MULTIDIMENSIONAL
MODELS OF
PERCEPTION AND
COGNITION

Edited by
F. Gregory Ashby

University of California at Santa Barbara

B E LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
e 1992 Hillsdale, New Jersey Hove and London

Sty



SCIENTIFIC PSYCHOLOGY SERIES
Stephen W. Link & James T. Townsend, Editors

EDITED VOLUMES

F. Gregory Ashby Multidimensional Models of Perception and Cognition

Hans-Georg Geissler, Stephen W. Link, and James T. Townsend
Cognition, Information Processing, and Psychophysics: Basic Issues

MONOGRAPHS

William R. Uttal et al. The Swimmer: An Integrated Computational Model
of a Perceptual Motor System

Stephen W. Link ¢ The Wave Theory of Difference and Similarity

LS




Structures in Stimulus
Identification Data

Yoshio Takane
Tadashi Shibayama
McGill University

INTRODUCTION

Stimulus identification data have attracted considerable attention from many
researchers (e.g., Ashby & Perrin, 1988; Keren & Baggen, 1981; Nosofsky.,
1985b; J. E. K. Smith, 1980, 1982; Takane & Shibayama, 1986; Townsend &
Ashby, 1982; Townsend & Landon, 1982). In a stimulus identification experi-
ment one of n stimuli is randomly selected and presented on each trial, and the
subject’s task is to identify the stimulus. The basic data thus consists of a set f (i
=l,...,m;j=1,...,nof frequencies of response j when stimulus i is
presented, with f; = X.f,; the total number of presentations of stimulus i.

Various models have been proposed for stimulus identification data (e.g..
Ashby & Perrin, 1988; Keren & Baggen, 1981: Luce. 1963a: Nakatani, 1972:
Shepard, 1957; Townsend, 1971). Typically, these models attempt 1o predict p,
the probability of response j when stimulus i is presented. The models are
distinguished by different submodels assumed for Pyi- Two major classes of
models have been proposed. (We exclude, from our account, the more recently
proposed general recognition model by Ashby and Perrin, 1988, since it is
treated in Chaps. 6-8, and 106. Also, see Ashby and Lee, 1991.) One class is
similarity-choice models, and the other is sophisticated guessing  models
(J. E. K. Smith, 1980; Townsend & Landon, 1982).

In the similarity-choice models, a model of stimulus similarity is postulated,
and the strength of a response when a stimulus is presented is defined as a
function of the stimulus similarity and the bias for that response. A response is
assumed chosen with probability proportional to its response strength relative to
other alternative responses. This class of models includes the unrestricted
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336 TAKANE AND SHIBAYAMA

similarity-choice model (sometimes called the biased-choice model; Luce,
1963a). The Euclidean distance-choice model [sometimes called the MDS
(Multidimensional Scaling) choice model; Shepard, 1957; Nosofsky, 1985b],
and the unique feature-choice model (Keren& Baggen, 1981; Tversky, 1977).
These models have been systematically compared by Takane and Shibayama
(1986).

In the sophisticated guessing models, a presentation of a stimulus is assumed
to generate an internal state, called a confusion set, characterized by a set of
admissible responses. Its probability is defined as a function of stimulus sim-
ilarities/dissimilarities. A response is chosen from the admissible responses in
the confusion set with probability proportional to the response bias. The confu-
sion probability is the sum, over all possible confusion sets, of probabilities
leading to a certain response when a certain stimulus is presented. This class of
models includes various versions of Nakatani’s (1972) confusion-choice model,
the all-or-none (AON) model (Broadbent, 1967; Townsend, 1971), the overlap
(OVLP) activation model (Townsend, 1971), and the informed guessing model
(Pachella, Smith, & Stanovich, 1978). The latter three models are also con-
sidered special cases of the similarity-choice models (see fourth section).

There has been considerable effort to establish relationships among various
models of stimulus identification data. See Marley (chap. 12), Nosofsky (in
press), Takane and Shibayama (1986), Townsend and Ashby (1982), Townsend
and Landon (1982, 1983), and van Santen and Bamber (1981), each presenting a
somewhat different viewpoint for relating the models. '

This chapter compares goodness of fit (GOF) of the models in the two classes.
A general strategy for model comparison is presented first (second section). It is *
illustrated by three examples for assessing the stability of confusion probabilities
across contexts (across trials, across subjects, and across other stimulus condi-
tions). In the third section, the similarity-choice models are briefly reviewed.
Then, two related issues will be addressed, namely, fitting ADDTREE and
EXTREE to stimulus identification data, and the problem of d (exponential)
versus d2 (Gaussian) in the exponent of the Euclidean distance-choice model. In -
the fourth section, the sophisticated guessing models are discussed along with
their relationships. Empirical results are presented in the fifth section.

A STRATEGY FOR MODEL COMPARISON

Different models of stimulus identification data postulate different submodels for
pyi- Whichever submodels are assumed, however, the likelihood of the total set
of observations may be written as

L= H H oy »
i

(1)“
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where p;; may be further constrained in various ways. Model parameters are
determined in such a way as to maximize the log of L. Note that the definition of
L does not include terms that are not related to model parameters. These terms do
not affect the maximum likelihood estimates.

Once the maximum likelihood is obtained, Akaike’s (1974) Information Cri-
terion (AIC) can readily be calculated and used for model comparison. This
statistic is defined as

AIC (q) = =2 In L*q) + 2n(q) , 2

where L*(q) is the maximum likelihood and n(q) is the effective number of
parameters in model q. The first term on the right side of Equation 2, ~2 In
L*(q), indicates a badness of fit of model q to the current data set. A reasonably
good fit to the current data set is crucial; otherwise there is no way that the model
can fit to future observations well. However, a goodness of fit to the current data
set can be improved, as desired, by simply increasing the number of model
parameters. An improved fit obtained this way, however, may not work favor-
ably for predicting future observations, since additional parameters to be estimat-
ed tend to produce less reliable parameter estimates. To avoid overparametriza-
tion, the AIC penalizes additional use of parameters by adding 2n(q) to —2 In
L*(q). The AIC is an estimate of —2 E [/n L(q)], minus twice the expected log-
likelihood. However, on average, —2 In L*(q) underestimates E[—2 in L(q)] as
much as 2n(q). Adding 2n(q) to —2 Ln L*(q) thus corrects this bias.

A smaller value of AIC indicates a better-fitting model. In an actual model
comparison process, maximum likelihoods of competing models are obtained by
fitting them to the data. The AICs are then calculated according to Equation 2,
and the model associated with the smallest value of AIC is chosen as the best-
fitting model. This procedure is called the minimum AIC procedure. Note that
only relative values of AIC (which is larger or smaller) are relevant in the
comparison process. Consequently, a constant may be added to AIC values
without Joss of generality. In Table 13.5, for example, AIC values are adjusted,
so that the AIC of the saturated model is equal to zero. This is also why the
maximum likelihood used to calculate AIC need not include the terms common
to all models compared.

