japanese Kana characters (phonetic symbols). Twents
University of Hawaii students who did not know Japanese were asked to classify these symbols inio
as many groups jhey liked in terms of their similarities in shape (Dunn-Rankin & Leton, 1973).

The frequencies with which two symbols are classified into the same groups are taken as similarity
measures between these symbols, and MDS is applied to obtain the stimulus coanfiguration.

Unlike the previous example, this configuration does not seem to permit a staightforward
dimensional interpretation, though perhaps the horizontal direction roughly represents the :
complexity in shape (simple (right) vs. complex (left)). The vertical axis is difficult to inter-
pret. However, when cluster analysis, which groups similar objects together, was applied to tke
same set of data, and the grouping4of these stimuli obtained from cluster analysis were superim-
posed on the stimulus configuration obtained from MDS, it became apparent that another kind of
interpretation (not dimensional, but configural) was possible. Our interpretation of six clusters
are as follows:

1) angular form

2) curved feature

3) discrete components
4) zigzag feature

5) round feature

6) crossed feature

Of these, the sixth cluster is a major cluster that iicludesthree sub~clusters labeled 6, 7 and &
in the figure. Note that toward the left end of this cluster characters having a "double cross"
are located. i

The ofganizing principle underlying the perceptions of similarities between these symbols
seems to be "distinctive features' subsets of the symbols share in common.

4, HAVE words

The data collection method, in which subjects are asked to sort a set of stimuli according to
similarity among them, is called the sorting method. It is very popular among social scientists
because of its simplicity. We give another example in which the sorting method was used as a éata
collection method. Stimuli are 29 Have words given in the left margin of Figure 5. Ten universi:y
students were asked to classify them into as many groups as they liked in terms of their similaris
in meaning. A somewhat specialized MDS method was applied to these data (Takane, 1980), and tke
result is presented in Figure 5. This configuration permits a straightforward dimensional inter-
pretation.

The horizontal direction distinguishes two future states of the current state of possession.
Words like "have”, "own' and 'belong'" are located on the left side of the c¢onfiguration, while
"give’, "sell", "lose', etc. are placed on the opposite side. Thus, the horizontal direction
contrasts a stable state of possession (left) with a state of possession waich is about to charcge
(right). Similarly, the vertical direction distinguishes two states of nonpossession, a stable
nonpossession at the top and an unstable state of nonpossession at the bottom. It seems that
the vertical direction represents subtle gradients of sureness of change in the state. That is,
"lack'", "need" and "want" are located at the top, which indicate no prospect of change whatsoever,
while "'receive, "get'", "find", etc. are located at the bottom, which indicate that the change is
most probable. .Interestingly '"b2g" is located at about the middle, which indicates that some
action has been taken to change the state, but it is not certain if the change will really occur.

5. Color Space for the Pigeon

MDS is not restricted to human subjects. The next example shows this instance (Schneider,
1972). Pigeons are trained to discriminate between colors. A pair of colors are presented as.tzo
halves of a circle, as illustrated in the figure below. Pigeons are trained to peck the left
lever when two colors are the same, and the right lever when they are different. The relative
frequency of incorrect responses for each pair of colors is taken as a measure of similarity
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Figure 6 is the stimulus configuration obtained from the confusion data. As we can see, a familiar
color wheel is present in pigeon's color space. Figure 7 is the color wheel typically found in
human subjects (Ekman, 1964; Shepard, 1962). The two configurations look very much alike with
each other.

6. What MDS does

let us summarize what MDS does at this point (Figure 8). We are given a matrix of
(dis)similarities between objects as input data. These data are generally represented by an n by n
matrix O whose (i,j) entry o, is the (dis)similarity between objects i and j, where n is the
number of objects. By applyiag MDS to the data we obtain an n by A matrix X of stimulus configu-
ration, where A is the dimensionality of the multidimensional space in which objects are embedded.
The (i,a) element x, of matrix X represents the coordinate of object i on dimension a. The
information containeéain X may be further converted into a graphic representation (like those we
have already seen) by introducing a Cartesian coordinate system, as indicated in the right portion
of the figure. Since the euclidian distance is invariant over the shift of origin and the rotation
of axes, we may subsequently remove the coordinate axes (which we have used to locate the stimulus
points).

Once X is obtained, then the matrix D(X) of interpoint distances can be calculated (based on
the X). MDS determines locations of stimulus-points so that the interpoint distance D(X) in some
sense best agree with the observed (dis)similarities O.

7. Helm's Color Data

Various extensions of this basic scheme of MDS is possible; the next example represents one
such possibility (Figure 9). We have so far been focusing on an MDS technique which derives a
single stimulus configuration given a single matrix of observed (dis)similarities. Suppose we have
N (2 1) such matrices, each contributed by a different subject. If no systematic individual
differences are suspected, we may analyze them simultaneously and derive a single common stimulus
configuration on the basis of the premise that these matrices are mere replications of one another.
Alternatively when some individual differences are suspected, we may apply MDS separately to each
single matrix. In this case we obtain N stimulus configurations.

