A REVIEW OF APPLICATIONS OF AIC IN PSYCHOMETRICS

Y. TAKANE

Department of Psychology
McGill University

1205 Dr. Penfield Avenue
Montreal Quebec H3A 1B1
Canada

1. Introduction

Many theories in psychology are still in early stages of development. It is rare to find
a single definitive and uncontested theory developed for a single phenomenon. It is more
usual that many competing models are formulated for a single phenomenon giving rise
to the necessity of extensive model comparison. Introduction of a conceptually simple
and easy-to-use criterion for model comparison, like AIC (Akaike, 1973), is thus
considered a blessing in often complicated psychological research. Psychometrics is one
of the earlier areas which introduced this statistic. In 1987, Psychometrika, a leading
journal in psychometrics, published a special issue featuring four papers (Akaike, 1987;
Sclove, 1987; Bozdogan, 1987; Takane, Bozdogan, & Shibayama, 1987) presented in a
symposium on AIC held at the previous year’s annual meeting of the Psychometric
Society. This was brought about with the recognition of importance of AIC in
psychometric research. The present paper reviews applications of AIC in psychological
research, and highlights some of the difficulties in modelling psychological phenomena.

There are two major classes of models that we focus on in this paper, although there
are a number of other models in psychometrics to which AIC may potentially be applied.
Both classes of models have traditionally been attributed to psychometricians. One is
multidimensional scaling (MDS), and the other the latent variable models, such as factor
analysis (FA), analysis of covariance structures (ACOVS), latent structure analysis, etc.
MDS represents similarity data by a distance model, and is one of the first models to
which AIC was applied (Takane, 1978). FA, on the other hand, postulates latent variables
to explain covariances among observed (manifest) variables. FA is the model for which
AIC was originally conceived (Akaike, 1987). This paper reviews applications of AIC
in these two and related methods.

2. MDS: An Informal Introduction

What is MDS? It is a data analysis technique that locates a set of points in a
multidimensional space in such a way that points corresponding to similar stimuli are
located close together, while those corresponding to dissimilar stimuli are located far
. apart. To take a simple example, if you are a driver, you know that many road maps
have a table of intercity distances somewhere in the corner. What MDS does is to
recover a map (relative locations of cities) based on the intercity distances. Given a map
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it is relatively straightforward to measure intercity distances, but the reverse operation,
that of recovering a map based on intercity distances, is not so straightforward. The task
of MDS is to perform this reverse operation.

In MDS, we typically have some empirical measures of similarity among stimuli, and
we represent the stimuli as points in a multidimensional space, so that their mutual
distances in some sense best agree with the observed similarity relations. Why would we
like to do that? Because a picture is worth a thousand words. In psychology this
technique has been useful in understanding some aspects of human cognitive processes.

Here is an example (Takane, 1984). Stimuli are ten digits made up of seven line .
segments arranged in the form of number 8 (see Figure 1). Each digit is defined by a
subset of these line segments. For example, digit 2 is made up of segments 1, 3, 4, 5,
and 7. Two stimuli (not necessarily distinct) were briefly presented in each trial, and the
subject was asked to indicate as quickly as possible whether the two stimuli presented
were "same" or "different." Presumably it takes longer to discriminate more similar
stimuli, so that (discrimination) reaction times can serve as similarity measures. MDS in
this case locates stimuli with longer reaction times close together, and more discriminable
ones far apart. There were two subjects in the study whose data were analyzed
separately. Each subject underwent two sessions of 360 trials each. In exactly one half
of the trials same pairs (pairs of two identical stimuli) were presented (10 same pairs
presented 18 times each), and in the other half different pairs were presented (45 different
pairs presented 4 times each) in random order. See Sergent & Takane (1987) for a more
detailed account of the procedure. The portions of the data pertaining to same pairs were
excluded from the analysis.
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Figure 1. Seven line segments that constitute the digit stimuli.

Figure 2 presents a two-dimensional stimulus configuration obtained from Subject 1.
A vertical line and a horizontal line (dotted lines) have been drawn to make important
distinctions in the configuration: (1) First, all the stimuli located to the left of the
vertical line have something in common. That is, they have all the three horizontal line
segments, whereas those stimuli on the other side miss some of them. The horizontal
direction in the space is thus related to the three horizontal line segments. (2) Next, all
the stimuli below the horizontal line have segments 2, 3, & 6 as opposed to at least some
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of them missing in the stimuli above the line. The vertical direction is thus related to the
vertical line segments. We may say that this subject is distinguishing the stimuli in terms
of presence and absence of the horizontal and vertical line segments from which they
were constructed.
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Figure 2. Derived two-dimensional stimulus configuration for Subject 1 for the digit
stimuli.

Figure 3 presents the result obtained from Subject 2. This configuration is totally
different from the previous one. It appears that the stimuli are arranged from 0 to 9 in
a roughly circular manner. This implies that the digits which are numerically similar are
less discriminable. That is, this subject is recognizing the stimuli as numbers, and is
distinguishing them as such. Note that it is not at all necessary to recognize the stimuli
as numbers in order to perform the task. It suffices to judge if the two stimuli presented
have all line segments in common or not, as was done by Subject 1. Interestingly, this
subject was totally unaware of his own strategy (that he was perceiving the stimuli as
numbers). He himself had a great deal of difficulty in interpreting his own stimulus
configuration, being preoccupied by the line segment characterization of the stimuli.
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Figure 3. The same as figure 2 for Subject 2.