The minimum AIC optimizes predictability. Consequently, the best model
identified by the minimum AIC procedure does not imply that the model is
correct. It only means the model is best among competing models in the sense
that it gives predictions closest to those produced by the correct model (i.e.,
future observations). The minimum AIC procedure eliminates certain restrictions
associated with the asymptotic chi-square goodness-of-fit test. A significance
level need not be chosen arbitrarily, and more than two models can be compared
simultaneously. Also, the models compared need not be hierarchically ordered in
their complexity.
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The philosophy underlying the minimum AIC procedure is radically different
from that underlying conventional statistical significance testing procedures.
However, the following example, drawn from the situation in which the chi-
square GOF test is also feasible, may illuminate what the minimum AIC pro-
cedure really does in much broader contexts. Let the model q = 1 be a special
case of the model q = 2. The minimum AIC procedure selects a model according
to whether AIC (1) — AIC (2) Z 0. Since AIC (1) = =2 in L*(1) + 2n(1) and
AIC (2) = =2 In L*(2) + 2n(2), AIC (1) — AIC (2) Z 0 is equivalent to —2{in
L*(1) — In L*(2)] Z 2[n(2) — n(1)]. The left side of this inequality is equal to the
asymptotic chi-square statistic. The minimum AIC procedure in this instance is
thus equivalent to the chi-square GOF test with 2[n(2) — n(1)] used as the critical
value. The significance level of this chi-square test can be found, if desired, by
working backward from 2[n(2) — n(1)]. The minimum AIC procedure thus
incorporates a built-in significance level. To ask if an observed difference in two
AIC values is statistically significant is like asking if the observed difference in
GOF is close to the built-in significance level or significantly far from it. No such
significance tests are available in the statistical literature. See Sakamoto, Ish-
iguro, and Kitagawa (1986) for more detailed accounts of the AIC statistic.

The following three examples demonstrate elementary uses of the minimum
AIC procedure. More examples will be given in the following sections.

Example 1 (Constancy of p;; Over Trials)

The product multinomial form of the likelihood function, Equation 1, presup-
poses independently replicated trials. This implies that p;; is constant throughout
the trials. Whether this is so can be verified by the following procedure. Trials
are first grouped into several blocks. Let pyiq, and fi;q, denote, respectively, pj;
and f,; for block k. The likelihood of {fjig}, k = 1, . . . , K (where K is the
number of blocks) is then stated as

L = TTITTI yigoiue - A3
k i j

Under the hypothesis that p;;, = pj; for all k, Equation 3 reduces to Equation 1.
The problem thus becomes one of comparing the goodness-of-fit of Model 1 and
Model 3. The maximum likelihood estimate (MLE) of p;,; in Equation 1 is given
by f;s/1;- This model uses n(n — 1) independent parameters. The MLE of py;, in
Equation 3, on the other hand, is given by Liao!fiaoy Where fig, = iy Model -
3 uses Kn(n — 1) independent parameters.

Nosofsky (1987) collected “learning” identification data on 12 Munsell col-
ors. The stimuli had constant hue (SR), but varied in brightness and saturation.
The data were collected while subjects were still improving their performance.
An experimental session was organized into three blocks of 108 trials each, and
34 subjects participated in the experiment. Model 1 and Model 3 were fitted to
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Nosofsky’s data. The AIC value was found to be 28,394.7 [(n(q) = 396] for
Model 3 and 29,678.0 [(n(q) = 132] for Mode! 1, indicating that Model 3 was
the better fitting model. As expected, confusion probabilities are not constant
across the blocks. To justify Model 1, we must collect identification data after
pyi’s have reached their “asymptotes” by a sufficient number of practice trials.
Note that the result by no means implies that Model 3 is correct. It is possible that
Pjjiqo may still vary within the blocks.

Example 2 (Constancy of p;; Across Subjects)

Confusion data are often aggregated across subjects. This, however, assumes
that p;;’s are constant across the subjects. Whether the p;;’s are constant can be
tested similar to Example 1, provided that individual data are also available.
“Blocks” in Example | are simply replaced by “subjects,” and the problem
reduces to a comparison between Model 3 and Model 1.

Townsend and Landon (1982) suspected significant individual differences in
performing the stimulus identification task, and consequently analyzed each of
four subjects’ data separately. One of their original purposes was to test the
Constant-Ratio Rule (sce Example 3), and four different subsets of five letters
(A, E, F, H, X) werc employed. Set I included all letters, set 2 only (A, E, F,
H), set 3 (A, E, X), and set 4 (F, H, X). Each stimulus was presented 240 times
for each set and for each subject. For the purpose of testing the individual
differences, only set 1 and set 2 were used here. Set 1 yielded the AIC value of
12,141.7 [n(q) = 80] for Model 3 and 12,230.4 [n(q) = 20] for Model 1. Set 2
yielded the AIC value of 8,953.9 [n(q) = 48] for Model 3 and 8,975.0 [n(q) =
12] for Model 1. For both sets, Model 3 was found to be the better-fitting model,
indicating that the individual differences were indeed substantial. Townsend and
Landon (1982) made the right decision in analyzing individual data.

Examples 1 and 2 concerned the constancy of p;;. When the constancy as-
sumption is grossly violated, the use of Model 1 can be problematic. The prob-
lem is known as “overdispersion” (e.g., McCullagh & Nelder, 1983), in which
the variance of f; becomes much larger than what is expected from the multi-
nomial distributional assumption due to the variability in p;; (Kraemer, 1988).
The quasi-likelihood proposed by McCullagh and Nelder (1983) can incorporate
an additional dispersion term to deal with the overdispersion problcm often
encounted in contingency table analyses.

Example 3 (Constant-Ratio Rule)

Let M and S denote sets of stimuli such that S C M (i.e., S is a subset of M).
Let p;(M) and p;(S) denote p;; when the stimulus sets in identification tasks are
restricted to M and S, respectively. The Constant-Ratio Rule (CRR; Clarke,
1957) stipulates that p;;(S) is proportional to p;;(M) for i, j € S. That is,
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Pj/i(s) = ij/i(M) » 4

for some ¢ # 0. However, Z;egp;i(S) = 1, so that ¢ Z;csp;(M) = 1, 0rc =
1/%,cep;/(M). Using this expression for ¢, we can write Equation 4 more ex-
plicitly as

Pii(S) = pi(M) / 2 PuM) . )
€S

The right side of Equation 5 is equal to the conditional probability of p;,(M)
given S, which is denoted by p;;(M/S). The CRR states that p;, is essentially
context-free, and the only effect of reducing the stimulus set M to S is that the
probability of inadmissible responses under S is redistributed over admissible
responses under S in proportion to p;;(M) for i, j € S. An alternative way of
stating the same property is that p,;/p;; does not depend on the stimulus set. That
is,

PuviM) _ pui(S) .
P~ ps bR kES. ©

Many researchers have investigated the CRR (Clarke, 1957; Hodge & Pol-
lack, 1962; Morgan, 1974; Townsend & Landon, 1982). The latter two used the
Likelihood Ratio Test. The CRR can also be tested by using the minimum AIC
procedure. Let f;(M) and f,;(S) be observed confusion frequencies, when the
stimulus sets are M and S, respectively. Under the CRR, the ML estimate of Pii
= pii(S) = pyi(M/S) is given by p;; = [£f(S) + (M LA(S) + £(M/S)], where
Si(8) = Zjesfii(S) and £, (M/S) = 2;esf;i(M). This value of p;,; is used in Model 1
to obtain the maximum likelihood under the CRR hypothesis. The CRR uses s(s
— 1) parameters, where s is the number of stimuli in S. Under the non-CRR
hypothesis the ML estimates of py;(;, = p;;(S) and p;2, = p;(M/S) are given by

. _ M)
Pii2y = m »

Piiay = f%(yslj and
which are substituted for pj;q), k = 1,2, in Model 3 to obtain the maximum
likelihood under this hypothesis. Model 3 in this case uses twice as many param-
eters as Model 1. The AICs are calculated in the same way as before, and the
model comparison proceeds just as in the previous examples.

