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IDEALL POINT DISCRIMINANT ANALYSIS: IMPLICATIONS FOR MULTIWAY DATA
ANALYSIS*

YOSHIO TAKANE

McGill University, Department of Psychology, 1205 Dr. Penfield
Avenue, Montreal, Quebec, H3A 1Bl Canada

Many contingency tables obtained in social survey research are
multiway. Ideal point discriminant analysis (IPDA) can be applied to
multiway contingency tables by rearranging them into two-way tables.
Multiway structures of rows and/or columns of the contingency tables
may be incorporated as constraints in their representations, and the
best fitting structures may be identified through model comparisons
by AIC. Two examples are given; one is a 2 X 2 X 2 table commonly
encountered in social science research, and the other 2 X 2 X L
tables arising from stimulus recognition (identification) and signal
detection experiments where L is the number of manipulated
experimental conditions.

1. INTRODUCTION

Ideal point discriminant analysis (IPDA) was proposed by Takane, Bozdogan
and Shibayama (1987) for discriminant analysis with mixed measurement level
predictor variables. The method has recently been extended to the analysis
of contingency tables (Takane, 1987). In a manner similar to correspondence
analysis (Greenacre, 1984; Nishisato, 1980) IPDA provides joint spatial
representations of row and column categories of the contingency tables. At
the same time it allows statistical evaluation of various structural
hypotheses on the representations. Some related work has been done by Van
der Heijden & de Leeuw (1985), Heiser (1987), ter Braak (1987), Escoufier
(1987), and Ihm & van Groenewoud (1984).

In this paper we explore possible applications of IPDA to multiway data
analysis. Two specific examples are given. One was obvious from the initial
inception of the model, and calls for incorporation in the predictor set of
interactions among the original predictor variables and their subset
selection. The other was somewhat unexpected. It relates to psychophysical
experiments in detection, discrimination and identification of stimuli, where

stimulus presentation and other conditions are systematically
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manipulated. All the examples to be discussed in this paper require only
unidimensional representations, and are not particularly suitable to
demonstrate the advantage of spatial representations by IPDA. However, we
will see a lot of instances of the second advantage, namely detailed model

evaluation feature of IPDA.

2. THE BASIC DATA

The basic data for IPDA are two-way contingency tables. Rows of the
tables represent categories of predictor variables, while columns répresent
categories of criterion variables. Multiway contingency tables have. to be
collapsed into two-way contingency tables before IPDA is applied. 'The most
important consideration is the distinction between the predictor variables
and the criterion variables. A decision has to be made regarding which
variables go to the predictor side and which variables to the criterion side.
Once this decision is made, the remaining problem is how to ‘combine
categories when there are more than a single predictor (or criterion)
variable. IPDA allows us to specify various structural hypotheses on rows
and/or columns of contingency tables and is capable of choosing the best
structure through model comparisons by AIC (Akaike, 1974). Input data should
be arranged so as to allow maximm flexibility in the specification of those
structural hypotheses. For example, factorial combinations of categories of
the predictor variables may be taken initially, from which the best
prediction model is arrived at by eliminating unnecessary predictor variables
and their interaction effects. See Table 1 for an example of a multiway
table rearranged into a two-way table by factorially combining catégories of
two predictor variables.

3. THE MODEL

In IPDA, contingency table analysis is viewed as a discrimination problem
of column categories (criterion groups) based on the information about row
categories (predictors). Both row and column categories are reprelséﬁted as
points in a multidimensional euclidean space. Their coordinates are assumed
to be simple (usually, linear) functions of external variables reflecting
structural relationships among the categories. The probability of an
observation falling in column j given row i is stated as a decreasing
function of the distance between the respective points.

Let f., denote the joint freguency of the i-th row category and the j-th
column category. Let F denote the R by C matrix of fi,. Let X denote an R
by p matrix of predictor variables, where discrete variables are represented
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in dummy-variable form, and continuous variables centered. Interactions
among the original predictor variables may be included in X. Let Y be the R
by A matrix of coordinates of row categories, where A is the prescribed
dimengionality of the. representation space. The maximum dimensionality is
min (R-1, C-1). It is assumed that

1) Y=XB
where B is a matrix of coefficients (weights).