The question is whether there is a better way to represent differences among matrices of
(dis)similarities than applying MDS separately to these data. The answer is "yes", and a technique
is called individual differences MDS (Carroll & Chang, 1970).

Figure 9 helpe clarify the kind of analysis performed by the individual differences MDS.
Dissimilarity judgments among 10 colors were obtained from 14 subjects (Helm, 1964). The stimulus
configuration (the figure on the left) has been obtained by applying the individual differences MDS
to these data. We can see the familiar color wheel with:

1) Vertical axis representing the contrast between red and green {R-G)
2) Horizontal axis representing the contrast between yellow and blue (Y-B)

The figure on the right represents the weights attached to these two dimensions by different sub-
jects. Subject M, for example, put about equal emphasis on both dimensions, while subject I put
excessively heavy emphasis on the horizontal axis. This implies that M's judgments of similarities
are based on the two dimensions equally considered, while I's judgments are almost exclusively
based on the Y-B dimensions. In fact, subjects with parentheses are color deficient subjects

(in G-R), and for them G~R dimension is almost totally missing. Individual differences MDS thus
attempts to describe individual differences in (dis)similarity judgments by differential weights
attached to dimensions by different individuals (Figure 10).

Shepard & Cooper (1975) have done an interesting follow-up study on the color space of color
deficient subjects. They found that the color space derived from the color deficient subject, based
on color names (rather than actual colors) was very much like a color wheel similar to that usually
obtained from color normal subj2cts. This means that, although the color deficient subjects can
never see actual colors, they are aware, to some extent, of their conceptual relationship.
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8. Segmented Numerals

Of cource, not all types of individual differences can be represented by differential weighting
of dimensions. Figures 1l and 12 present results of (simple) MDS of segmented numerals from two
subjects (Sergent & Takane, in preparation.) The stimuli are similar to those used for displaying
time in digital watches. That is, they are constructed by picking appropriate segments from seven
basic constituents indicated in the following figure.

Segnents vaed la whe digite

1

7

For example, digit one is composed of segments 3 and 6, two is composed of segments 1, 3, 4, 5 and
7, and so on. Those stimuli were presented in pairs. Reaction times that the subjects took to
judge if two stimuli presented were the "same" or "different" were used as input data (Takane &
Sergent, 1983).

The two configurations seem to be completely unrelated. For subject 1 (Figure 1l) the
stimuli are organized according to the constituent segments. The horizontal axis divides (roughly
at the vertical dotted line) numerals all having two top (or three) horizontal line segments (on
the left] from those without them (on the right). The vertical axis divides (roughly“5Z the
horizontal dotted lire) numerals with three vertical segments 2, 3 & 6 (bottom) from those lacking
at least one of them. For subject 2 the configuration circles around, starting from O and ending:
with 9. This type of configuration is often obtained when a two dimensional solution is obtained
for one dimensional stimuli due perhaps to the ceiling effect of the similarity measure. In any
case this subject seems to perceive the stimuli as numbers.(rather than mere collections of
particular segments), since it took him more time to discriminate two numbers which are similar in
numerical value.

The way the same set of stimuli are perceived is entirely different for these two subjects..
Clearly this type of difference cannot be captured by the individual differences MDS described
earlier.

9. MDS of line drawing of faces

For multiple sets of data to be adequately described by the individual differences MDS they
nust exhibit certain patterns when analyzed separately by simple MDS. The next example shows such
patterns. .o

The stimuli are eight faces (Figure 13) constructed by factorially combining two levels each
of three features (Table 1). As in the previous example reaction times were taken and used as
input data. Figures 14 and 15 display stimulus configurations derived from two subjects by apply-
ing simple MDS separately. Four dimensions obtained agree between the two subjects. The four
dimensions are interpreted, in the order of salience, as follows:

1. Hair

2. Jaw

3. Eye

4. Sex consistency.

The first three dimensions correspond with the three defining features of the stimuli. The last
one, a bit difficult to interpret, is the additional dimension used by the subjects in performing
the RT task. On the fourth dimension stimuli most consistent with typical sex profiles (short
hair, angular jaw and dark eyes for males, and lsng hair, round jaw and light eyes for females)
are located at the top, while remaining stimuli are locztad downward according to their degrze of
izconsistency with the sex profiles.

The most striking thing is that the two configurations are remarkzbly similar, in fact,
almost identical except for the dimensional saliency. The individual differences MDS discussed
earlier is most appropriate to describe this kind of differences in the dimensional saliency.