The foregoing procedure will be demonstrated with Townsend and Landon’s
(1982) data. This data set was briefly described in Example 2. There were four
subjects (D.X., M.X., G.X., and A.X.), and each subject’s data were analyzed
separately. This is in accordance with the results of Example 2. Four stimulus
sets were employed with set 1, with stimuli (A, E, F, H, X) serving as the master
set for all the other three sets, set 2 with (A, E, F, H), set 3 with (A, E, X), and
set 4 with (F, H, X). Results are reported in Table 13.1. For each pair of stimulus

“, ”

sets, the minimum AIC solution is indicated by an “a.
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TABLE 13.1
Tests of Constant-Ratio Rule with Townsend and Landon's (1982} Data
Data
Sets 3
_______ Stimuliin M and Those Difference
Subject M S in S (underlined) CRR Non-CRR in nfq)
D.X. n, (2 AEFHX 4,202.22 4,207.4 12
(n, (3) AEFHX 1,696.92 1,698.5 6
., (4 AEFHX 1,679.3 1,674.62 6
M.X. (1, (2) AEFHX 4,439.52 4,454 8 12
(1, (3 AEFHX 2,125.8  2,131.7 6
(1), (4) AEFHX 1,960.1 1,954.02 6
G.X. (n, () AEFHX 4,056.22 4,070.4 12
1, 3) AEFHX 1,812.42 1,817.4 6
(1, (4 AEFHX 1,975.1= 1,975.5 6
AX. (1), (2 AEFHX 4,175.72 4,192.0 12
(m, (3) AEFHX 1,839.4 1,837.02 6
(1, (4 AEFHX 1,921.8 1,918.02 6

2Minimum AIC.

Neither the CRR nor the non-CRR hypothesis is uniformly better than the
other. However, there are twice as many cases supporting the CRR as cascs
against the CRR. This is probably because M and S are fairly similar in Towns-
end and Landon’s data. Intuitively, the more similar M and S are, the higher is
the chance that the CRR holds. The similarity between M and S may be mea-
sured by s/m, where s and m are the numbers of stimuli in S and M, respectively.

The pattern of cases in favor of the CRR across subjects and different pairs of
stimulus sets agrees perfectly with the results obtained by Townsend and Landon
(1982), using the Likelihood Ratio Chi-Square Test. For set 1 versus set 2, all the
four subjects favored the CRR. This case had the highest similarity between M
and S. For set 1 versus set 3, three favored the CRR, but for set 1 versus set 4
only one subject favored the CRR. These two cases shared three stimuli each,
and consequently the similarity between M and § is considered approximately
equal.

An error analysis was conducted to identify p;;’s for which the discrepancy
between p;; under the CRR and p;4(S) and p;(M/S) under the non-CRR was
large. The discrepancy is measured by

M 12
;= % {2fj/i(S)U" Py(S) — In Pinl 2f;i(M) [ In py; (g) = n ﬁj/i] }

(Pierce and Schafer, 1986), which approximately follows the standard normal
distribution. Note, however, that the z;;’s are not independent across j. Stimulus-
response pairs for which z;; exceeds +2.58 [Pr(z = 2.58|) = 0.01] are listed in
Table 13.2. Stimuli F and X seem to be causing most of the problem.
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TABLE 13.2
Stimulus Pairs That Violate CRR in Townsend and Landon’s (1982) Data

Data Sets Pair p in the p in the
Master Set Reduced Set
Subject M S Stimulus Response M) (S}
D.X. (1), (4) F X .27 .13
M.X. (1), (4) X F .06 .14
A.X. (1), (3) X A .06 A3
A.X. (1), (4) H F .07 .14

Hodge and Pollack’s (1962) data (see fifth section) were also analyzed in a
similar manner. Results were similar. The CRR does not seem to hold univer-
sally, and how likely it holds depends on the similarity between the stimulus sets.

SIMILARITY-CHOICE MODELS

All the models considered in the previous section impose some form of equality
restrictions on p;,;. This section deals with a group of models, called similarity-
choice models, that specify explicit submodels under Pjs- In this section, the
similarity-choice models are briefly reviewed, and then two related issues are
addressed, namely, fitting ADDTREE and EXTREE and comparing d and 42 in
the Euclidean distance-choice model.

Brief Review

In the similarity-choice models, p; is assumed proportional to the strength of
response j when stimulus i is presented. Denote the response strength by t;. Then
Pyi = vit;; for some v;. But since Z;p;; = viZit; = 1, v, = 1/3;t, and thus
5 -
Py = 54— . @,
™ e
A variety of similarity-choice models are obtained by specializing t; in various
ways. G
In Luce’s (1963a) unrestricted similarity-choice model, it is assumed that | -

ti' = szij y (8)

where w; (= 0, Z;w; = 1) is the bias for response j, and s;; is the similarity
between stimuli i and j (0 < 5 = 53 < s; = s5;; = 1). By substituting Equation 8
in Equation 7, we can write the model more explicitly as

Py = kB
2y WSy
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The model is called the unrestricted similarity-choice model, since there is no
further restriction imposed on s;. The model is sometimes called the biased-
choice model.

The unrestricted similarity-choice model is known to be a special case of the
quasi-symmetry model for square contingency tables, which states

pi; = cabg

where p;; is the joint probability of row i and column j, ¢ is some constant, g;
(Il;a; = 1) is the effect of row i, b; (Il;p; = 1) is the effect of column j, and g;; (g;;
= g ILg; = ILg;; = 1) is the interaction effect between row i and column j.

i
Since py; = p;j/p;, where p; = Zip;;, pj; is given by

L= 49U
Pis 2, gy 1o

Model 9 is derived from Equation 10 by setting s; = g;,/(g:g;)"/? and w; =
b;g;"%/ Z b g2 One important property of the quasi-symmetry model is the
cycle condition (Caussinus, 1965)

PiiPikPxi = PixPxjlPii »
which implies
PiiiPwiPix = PwiPiyxPij »
for the unrestricted similarity-choice model (J. E. K. Smith, 1982). In the un-
restricted similarity-choice model, 0 =< s; = 5; = 5; = 5 = 1 also implies the
column constraint
Pii = Pijj
for all j. It has been shown (Townsend & Landon, 1982) that these two condi-

tions are necessary and sufficient for the unrestricted similarity-choice model.
1t follows from Equation 9 that

In (’ﬁ) =(nw—Inw)+ins;. an
Pui :
This implies that Model 9 decomposes in(p;;/p;;) into two parts, a skew-
symmetric part and a symmetric part, and represents the former by In w; — In w;
and the latter by In s;;.
In the Euclidean distance-choice model, stimuli are represented as points in

multidimensional space. The distance between stimuli i and j, d;, is assumed
related to s by 55 = exp (—dy) or 55 = exp(—dizj). This leads to
w; exp (—d;;)
Py = et (12)

S wexp (—dy)’

or
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o wexp (—d}) L :

P Sy Wy exp (_dizj) ' (—@
Model 12 is sometimes called exponential MDS-choice model, Model 13 the
Gaussian MDS-choice model (see also chap. 14; MDS stands for multidimen-
sional scaling). There has been controversy over which of the two MDS-choice
models, 12 or 13, better accounts for stimulus identification data (Nosofsky,
1985a, 1985b, 1986; Shepard, 1986, 1988). The issue will be addressed in the
third section (see also chap. 11).