Let M be the C by A matrix of coordinates of column categories. In the
simplest case this M is assumed to be given by centroids of ¥. Let D, denocte
the diagonal matrix of column totals of F. Then .

(2) M=D_"*F'Y
>0ther meaningful structures may also be incorporated in a manner similar to
(1). The Y in (1) and M in (2) provide a joint spatial representation of the
row and the column categories.

Let d., denote the euclidean distance between row i and column j. Then

(3) daZ, =(y; - my)'H(ys - m,y)
where y; and my are the i-th and the j-th row of Y and M, respectively. An A
by A metric matrix, H, may depend on (subsets of) rows and/or columns. When
H does not depend on rows or columns, it may be set to an identity matrix.

Let p,.; denote the conditional probability of column j given row i. It
is assumed that this conditional probability is given by

wy exp (-di,)

(4) Pasa =  —mmmemmmeme—m—s

Iwe exp (-dis)
where w, is the bias parameter for column j. To remove scale indeterminacy
in wy it is convenient to require w.=1. This bias parameters may depend on
subsets of rows. The conditional likelihood for the entire data set is
defined as a product multinomial using p4.,s, and model parameters, B and wy
(and possibly H), are estimated so as to maximize the conditional likelihood.
Once the maximmn likelihood is obtained, the AIC statistic can be evaluated
in a straightforward manner, and used for identifying the best fitting model.

4. EXAMPLES

Within the basic framework of IPDA presented in the previous section
several interesting mltiway data analyses are possible. There are three
possible places in the model where multidimensional structures of the.data
might be captured:

(A) The matrix of predictor variables, X, may be manipulated to ref:lect
multiway structures of row categories.
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(B) The metric matrix, H, in the distance model may be used to represent
differences in the structural relationship between rows and columns of
subtables. (Throughout this paper, however, we assume the identity metric.)

(C) The bias parameters wy(j=1,...,C) may be allowed to vary over
different subsets of rows. This is interesting, when the data are taken
under the conditions that systematically bias responses.

Two examples are given in this section to illustrate (A) and (C) above.

4.1. An Obvious Application

The first example pertains to (A) above. A maltiway contingency table is
defined by several discrete variables, one of which is taken as the criterion
variable (its categories constituting columns of the table) and the others
taken as the predictor variables, whose categories are factorially combined
to form row categories of the table. By incorporating interactions among the
original predictor variables IPDA allows an analysis similar to loglinear
discriminant analysis (Andersen, 1980) or logit analysis of multiway
contingency tables. Subset selection of the predictor variables (and
interactions among them) allows us to identify the best row structure of the
tables. )

Table 1 gives frequencies of death and nondeath penalties in murder cases
in Georgia as functions of race of defendant and that of victim. The rate of
death sentence varies dramatically across rows defined by the latter two
variables. An important question to ask is what is the best (the most
parsimonious) way to account for the difference. With this simple example
what is going on is fairly obvious without even applying any statistical
nethods. However, an obvious example like this one helps confirm the
validity of analysis results obtained by IPDA.

We first obtained the unconstrained solution; that is, no special
relationships are assumed among the rows. The unconstrained solution .can be
obtained by setting X = I. Four row points are located in the order of (2),
(4), (3), (1) from left to right in a unidimensional space. This coincides
with descending order of the death penalty rate. That is, the more to the
left a point is located, the higher is the probability of death sentence. A
closer scrutiny of these four points reveals two distinct groups, (2) and (4)
on one hand, and (3) and (1) on the other. These two groups contrast white
victim and black victim. Within each of these groups a point located more to
the left corresponds with the case in which the race of defendant and that of
victim disagree. This suggests that victim's race and the interaction
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Table 1 Frequency of death sentence as a function of race of defendent and
that of victim

Race of Race of Death Sentence
Defendent Victim Rate
Yes No
(1) Black Black 18 1420 1.2%
(2) White 50 178 21.9%
(3) white Black 2 62 3.1%
(4) white 58 678 7.8%

(From the Baldus and Woodworth study cited in the first issue of Chance,
1988, p. 7).

between defendant's race and victim's race (whether they agree or not) will
provide an excellent account of the rate of death penalty.