10. FTacial Expressions Data

We give a few more examples of the individual differences MDS. Figure 16 shows a set of
stimuli employed. They are constructed by factorially combining two of the most important
determinants of facial expressions, namely the curvature of eyes and the curvature of lips
(Inukai, 1981). Figure 18 shows the common stimulus configuration obtained by applying
individual differences MDS. We see that the two defining properties of stimuli (eyes and lips)
are also present in this subjective space. That is, subjecis' judgments of similarities are
organized around the two physical attributes with the vertical axis roughly corresponding with the
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Stimulus hate (W)  eye (D) Jav (3)
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2 Shore Dark Angular
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7 Shere Light Round
[ ] Loug Light Round

Figure 14 Derived stizulus configuration for subject 1.
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eyes dimension and the horizontal axis with the lips dimension.

In addition to the dissimilarity data, the experimenters also obtained rating judgments on
the same set of stimuli regarding the extent to which they express certain emotional dispositionms.
Directions (designated by arrows in the figure) indicate the directions with which certain
emotional dispositions are most highly correlated. Members in parentheses are multiple correlation
coefficients. For example, '"smile" is in quadrant 2, and that is the direction in which this
emotional state is most clearly represented. Similarly we may characterize other emotional states
as:

happiness - moderate concave eyes, moderate convex lips
alertness high concave_eyes, straight lips
anger ~ straight eyes, high concave lips
weeping moderate convex eyes, moderate concave lips
sleeping -2§§h convex eyes, straight lipe.

v

Interestingly enough there seem to be fairly clear sex differences in the evaluation of these
two dimensions. Figure 17 shows individual differences weights. Squares represent weights for
male subjects and circular dots those for female subjects. Generally speaking, the female subjects
put more emphasis on the lips dimension than the male subjects.

11. Body-Parts Data

The next example is an application of the individual differences MDS to describe a develop-
mental change in concepts (Takane, et. 3l., 1977). Dissimilarity judgments were obtained between
various body-part names from a group of adult subjects and a group of 6-year-old children. Figure
19 represents a common stimulus configuration. The solution is three-dimensional, where dimensions
are interpreted as follows:

Dimension

1. Contrasts between face terms and limbs (both lower and upper) terms with ‘body" in -
be tween.

2. Contrasts between upper and lower limbs with "bod&" an& all face terms in the middle.

3. Represents whole - part hierarchy. (The term '"body" is right in front, and finer and
finer parts of the body are located in the back.)

An interesting thing is that there is a fairly systematic developmental difference in the
weighting of these dimensions (Figure 20). The next figure represents individual differences
weight. White cubes indicate 6-year-old children's weights, while black cubes represent those for
adults. As we can see, 6-year-old children tend to put more emphasis on dimension 2 than dimension
1l or 3, while adults are more heterogeneous among themselves. They split into two groups, one
placing more emphasis on dimension 1 and the other on dimension 3, but no adults put most emphasis
on dimension 2. The distinction between upper and lower limbs is very important for young
children. As they grow older they realize certain parallelism between upper and lower limbs.

12. Family Composition Preference Data

MDS is not restricted to the usual (dis)similarity data. The last example represents
preference toward family compositions; i.e., the number of boys and of girls the subject would
like to have. Stimuli are various family compositions constructed by factorially combining
different levels of the number of boys (0-3) and the number of girls (0-3). Preference orders are
obtained for the 16 stimuli from 82 Belgian students (Figure 21)., In the figure more preferred
compositions are indicated by smaller numbers. For example, for the first subject (1,1) is the
most preferred composition, and (2,1) is the next most preferred compositiom and so on, where
(m,f) indicates the composition in which the number of boys is m and the number of girls is f.

One way to analyze these data is a simple extension of MDS, in which it is assumed that:

1) Each subject has an ideal point in a multidimensional space (corresponding to his or
her ideal stimulus).

2) The closer a stimulus point is to one's ideal point, the more preferred that stimulus is
by that particular subject.

MDS in this case locates subjects' ideal points as well as stimulus points im a joint space in
such a way that more preferred stimuli are located close to ideal points, while less preferred
stimuli are located far apart from the ideal. This analysis is called unfolding analysis
(Figure 23).

Figure 22 shows the result of the unfolding analysis of the preference data given in Figure
21 (Heiser, 1981). In the figure stimulus points are indicated by a pair of numbers (e.g., 1,3),
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prefer large families among the Belgian students. We can also observe a slight boy bias (pref-
ersnce for having more boys). It is also evident that the difference between two small families
(e.g., (1,0) and (1,1)) is much larger than the difference between two large families (e.g., (2,2)
and (3,3)). Adding one girl is important when there is no girl, but it is not very significant
when there are two girls already in the family. Again, the important point is that these observa-
tions, so obvious in Figure 22, can be hardly made by merely inspecting the data table.

The unfolding model has had considerable impacts on marketing research (e.c., developing ideal !
products). Figure 23 illustrates schematically what the unfolding analysis does. .

13. MDS texts in Japanese

To know more about MDS the interested reader is referred to Kruskal & Wish (1978; translated
by Takane and published by Asakura Shoten, 1980) for applications of MDS. Takane (1980) mainly
contains theoretical and methodological work on MDS up to late 1970's.
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