The MDS-choice model can also be derived from Krumhansl’s (1978)
distance-density model. Let ry; = d;; + af + bj* or ry = dj + af + b} be the
distance-density model, where a* and b} are, respectively, the stimulus and
response density parameters. Let t;; = exp (—r;) in Equation 7. Model 12 or 13 is
obtained, depending on which r;; is used to define #;. In either case, w; = exp
(—b¥).

l:l the unique feature-choice model (Keren & Baggen, 1981; Tversky, 1977) ¢;;
is specialized in yet another way. Let

_ { 1, if stimulus i has feature a,
Yia 0, otherwise ,

and define x;;, = y;, (1 — ¥;,), and x;3, = y;,(1 — ¥;,). The x;, takes the value 1 if
stimulus i, but not stimulus j, has feature a, and is zero otherwise. The Xjig» ON
the other hand, takes the value 1 if feature a is unique to stimulus j. Let h;; be the

(asymmetric) dissimilarity between stimuli i and j, defined by

hy = 2 (Fiaba + XaCa) » (14)

where b, and c, are the dissimilarity contributions of feature a, when the feature
is unique to stimulus i (x;, = 1) and stimulus j (x;;, = 1), respectively. Let t; =
exp (—hy) in Equation 7. Then

Wf exp (—ey)

Py = (15)

Ek W: exp (_eik) ’

where

W:‘ = exp (2 u:yja) ’
a

and
€ = Svilyie — )’jalq ) _ (16)°
withq = 1, u* = (b, — ¢,)/2 and v¥ = (b, + c,)/2. This indicates that the

unique feature model is a special case of Model 9, in which both w; and s;; are -
constrained in special ways (J. E. K. Smith, 1982); that is, w; = wj* and 5i = exp..
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(—e;)). The ¢;; in Equation 16 can be considered the g-th power of the Minkowski
power metric. In the special case ¢ = 2, ¢; is equal to the square of the Euclidean
distance. Thus, the unique feature-choice model can also be viewed as a special
case of Equation 13, where w; = w and d;? = ¢;; defined by a set of prescribed
features.

It may be assumed that ¢, is proportional to b,; that s, ¢, = cb,, for some c but
for all a. Then Equation 14 reduces to

by = E (X0 + Xjia©)b, - an

This model is called the restricted unique feature model, as opposed to Equation
14, which is called the general unique feature model.

When we further assume that b, = c,, Equation 14 reduces to the symmetric-
difference model

qy = E (xija + xjia)bn s (18)

which may be substituted for d;;? in Equation 13 to obtain
w; exp (-—qij) 19
S wi exp (—qy) S

This model plays an important role in fitting ADDTREE and EXTREE to stim-
ulus identification data.

Pin =

Fitting ADDTREE and EXTREE

In the additive similarity trce (ADDTREE; Sattath & Tversky, 1977; see also
chap. 3), dissimilarity between two stimuli is represented by the length of a path
connecting them. The extended similarity tree (EXTREE; Corter & Tversky,
1986) is similar, except that some segments of paths have markers. Whenever a
path connecting two stimuli includes segments with common markers, those
segments are excluded from the total path length. That is, they are not counted
toward the overall dissimilarity between the stimuli. There is one-to-one corre-
spondence between ADDTREE and EXTREE representations and the symmetric
difference model, Equation 18, defined on a set of features determined by the
tree structure. Given the tree structure, then, ADDTREE and EXTREE can be
fitted to the stimulus identification data by using Equation 18.

Let us illustrate, using Keren and Baggen’s (1981) data. This data set pertains
to 10 rectangular digits used in digital clocks and calculators. There were eight
subjects, but stimulus exposure duration was adjusted for each subject to mini-
mize individual differences in performance, and the data were pooled across the
subjects. Keren and Baggen’s data have been analyzed and reanalyzed previously
by several authors (Keren & Baggen, 1981; J. E. K. Smith, 1982; Takane &
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Shibayama, 1986). Takane and Shibayama, in particular, used their data to
systematically compare various similarity-choice models.

Figure 13.1 displays an EXTREE structure derived from Keren and Baggen’s
data by Corter and Tversky (1986). A feature set can be extracted from the tree
that defines the symmetric-difference metric. In the tree a feature corresponds
with a branch. In the figure it corresponds with a segment of a path between a
terminal node (representing a stimulus) and the root that connects all the stimuli
in the stimulus set. There are 19 such segments numbered from 1 to 19. Four of
them are marked by special symbols (C, D, E, & H). Segments having direct
contact with terminal nodes represent features unique to the stimuli correspond-
ing to the nodes. Digit 2, for example, has only one feature (feature 1) unique to
the stimulus. Digit 1 has features 2, 4, 5, and 19. Feature sets that characterize
other stimuli can be obtained in a similar manner. Table 13.3 displays the feature
indicator matrix for the 10 digits corresponding to the EXTREE structure pre-
sented in Figure 1.

Dissimilarity between digits 1 and 2 is obtained by summing the contributions

1
. c -t
5 | 3 1
(-] | Y
9 K L 3
—luunuuuuuuuuT g
eEEtteCETECEEEEEEELLEE 70
12 00050000 o . 5
Lwoooooe i 13
15 I . 3 D

16 <: B, B
17 «:5,8,0

18 9:5,5
19 w: ],

FIG. 13.1. Optimal EXTREE structure for Keren & Baggen's (1981)
data, Note. From “Extended Similarity Trees” by J. E. Corter and A.
Tversky, 1986, Psychometrika, 51, p. 443. Copyright 1986 by the Psy-
chometric Society. Reprinted by permission.
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TABLE 13.3
Feature Matrix Corresponding to the EXTREE Structure Given in Figure 13.1
for Keren & Baggen‘s (1981) Data

Features

Stimuli 1

N
W
N
(4]
<N
~N
-3
©

10 11

-
N
~-
W
~
N
-
(4]
-
(=]
-~
~N
-
<
-
©

CWONIIAHEWN=
OCOCCO0O0CO0OO~=0O
COO0O0O0OOO0O =
QOCw00000CO0C
OO0 =000~
COO0O=200 =200
o000 QCO-=00C0C
COO0OO0O0O0DO20CO0
O=0000C0C0OCQOQOO0Q
OC-=- 00000 =00
COoOCOoCOoO-=00C00C
CcoQoOoO-=-000QO0OO0O
COQ0CO= 20000
oo -=00O0OOCOOO0OCOC
- 00O0CQCOOCOCOCO
O --00 00000
CO-=20=_000C0CC0C
- O0O=0-=-00000C
C=2000=20000
COO0OO0O0OO0O=2200 =

-

of features 1, 2, 4, 5, and 19. Marked feature 19 is included because it is unique
to digit 1. Dissimilarity between digits | and 4 is defined by features 2, 4, and 6.
Feature 19 is not included because it is commonly shared by the two digits. Our
analysis obtains optimal weights for the features, which, when added, give
overall dissimilarities between the stimuli.

The ADDTREE structure (not displayed) obtained by Corter and Tversky
(1986) is similar to the EXTREE structure. It is identical to the EXTREE struc-
ture without marked features except that digit groups (8, 0), (5, 6), (3, 9), (1, 7,
4), and (2) are not joined simultaneously. In ADDTREE, (8, 0) and (5, 6) are
joined first, then (8, 0, 5, 6) with (3, 9), and then (8, 0, 5, 6, 3, 9), (1, 7, 4) and
(2) simultaneously. The ADDTREE structure contains 17 features. The feature
indicator matrix can be constructed in the same way as in Table 13.3.