We actually tried all possible models. There are eight of them altogether
including nonhierarchical ones, formed from possible subsets of three
predictor variables: 1. Race of Defendant, 2. Race of Victim, 3. Interaction
between 1 and 2. Of the eight possible models two have special status.. The
one with all the three predictor variables is equivalent to the unconstrained
model. It is also equivalent to the saturated model. The one with no
predictor variables is equivalent to the independence model between rows

columns. '

Table 2. Summary statistics for the data in Table 1.

Predictor Variables

Race of Race of Interaction+++ number of
Defendant Victims ATC parameters
1+ Yes Yes Yes 866.6 4
2 Yes Yes No 869.3 3
3 Yes No Yes 919.3 3
4 No Yes Yes 864.8* 3
5 Yes No No 999.8 2
6 No Yes No 895.1 2
7 No No Yes 937.5 2
8++ No No No 1009.5 1
* The minimum AIC solution
+ Equivalent to the saturated model

++ Bquivalent to the independence model
+++ The race of defendant and that of victim agree or don't agree
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Table 3. Estimated coefficients and their standard errors.

Standard
Variable Category Coefficient Error
Victim Black .473 .041
White -.730 .063
Races of
Defendant Agree .087 .041
and Victim Disagree -.653 .105
Coordinates of
Four Cases
(1) Defendant Black .560 .031
Victim Black
(2) Defendant Black -1.383 .072
Victim White
(3) Defendant White -.180 .139
Victim Black
(4) Defendant White -.643 .074
Victim White
Coordinates of
Ideal Point
Death Penalty Yes -.755 .030
No .041 .002

Results are summarized in Table 2. Indeed, as we expected, the model with
Race of Victim and Interaction is found to be the best fitting model
according to the minimum AIC criterion. Table 3 indicates estimated
coefficients for categories of the two best predictor variables. The
probability of death sentence is higher when the victim is white, ‘a’ndehen
the race of victim and that of defendant disagree. This gives the Ihighest
probability of death sentence when the victim is white and the defendant is
black, while the lowest probability when both victim and defendant are black.
Coordinates of the four row points and of the column points given in Table 3
(corresponding to the best fitting solution) are remarkably similar to those
corresponding to the unconstrained solution, confirming the validiﬁy' of the
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minimmm AIC procedure. Notice that Case (4) is located closer to "Yes to
Death Penalty” than is Case (2), and yet the latter is
associated with a higher rate of death sentence. (21.9% as opposed to 7.8%).
This is because what counts in the conditional probability is the difference
in the squared euclidean distances of a row point to the column points.
Indeed the difference between the squared distance from (2) to "Yes (to death
penalty)" and that from (2) to "No (to death penalty)" is larger than the
analogous difference for row point (4), which explains the higher rate of
death penalty for Case (2). 1In general the IPDA model stipulates a monctonic
probability function along the direction connecting two column points.
Similar analyées as above could have been performed by the loglinear
model. We have attempted to compare the results from IPDA and those from
loglinear analysis. Unfortunately the best fitting model identified by IPDA
could not be fitted by an available computer program for the loglinear
analysis because of the nonhierarchical nature of the model.