Both the ADDTREE and the EXTREE structures were fitted to Keren and
Baggen’s data. ADDTREE yiclded the AIC value of 164.1 with 26 parameters.
(There are nine independent bias parameters.) EXTREE provided the AIC value
of 56.1 with 28 parameters. With just two more parameters this improvement in
fit is rather impressive. EXTREE also does considerably better than the Eucli-
dean distance-choice models with comparable numbers of parameters. (See Table
13.8.) However, EXTREE does not fit as well as the best fitting model found by
Takane and Shibayama (1986), that is, the unrestricted similarity-choice model.

Apart from the fact that it did not provide the best-fitting model, there is an
obvious limitation to this analysis. It presupposes that the optimal tree structure
is known beforehand. The “optimal” tree structures used were obtained by Corter
and Tversky (1986), but there is no guarantee that they are optimal with respect to
the model and the fitting criterion used here. Indeed, the weight for feature 8 in
EXTREE was estimated to be negative, and in order to avoid the improper
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solution the feature had to be eliminated. This indicates that the true optimal
structure could be different from the one fitted.

Table 13.4 shows the stimulus-response pairs for which the discrepancy be-
tween observed and predicted probabilities is large. For the pairs of stimuli for
which the predicted probability is underestimated, new markers could be added
to part of the features unique to the stimuli, increasing the similarity between
them. Overestimation of confusion probabilities is more difficult to deal with.
There is one such pair in the table, stimulus 2 and response 9. One way to handle
this case is obviously to increase the weight for feature 2 while attaching a
common marker to this feature as well as features unique to all other digits except
digit 9. This is admittedly ad hoc, however; the meaning of the marked feature is
not entirely clear.

Comparison Between d and d2

As noted, two versions of the Euclidean distance-choice model have been pro-
posed, d and d2 in the exponent. There has been some controversy as to which of
the two works better. This section examines existing empirical evidence and
reports results on a numerical experiment designed to shed some light on the
issue.

Kormbrot (1978) compared the GOF of d and a logistic version of Thurstone’s
successive categories model (SCM) for unidimensional stimuli (pure tones vary-
ing in intensity) and found that the latter fitted the data considerably better.
Nosofsky (1985a) reanalyzed Kombrot’s data by d2 and found that it provided
comparable fits to SCM. Nosofsky (1985b, 1986) also presented data sets involv-
ing multidimensional stimuli (semicircles of varying size with a spoke in each
semicircle oriented in a different angle from a horizontal baseline) to which d2
fitted appreciably better than d. Ashby and Perrin (1988) report analyses of
Townsend, Hu, and Ashby’s (1981) data, for which they found d? worked consis-
tently better.

‘[able 13.5 summarizes these results. In the table the AIC values have been

TABLE 13.4
Stimulus Pairs with Large Discrepancies Between
Observed and Predicted Probabilities from EXTREE

Stimulus Response Observed p Predicted p

2 6 047 013
1 6 015 .002
0 7 .025 .007
2 9 007 046
3 7 040 019 ’
9 8 .082 046 i
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TABLE 13.56
Comparison Between d and d? for Various Data Sets
Source Data d d2

Kornbrot (1978) 1 D.P. {natural cond.) 334 —44.52
2 DJ. (natural cond.) 60.3 —-19.1»
dim = 2 3 D.P. (biased cond.) 350.9 —-23.42
4 D.J. (biased cond.) 296.3 —-47.02
Nosofsky (1985b) 1 Subject 1 216.7 —-233.42
dim = 2 2 Subject 2 2121 -162.42
(1986) 1 Subject 1 1,262.2 -71.22
dim = 2 2 Subject 2 1,015.0 7.92

(1987) 1 Block 1 21,72 792.1

dim = 2 2 Block 2 —54.02 472.2

3 Block 3 —48.12 379.2

Townsend & Landon (1982) 1 D.X. (5 stimuli) —-14.92 48.0

(4 stimuli) 5.4a 21.8

dim = 2 2 M.X. (6 stimuli} —-11.32 17.8

(4 stimuli) -4.12 11.8

3 G.X. (5 stimuli) 15.5% 141.7

(4 stimuli) —-1.62 40.4

4 A.X. (5 stimuli) —9.4e 448

{4 stimuli) 1.6 29.6
Townsend, Hu, & Ashby, 1 Observer 1 {(gap) 215 5.92
{1981)¢ 2 Observer 2 (gap) 19.6 432
3 Observer 3 (gap) 10.5 —-2.0e
dim =2 4 Observer 4 (gap) -0.1 —-3.22
5 Observer 1 (no gap) 115 —-0.92
6 Observer 2 (no gap) 1.5 -5.07
7 Observer 3 (no gap) 4.3 -5.22
8 Observer 4 (no gap) 131 5.92

2A better solution.
bResults obtained by Ashby & Perrin {1988).

adjusted so that the AIC of the saturated modecl takes the value of zero in each
case. Table 13.5 is supplemented by the results from two more studies that,
- unlike those mentioned, favor d. Nosofsky (1987) used colors of constant hue
(5R in Munsell notation), but varying in brightness and saturation, and Townsend
and Landon (1982) used five letters of the alphabet and their subsets (see Exam-
ples 2 and 3). The results reported in Table 13.5 are very orderly in the sense that
one model is consistently better than the other within each study. Data sets
collected within a study use the same stimuli and the same experimental pro-
cedure.

Shepard (1986, 1988) attributed Nosofsky’s (1985b, 1986) results to pecu-
liarities in his data collection procedures and argued that d must be favored on
empirical and theoretical grounds. Indeed, almost all the data sets analyzed prior
to Nosofsky favored 4. Data sets to be discussed in the fifth section present four
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such examples. They are Keren and Baggen’s (1981) data on rectangular digits
(used previously), Wickelgren’s (1965) data on different forms of verbs, Hodge
and Pollack’s (1962) data on tones varying in intensity, frequency, and duration
(briefly mentioned in Example 3), and Clark and Stafford’s (1969) data on
consonant-vowel combinations. All of these data favor d in the exponent of the
Euclidean distance-choice model. Tables 13.8 and 13.9, in particular, present
systematic comparisons of various models fitted to Keren and Baggen’s data and
Hodge and Pollack’s data, respectively.

Table 13.6 presents a summary of existing empirical results concerning the
choice between d and d2. The table indicates for each study mentioned whether d
or d? is favored, whether the data are individual or aggregated, whether the
stimuli have separable or integral dimensions, and whether practice trials were
extensive, moderate, or minimal.

The last three variables are thought to be important in distinguishing the two
cases. Individual data tend to favor d2, although there is one exception. Towns-
end and Landon’s (1982) data are individual data, yet favor d. Stimuli with
separable dimensions tend to favor 42, although in some cases deciding whether
relevant stimulus dimensions are separable or integral is not so straightforward.
For some stimulus sets, it is difficult even to see any obvious dimensional
structures. The letters used by Townsend and Landon, the rectangular digits used
by Keren and Baggen, the different verb forms used by Wickelgren, and the
consonant-vowel combinations used by Clark and Stafford are such examples.
They are tentatively classified as having “integral” dimensions, meaning that
there are no obvious separable dimensions or that the task involved may require
something more cognitive than perceptual (e.g., integration of unidentifiable
dimensions).

A larger number of practice trials seem to favor d2. Nosofsky’s (1987) data,
unlike his two previous studies, favor d. The data were obtained with minimal
practice trials. The reason, however, could be that the data are aggregated or that
the stimuli have integral dimensions. Because of the generally high correlations
among the variables considered, it is impossible to tear apart their confounding
effects and draw any sensible conclusion as to which variable is causing a
particular effect. To isolate the effects of the variables, one must conduct a _
factorial experiment in which all possible combinations of levels of the variables
are equally represented.

One thing seems clear, however. Whether s;; is a strictly convex (downward)
function of d or whether there is an inflection point near d = 0 is not likely to be.
an important factor in deciding which of the two models works better in particu-
lar situations. What counts most is what happens where d is large. Whereas exp
(—d?) approaches 0 very quickly as d increases, exp (—d;;) does not. Although
part of the difference is mitigated by adjusting the overall size of the stimulus ,
configuration, it still remains that exp (—dj;) has a heavier tail. The unsquared,
distance d is thus favored in situations where the heavy tail is required. Aggre-.
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gated data tend to require heavier tails because of the individual differences in
identification performance. Minimal practice trials also tend to require heavier
tails, because at initial stages subjects can confuse rather distinct stimuli (i.e.,
they make the sort of errors that they should not make, if only well-practiced).

The following numerical experiment on Nosofsky’s (1987) data clarifies our
argument. The data were collected while subjects were still in learning phases.
Significant improvements in identification performance can be observed over
blocks of trials, as verified in Example 2. The min(fj;, ¢) (where ¢ is some
integer) was subtracted from each of the off-diagonal elements of the confusion
frequency tables and added back to the corresponding diagonal elements. This is
supposed to simulate what happens when subjects make fewer and fewer careless
mistakes as they become more proficient in the task. Both d and d? were fitted to
the “corrected” tables with the value of ¢ incremented systematically.

The results are shown in Table 13.7. In all three blocks, d fitted better for
smaller values of ¢, but the difference between d and d? diminished as the value
of ¢ increased until 42 took over.

TABLE 13.7
Numerical Experiments on Nosofsky's (1987) Data

Error Frequency Corrected

-c d d?
Block 1 0 13,781.7= 14,452.1
-12 6,072.52 6,236.3
-15 4,925.72 4,940.6
-18 3,990.6 3,939.1-
-19 3,7229 3,672.92
-20 3,466.3 3,426.22
-21 3,208.2 3,176.12
Block 2 0 8,409.42 8,935.6
-3 6,544.42 6,582.0
-4 6,141.2# 6,141.8
-5 5,789.6 6,774.9
-6 5,619.5 5,429.6°
-7 5,317.4 5,139.1=
-8 5,049.8 4,831.32
-9 4,756.9 4,525.42
Block 3 0 6,123.2 6,550.5
-3 4,752.8° 5,094.8
-4 4,379.02 4,652.3
-5 4,020.42 4,216.6
-6 3,555.6 3,517.82
-7 3,276.3 3,234.72
-8 3,098.1 2,984.82
-9 2,899.3 2,804.1=

2Minimum AIC solution.
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A larger value of ¢ was needed to get this reversal in block 1, which included
the most initial trials. The results are as expected. If, however, the variabilities in
p over subjects and over trials are indeed what make the data more in line with d,
then there is not much substance in this model, because those are the situations
that should be avoided in collecting stimulus identification data according to the
results of the second Section.

Our finding is consistent with Ennis (1988a; see also Ennis, Palen, & Mullen,
1988; chap. 11), who attempted to reconcile the two models by postulating
multivariate distributions for the stimulus representations. For confusable stimuli
for which “perceived similarity may vary from moment to mement because of
variation in the mental representations of the stimulus objects” (Ennis, 1988a, p.
408), d? provides the better model. However, for discriminable stimuli that
*“cannot be confused because of this variation” (Ennis, 1988a, p. 408), d could be
the better model. Shepard (1988), on the other hand, argues that for discrimin-
able stimuli that “are nevertheless close enough in psychological space to be
judged . . . likely to have the same important consequence” (Shepard, 1988, p.
416), d should be favored. Clearly, what Shepard has in mind is the stimulus
generalization context. However, how relevant is his argument to the stimulus
identification context? Stimulus identification data are usually collected under a
pressure to minimize the error probability and consequently, rather distinct, from
stimulus generalization data. None of the data sets for which we found d fitted
better are, strictly speaking, stimulus generalization data.

SOPHISTICATED GUESSING MODELS

In this section, sophisticated guessing models (SGM) are discussed in some
detail. The general form of the SGM is presented first, followed by its specializa-
tion, Nakatani’s (1972) confusion-choice model. The symmetric SGM, another
specialization of the gencral SGM, is then discussed along with its relation to the
similarity-choice models, the AON and OVLP modcels. Some introductory re-
marks about the models were given in the introduction.

In the SGM, a presentation of a stimulus is assumed to generate a confusion
set ¢, which is a set of admissible responses. A response is chosen among the
admissible responses according to the bias of the response. Let C; denote the set
of all confusion sets that include j as an admissible response plus the null set,
which includes no admissible responses. Let p_,; be the probability of confusion
set ¢ when stimulus i is presented. Then the general SGM can be written as

b.
W= > Pen ( i ) , 20
pj/ cEC’. Pes EkEc bk ( )

where b; is the bias parameter for response j (J. E. K. Smith, 1980). This b; is
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analogous to wj; in the similarity-choice models. One exception should be al-
lowed in Equation 20. When c is null, 3, c b, should be interpreted as the sum of
b, over all possible (not necessarily admissible) responses. Most SGM do not
allow the null confusion set, but some, such as Nakatani’s confusion-choice
model, do.

Nakatani’s Confusion-Choice Model - -

Various specializations of Equation 20 are possible. In Nakatani’s (1972)
confusion-choice model, it is assumed that

Peri = H i) we (1 — py )t ~"we 21)
k

where p, is the marginal probability of response k being admissible for stimulus
i, and r, is defined as

- {1 ifk €c,
ke 0 otherwise .

In Nakatani’s original model, stimuli are represented in multidimensional Eucli-
dean space. Each p;, is assumed to be a decreasing function of the distance dj
between stimulus i and response k (which is supposed to coincide with stimulus
k). More specifically, d; is assumed to follow the standard normal distribution,
and p;, is set equal to the probability that d;, falls within a threshold denoted by
1. For ease of computation, however, this was replaced by

puc = {1 + exp (—(t — dl}! (22)

here. .

The preceding model is analogous to the Euclidean distance-choice model
since it assumes a representation of stimuli in multidimensional Euclidean space,
and confusion probabilities are related to distances between the stimulus points.
The dy in Equation 22 may be replaced by the unrestricted dissimilarity parame-
ter 3, (d; = 0), analogous to s in the unrestricted similarity-choice model.
This, however, turns out to be equivalent to what Townsend and Landon (1982)
called the modified Nakatani model, which does not restrict p; in any way. This
follows from

; = Pix = — &
logit (py) = In (1 — pik) 4 — &y,

and

logit (P =y »
which establish the one-to-one correspondence between {p; } and {d;,, #,}. Alter-
natively, d;, in Equation 22 may be replaced by h;; in Equations 14 or 17 or by g;;
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in Equation 18. This leads to the unique feature versions of Nakatani’s confusion-
choice model.