4.2. An Unexpected Application

The second set of examples pertains to (C) above, and represents a
somewhat unexpected application of IPDA. In many psychology experiments both
stimulus and response sets (categories) are fixed, while other experimental
conditions are systematically manipulated. Examples of such manipulations
are stimulus exposure duration, response deadline, prior probabilities, pay-
offs, etc. '

Two types of experimental manipulations should be distinguished. One type
of manipulations such as exposure duration and response deadline uniformly
enhance or deteriorate subject's performance. This type of manipulations may
be captured in the metric matrix H. The other type of manipulations such as
prior probabilities and pay-offs, on the other hand, systematically bias
responses. This type of effects is more adequately represented by different
sets of bias parameters associated with different experimental conditions.
It is this latter type of situations we are concerned with in this paper.
Absolute identification (stimulus recognition) experiments and signal
detection experiments provide excellent examples of this kind of situations.
Although in neither types of experiments the number of stimuili and the mumber
of response categories are restricted to two, we focus our attention to 2 by
2 cases in this paper.

- As an example let's look at Table 4, which displays five 2 by 2 frequency
tables stacked on top of one another obtained from a two-stimulus absolute
identification (stimulus recognition experiment (Laming, 1968). Either

stimulus a or b was presented in each trial, and the subject's task was to
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identify the stimulus. Two possible responses are designated by
corresponding capital letters (A for a and B for b). Under a specific
stimilus presentation condition we obtain a single 2 by 2 table.  Prior
probabilities of presenting two stimuli were systematically varied from .25
to .75 in steps of .125. Altogether there were five conditions. Each
condition was based on 4,800 observations (aggregated from 200 observations
each of 24 subjects.) The bias parameter is expected to vary systematically
over the different prior probability conditions, but an interesting question
is whether the separation between the two stimuli is constant across the
conditions. The separation measured in terms of d = y. - Y. supposedly
reflects subj'ects' sensitivity, which should be constant according to the
theory of signal detectability (Green & Swets, 1966). The question may be
answered by obtaining two solutions, one solution obtained under the
assumption that d is constant, and the other obtained under no such
assumption, and by comparing their goodness of fit (GOF). The latter model
may in effect be fitted by applying IPDA to each 2 by 2 table separately.
IPDA in this case is analogous to choice model analysis (Luce, 1963) of
signal detection data. Like Luce's choice model, IPDA as applied to a single
2 by 2 table is not restrictive. It is in fact equivalent to the saturated
model. The likelihood for the entire data set is obtained by aggregating
individual likelihoods across conditions. Estimates of parameters and GOF of
this model are given in columns labelled (1) in Table 4. The estimates of d
do not vary very much across conditions. Corresponding estimates and GOF of
the restricted model are given in columns labelled (2). According to the
minimm AIC criterion this restricted model is the better fitting model,
indicating that the equality of d is supported in this particular example.
This is really amazing because there are 24,000 observations in total which
are adequately described by just six parameters. .

The next two examples come from Yes-No signal detection experiments, in
which two stimuli are "noise" and "signal”, and two response categories are
"Yes, there is a signal" and "No, there is no signal"”. In the first example
each of four subjects was examined under 12 to 13 different pay-off
conditions. Unlike the previous example, each subject's data were analyzed
separately. Each pay-off condition is based on 400 observations, and the
prior probability of each stimilus was set to .5. Results are reported in
TableVS. In all the four cases d=y.-Yy. is found to vary significantly across
different pay-off conditions. The perceptual process, as reflected in d, is
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Table 4. Analysis of Laming's (1968, p. 55) stimilus identification
data in which prior probabilities of two stimuli are
manipulated. (Each condition is based on 200 observations
from 24 subjects.)

Response (1) (2)
Condition p(a) Stimulus A B d+ w d++ w

1. .250 a 1121 79 1.965 .261 1.950 .271
b 33 3567
2. .375 a 1726 74  1.955 .381 1.950 .384
b 49 2951
3. .500 a 2330 70 1.948 .482 1.950 .478
b 59 2341
4. .625 a 2942 58 1.923 .615 1.950 .616
b 83 1717
5. .750 a 3572 28 1.977 .756 1.950 .745
b 8 1117
AIC 5458.9 5454.6*
#(para.) 10 6

*  Minimmm AIC

+ Obtained under the assumption that d varies across different
pl(a). Egquivalent to the saturated model.