There is one important departure in our implementation of Nakatani’s
confusion-choice model. The bias parameters are defined as

b =i (23)

(Hojo, 1982), where f; = 3;f,; and f = Z}fJ In Nakatani’s original procedure, b
was estimated according to the Least-Squares Criterion, whereas 1, was calcu-
lated in an ad hoc manner. ldeally, both b; and 1, should be estimated according
to a well-defined statistical criterion. This was attempted. Too often, however, it
led to numerical difficulties. It was decided that ¢, was estimated by the max-
imum likelihood method, and b; by Equation 23. This decision was dictated
because there was no ready-made formula available for ¢, whereas Equation 23
for b; was obvious (Hojo, 1982).

Symmetric SGM, AON, and OVLP Models

In the symmetric SGM, it is assumed that p; = p,,; whenever i and j are in ¢, and
that p.; = O whenever i is not in ¢ (Noreen, 1978). The first assumption states
that the probability of a confusion set evoked by a stimulus in the set is equal
across all stimuli in the confusion set (i.e., P.; = p, for all i € c). The second
assumption states that the confusion sets evoked by stimulus i always include
response i as an admissible response. (Nakatani’s confusion-choice model does
not satisfy these conditions.) Under these assumptions, Equation 20 becomes

€c

b, )
= o i), 24
P CEZCU & ( 2k bk ( )

where C;; is the set of all the confusion sets that include i and j.
The model can be rewritten as

Pyi = bz, (25)

where

P
_—
P cec Ve b
§
and 2;b; = 1. Note that z;; = z;; (;; is symmetric). This is the reason for the name
symmetric SGM. Also, z; = z;; for all j. This inequality holds, since C; = C; D
C;j- Model 25 can be further rewritten in the form of Equation 9 by setting

z bj(zy)"?

8§ = —<15 and

(zyz;)"2 W = S, by(zg)2
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(J. E. K. Smith, 1980). This implies that the symmetric SGM is a special case of
the similarity-choice model. (Note that Equation 25 satisfies the cycle condition
and the column constraint, which are necessary and sufficient for the unrestricted
similarity-choice model.) However, the reverse is not necessarily true. Although
Equation 9 can be put in the form of Equation 25 by letting

_ W

Si:
z; = —L z VWi and i = ,
T2 o

Yow Y
where v; = Z;w;sy;, it could lead to inadmissible values of p. in the symmetric
SGM.

Equation 25 along with the conditions on z; (z;; = z;; = z; = z;;) is important,
since any models that can be expressed in the form of Equation 25 are special
cases of the symmetric SGM and, consequently, special cases of the similarity-
choice model. In the all-or-none model (Townsend, 1971), it is assumed that
stimulus i is identified perfectly with probability p;, but with the remaining
probability, | — p;, a confusion state is evoked that elicits response j with
probability b;*. 'The model can be formally written as

_ [ =p)b} forj#i,
Pyi {pi + (1 — p,)bf forj=1i, (26)
where Z;p;* = 1. This model can be rewritten in the form of Equation 25 by
setting

*
z; = a;q (2';:"‘) forj # i

-4/ (%)
b= %a_k’

J

and

where q¢; = 1 — p; and

Zy < [aiz + _’—'ai(lb; ai)] Z aby .

1 k

It can be easily verified that

=z = oz =z

By implication, the AON model is also a special case of the similarity-choice
models. 1

In the overlap model (Townsend, 1971), it is assumed that with probability p;;
stimulus i is identified perfectly. With probability p;;, a confusion state is gener-
ated in which the only admissible responses are i and j. The response j is chosen
with probability b;/(b; + b;). The model is written as
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P (r-b‘ﬁ;) forj#i,
Pyi = 5 ! , Q@7
pu t 14 <—'——> forj=1i,
= k \b, + b,

where = b; = 1 and 2 p;; = 1 for all i. This model is also a special case of the
symmetric SGM. Let

zip = i forj #i,

and

..
Zi = E Zy t+ ’7)2 .
ki i

Then Equation 27 can be rewritten in the form of Equation 25, indicating that the
OVLP model is a special case of the symmetric SGM, which in turn is a special
case of the similarity-choice models. Again, it can be casily verified that z; = z;
= z;; < z;;. There is one-to-one correspondence between parameters in the OVLP
model and those in the unrestricted similarity-choice model. However, a proper
solution in the latter may correspond with an improper (inadmissible) solution in
the former. A proper solution in the former, on the other hand, always leads to a
proper solution in the latter.

The informed guessing model (Pachella et al., 1978) is similar to the OVLP
model, except that it has one additional parameter. This additional parameter
represents the probability of an uninformative confusion state assumed possible
in the informed guessing model. In this confusion state, any response is admiss-
-ible, and a response is chosen with probability equal to its response bias. When
the probability of this confusion state is assumed to be zero, the informed
guessing model reduces to the OVLP model. It can be easily verified, however,
that even with the additional parameter the informed guessing model is a special
case of the symmetric SGM.

A hierarchy of the SGM is presented in Figure 13.2. It would be interesting to
compare the GOF of thc models discussed in this section as well as those
discussed in the third section on an empirical basis.

SOME EMPIRICAL RESULTS

The models discussed in the previous section were applied to four data sets, and
the results are reported in this section. The four data sets are from Keren and
Baggen (1981), Wickelgren (1965), Hodge and Pollack (1962), and Clark and
Stafford (1969). All are empirically interesting. However, they are all aggregated
data, and the results may be confounded with individual differences.
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FIG. 13.2. A hierarchy of sophisticated guessing models.

Keren and Baggen'’s Data

The Keren and Baggen data set was used by Takane and Shibayama (1986) to
compare similarity-choice models discussed in the third section. It was found that
the unrestricted similarity-choice model fit the data best. ADDTREE and EX-
TREE were fit as special cases of the unique feature-choice model. However,
neither ADDTREE nor EXTREE fit as well as the unrestricted similarity-choice
model.

Sophisticated guessing models, including the AON and the OVLP models and
Nakatani’s confusion-choice model with various (dis)similarity models, were fit
in this study, and results are reported in Table 13.8. The main entries in the table
are the AIC values and the effective numbers of parameters in the fitted models
given in parentheses. It is immediately clear that the AON model does not
provide a good fit. This model seems too naive, not only for this data set but also
for all other data sets discussed in this section. The OVLP model, on the other
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TABLE 13.8
Summary of GOF Statistics for Keren and Baggen'’s (1981) Data

Response Model

Similarity Model Similarity-Choice Model ~ Confusion-Choice Model
0. Saturated Model 17.4 (90)
1. Unrestricted similarity 5.6 (54) 8.6 (54)
model
2. Euclidean distance model d d?
dim = 2 220.3 (26)  1,148.8 (26) 42.6 (27}
dim =3 79.2 (33) 438.2 (33) 11.5 (34)
dim = 4 35.6 (39) 90.9 (39) 9.5 (40)
dim =5 40.9 (44) 20.5 (44) 7.9 (45)

3. Unique feature model
General asymmetric

7 features 199.3 (14) 11.6 (24)
9 features 95.3 (16) -3.82(26)
Restricted asymmetric
7 features 273.7 (8) 18.0 (18}
9 features 122.5 (10} 5.3 (20)
Symmetric-difference
7 features 197.5 (16} 16.1 (17)
9 features 91.5 (18) 9.4 (19)
4. ADDTREE 164.1 (26) 131.4 (25)
EXTREE 56.1 (28) 26.5 (28}
5. All-or-none model 680.3 (19)
6. Overlap model
Proper 5.6 (54)
AIC-6170.

Effective number of model parameters in parentheses.
aMinimum AIC solution. -

hand, yielded a proper solution with the GOF equivalent to that of the un-
restricted similarity-choice model.

Nakatani’s confusion-choice model with various (dis)similarity submodels
compares favorably with its similarity-choice model counterparts. In particular,
one version of the unique feature model combined with the confusion-choice
model was found to work remarkably well. The stimuli used in Keren and
Baggen’s experiment were 10 rectangular digits defined by subsets of seven
segmented features (the seven-feature case). Two additional features, open left
and open right, were included in the nine-feature case. The general asymmetric
unique feature model (Model 14), with the nine features, combined with the
confusion-choice model, proved to be the best fitting model among all the
models fitted. This model uses far fewer parameters [n(q) = 26] than the un-
restricted similarity-choice model [n(q) = 54]. This result was somewhat surpris-
ing, after having obtained disappointing results with the unique featurc-choice
models (Takane & Shibayama, 1986) using the same set of features. It seems,
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however, that whenever the OVLP model yields a proper solution without ex-
plicit constraints on its parameters, Nakatani’s confusion-choice model generally
works very well, and a unique feature model may be found that provides an
excellent fit to the data.

Wickelgren’s Data

The results for Wickelgren’s (1965) data are remarkably similar to those of
Keren and Baggen’s data. Again, the OVLP model yielded a proper solution
without explicit constraints on model parameters, Nakatani’s confusion-choice
model generally worked very well, and a version of the unique feature confusion-
choice model turned out to be the best-fitting model. The stimuli used in Wick-
elgren’s experiment were eight consonant-vowel combinations (fa, af, fo, of, na,
an, no, on). Subsets of the stimuli were presented to the subjects, who were
asked to recall them shortly after. Three features of the stimuli, the order of the
two types of elements (CV or VC), the type of vowel (a or o), and the type of
consonant (f or n), were taken as an initial feature set. All possible interactions
among the three features (1 and 2, 1 and 3,2 and 3, and 1, 2, and 3) were then
added to form a seven-feature set. The symmetric-difference unique feature
model (Model 18) with the seven features combined with the confusion-choice
model was found to be the best-fitting model. From the resuit of the four-
dimensional Fuclidean distance confusion-choice model, it was conjectured that
a subset of the seven features (original three features, 1, 2, and 3, plus the
interaction between 1 and 3) might work even better. This was tried, but was
found to be not as good as the full seven-feature set.

Hodge and Pollack’s Data

The results are somewhat different for Hodge and Pollack’s (1962) data,
which are summarized in Table 13.9. Hodge and Pollack’s data were briefly
mentioned in Example 3. The data pertain to eight tones constructed by factorial
combinations of two levels each of three physical attributes: frequency (1,000
Hz, 1,006 Hz); intensity (80 dB, 81 dB), and duration (320 ms, 367 ms).

The OVLP model yielded an improper solution; some probabilities were
estimated to be negative, and nonnegativity constraints had to be imposed to
obtain a proper solution. The GOF of the proper solution (AIC = 57.4) was,
however, appreciably worse than that of the improper solution (AIC = 13.8).
Still, Nakatani’s confusion-choice model fared reasonably well in comparison
with its similarity-choice model counterparts. However, the saturated model, in
which no special submodels were assumed under py;, turned out to be the best-
fitting model (AIC = 6.5).

The best nonsaturated model was the four-dimensional unsquared Euclidean
distance-choice model (AIC = 9.0). The first three of the four dimensions in this

model roughly corresponded with the three physical attributes (frequency, inten-
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TABLE 13.9
Summary of GOF Statistics for Hodge and Pollack’s (1962) Data

Response Model

Similarity Model Similarity-Choice Model  Confusion-Choice Model
0. Saturated Model 6.52(56)
1. Unrestricted similarity 13.8 (35) 13.5 (35)
model
2. Euclidean distance model d d?
dim = 2 171.7 (20) 958.9 (20) 57.9 (21)
dim =3 14.4 (25) 284.9 (25) 26.7 (26)
dim = 4 9.02(29) 80.1 {29) 10.1 (30}
dim=5 14.9 (32) 45.0 (32) 11.5 (33)

3. Unique feature model
General asymmetric
4 features 245.3 (8) 25.8 (16)
7 features 28.1 (14) 20.7 {22)
Symmetric-difference
4 features 116.5 (11) 22.4 (12)
7 features 28.1 (14) 14.7 (14)
4. All-or-none model 539.5 {15)
5. Overlap model
Improper 13.8 (35)
Proper 57.4 (35)

AIC-14450.
Effective number of model parameters in parentheses.
2Minimum AIC solution.

sity, and duration) of the stimuli. The fourth dimension represented the three-way
interaction among the three attributes. Since all the attributes had only two
levels, they were coded into binary features. The unique feature models were fit
using these features. However, no unique feature models were found to fit as
well as the saturated model. Subsequently, the feature set was incremented by
including all two-way interactions, which improved the fit, but not as much as
desired. Note that with the seven features (three main effects plus interactions
among them) the general asymmetric unique feature-choice model and the
symmetric-difference unique feature-choice model provide an identical GOF,
which seems to be the case in general.

Clark and Stafford’s Data

The fourth data set was reported by Clark and Stafford (1969). The results
were similar to those of Hodge and Pollack’s data. The stimuli were eight
different forms of verbs embedded in sentences. Subjects were shown the sen-
tences and asked to remember the verb. Verbs differed in tense (present or past),
in perfective form, and in progressive form. An example would be: (a) watch, (b)
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watched, (c) is watching, (d) was watching, (e) has watched, (f) had watched,
(8) has been watching, and (i) had been watching.

As in Hodge and Pollack’s data, an improper solution was obtained from the
OVLP model. This was due to large proportions of errors in the two data sets.
The OVLP model requires p,; = Py (J. E. K. Smith, 1980). The difference
between the improper solution and the constrained proper solution is much
larger, however, in Clark and Stafford’s data than in Hodge and Pollack’s data.
The informed guessing model may be a better choice under this circumstance.
However, the informed guessing model suffers from a different kind of problem;
model parameters in the informed guessing model are not uniquely determined.

Nakatani’s confusion-choice model worked reasonably well. However, the
minimum AIC solution was found to be the two-dimensional unsquared Eucli-
dean distance-choice model (AIC = 5.8). The two dimensions in this model
roughly corresponded with two of the three defining features of the verb forms:
perfective or not perfective and progressive or not progressive. Attempts were
made to fit the unique feature models using the defining features of the stimuli
and the interactions among them. However, no unique feature models were
found to fit better than the best Euclidean distance-choice model.

CONCLUDING REMARKS

This chapter compared a number of existing models of stimulus identification
data. One important model was omitted, the general recognition model by Ashby
and Perrin (1988). This model is very general and can explain a variety of
phenomena that could not be explained by other models. It was not considered
here, despite its promise, primarily because it is still under development and
because it is too general. In most cases, only specialized models can be fit, and it
is not clear what specializations are necessary in particular situations. This situa-
tion can improve rapidly (see chaps. 6~8 and 16), however, and the full com-
parison between this model and the kinds of models discussed in this chapter
would undoubtedly be interesting. Such attempts are already underway (Ashby
& Lee, 1991).
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