++ Obtained under the assumption that d is constant across
different p(a).

not invariant under the different pay-off conditions. There may also be a
confounding sessional (within—conditions) effect, although in this particular
example there iz no way to tear apart between-conditions and within-
conditions effects, since there are no replicated sessions run . under
identical conditions.
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Table 5. Summary of analysis of Swets, Tanner & Birdsall's (1961)
visual signal detection data in which pay-offs are
manipulated (12 ~ 13 sessions & pay-off conditions, equal
prior probabilities of noise and signal, each session based

on 400 observations) .\‘

d, w d constant
vary across w varies across
conditions+ conditions

Observer 1 4200.7* 4308.4

(24) (13)

Observer 2 4233.0* 4274.9
(26) (14)

Observer 3 4034.4* 4074.0
(24) (13)

Observer 4 5042.4* 5068.4
(26) (14)

* Minimum AIC
Legend: AIC and the number of parameters in parentheses
+ Equivalent to the saturated model.

The last example partly addresses the above question. Two subjects were
observed in ten sessions and under five different pay-off conditions. Two
sessions each were run under an identical pay-off condition. In this.case it
may be possible to isolate within-conditions and between-conditions effects.
Each session consisted of 300 trials. Again each subject's data were
analyzed separately. Four different models were fitted: (1) Both d=yu.~y. and
w are assumed to vary both within and across pay-off conditions. (This is
equivalent to the saturated model.) (2) The d is assumed constant, but w
assumed variable both within and across conditions. (3) Both d and w are
assumed constant within conditions, but assumed variable across conditions.
(4) The d is assumed constant both within and across conditions, but w
assumed constant within, but variable across, conditions. Results are
reported in Table 6. For subject 1 Model (1) is the best fitting model,
whereas for subject 2 Model (2) is the best fitting model. There seem to be
gsignificant variations both within and across the pay-off conditions. This
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is the case only for the bias parameter for subject 2, but it is true for
both the bias and d for subject 1. After having done these analyses we
realized that two important models had been left out. (The current program
is not capable of fitting these models). These models are: (5) The 4 is
assumed constant within, but variable across, conditions, but w assumed
variable both within and across conditions, and (6) The d is assumed variable
both within and across conditions, but w assumed constant within, but
variable across, conditions. Undoubtedly fitting these models would have
provided more insight into the process.

There is an interesting relationship between IPDA and conventional
approaches to estimation problems in the signal detection theory (Abrahamson
& Levitt, 1969; Dorfman & Alf, 1968, 1969; Ogilvie & Creelman, 1968).
However, due to space limitation, this topic has to be deferred to another
paper.

Table 6. Summary of analysis of Tanner, Swets & Green's (1956)
auditory signal detection data in which pay-offs are
manipulated. (10 sessions, 5 conditions, equal prior
probabilities of noise and signal, each session based

on 300 observations)

Observer 1 Observer 2

(1) d, w 2972.2% 3286.9
vary across 10 (20) (20)
sessions+

(2) d constant 2976.8 3279.0%
w varies across (11) (11)
10 sessions

(3) d, w
vary across 5 2977.9 3325.6
pay-off conditions (10) (11)
(constant within
conditions)

(4) d constant
w varies across 2988.1 3320.1
5 pay-off conditions (6) (6)
(constant within
conditions)

*  Minimuam AIC's
Legend: AIC and the number of parameters in parentheses
+ Equivalent to the saturated model.
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5. CONCLUDING REMARKS

As we have seen, IPDA offers a number of interesting possibilities for
multiway data analysis. The matrix of predictor variables may be manipulated
to reflect multiway structures of contingency tables. The bias parameter may
be allowed to vary systematically over different subsets of rows. In this
paper we have seen just a couple of examples of these. We have not
systematically explored other possibilities which may prove fruitful. Among
them are time indexed data, such as panel data (transition matrices, mobility
tables), cohort data, event history data, and other longitudinal data. This,
however, is left for future investigation.
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