For the same set of stimuli we found two radically different configurations, which
reflected different strategies for performing the task. MDS was effectively used to
uncover initially unsuspected individual differences. MDS would be even more powerful
if it allowed goodness of fit (GOF) comparisons among different models. For example:
(1) So far we have assumed that the two-dimensional configurations are the best for both
subjects. Is it really so? (2) Subject 1’s judgments seem to have been based on patterns
of presence and absence of the line segments from which the stimuli were constructed.
Can a distance measure defined on the patterns of presence and absence of the line
segments then explain his data adequately? (This will be referred to as hypothesis (2)
below.) (3) For Subject 2, the stimuli are located nearly in a circular form. Can we say
it is indeed circular? (This will be called hypothesis (3) below.)

These questions can be answered in a straightforward manner by the minimum AIC
procedure. First, models that embody various hypotheses are fitted by the maximum
likelihood method. Then, values of the AIC statistics are calculated for the purpose of
model comparison. The smaller the value of AIC, the-better the GOF of the model. An
important point is that the model chosen by the minimum AIC criterion is not necessary
a "true” model. The minimum AIC merely indicates that the model is best among
competing models in the sense that, given the data at hand, the chosen model gives
predictions which are closest to those generated by the true model. Thus, for example,
in selecting appropriate dimensionality using AIC, the question answered is not what the
correct dimensionality is, but how many dimensions can be reliably estimated, given the
data at hand. )

Table 1 summarizes the AIC values obtained for the digit data. In the table, n(p)
indicates the number of independent parameters in the model. For both Subject 1 and
Subject 2, the two-dimensional euclidean distance model fits the data better than the
three-dimensional counterpart. For Subject 1, the two-dimensional euclidean model is
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also the best fitting model. Hypothesis (2) suggested above for Subject 1 (labelled
"Linear" in the table) does not seem to be supported by the data. The model is called
"Linear", because the distance between two stimuli are defined by a linear combination
of contributions of features (line segments) on which the two stimuli differ (see section
4). For Subject 2, the constrained solution derived under hypothesis (3) gives the best
fitting model. The stimulus configuration may indeed be considered circular for this
subject. This solution has been superposed onto the unconstrained solution in Figure 3.

Subject 1 Subject 2
Dimensionality Unconstrained  Unconstrained Constrained
2 Euclidean AIC 8.0 34.6 23.4*
n(p) an 17 (10)
3 Euclidean AIC 10.2 40.8
n(p) (24) (24
Linear AIC 26.0
n(p) @

*The minimum AIC solution.

Table 1. Summary statistics for the digit data.
3. Maximum Likelihood MDS

To discuss other applications of AIC, a more general account of MDS is necessary. In
constructing a maximum likelihood MDS procedure, it is important to distinguish three
essential ingredients (Takane, 1981); representation model, error model and response
model. The representation model is the model that describes similarity relations between
stimuli. The error model describes the way model predictions derived from the
representation model are error-perturbed. The response model describes the mechanism
by which the error-perturbed model predictions are transformed, when similarity
judgments are made. We briefly discuss various possible specifications of these submodels
in turn. It should be emphasized, however, that no matter which specifications of
submodels may be used, the likelihood function is stated for a specific form of data as
a function of parameters in these submodels. The maximum likelihood (ML) method is
then applied to obtain estimates of the parameters. Values of AIC can readily be
calculated from the maximum likelihood.
The representation model most frequently used in MDS is the euclidean model

dy= (£ 00 - %)™, M

where d; is the (euclidean) distance between stimuli i and j, x,, is the coordinate of
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stimulus i on dimension a, and A is the dimensionality of the representation space. This
is the model used in the previous example. There are nA parameters in this model, where
n is the number of stimuli. However, there are translational and rotational
indeterminacies inherent in the euclidean distance model, and exactly A(A+1))/2
parameters can be arbitrarily fixed. This leaves n(p) = nA - A(A+1)/2 independent
parameters to be estimated. _

In some cases (most typically, when the stimulus dimensions are separable), the city-
block distance model defined by

A
d= T 1% -xl, @

may be more appropriate (Sergent & Takane, 1987). There are (n-1)A independent
parameters in this model. While there is no rotational indeterminacy in the city-block
distance model, the translational indeterminacy is still in effect. Both the euclidean
distance and the city-block distance models are special cases of the Minkowski power
distance model,

dy= £ |xa- %l ©)

where r 2 1. Model (1) follows from (3) with r = 2, and Model (2) with r = 1.

In MDS subjects (when there are more than one) are often treated as replications.
However, this is only justifiable when there are no systematic individual differences.
When such is not the case, the following model, called weighted euclidean model, is often
used (Carroll & Chang, 1970) to represent individual differences in similarity judgments:

A
d = ( I waal - %), @

where k indexes subjects and w,, is the weight attached to dimension a by subject k. This
model assumes that there is a stimulus configuration common to all subjects, and that
individual differences are produced by the differential weightings of the common
dimensions by different subjects. Note that this model is still fairly restrictive. Note also
that in this model the number of parameters to be estimated increases as the number of
observations increases, so that, strictly speaking, the asymptotic theory for ML estimates
does not hold.

Distances may sometimes be defined only for objects (stimuli) belonging to two
mutually exclusive subsets. That is, stimulus i belongs to one set, and stimulus j to the
other. In such situations Model (1) may be modified into

A
dy = {az;'l(xia - Yj.)z}’m &)

where x;, and y,, are distinct. This model is sometimes called unfolding (or ideal-point)
model (Coombs, 1964), and is useful for representing individual differences in preference -
judgments. In this model subjects are assumed to have ideal stimuli represented as ideal
points, and distances between stimulus points and the ideal points are assumed inversely
related to subjects’ preferences for the stimuli. Takane, Bozdogan and Shibayama (1987)
and Takane (1987b) used this model for discriminant analysis and analysis of contingency
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tables. Note that the number of parameters in Model (5) increases linearly with the
number of subjects, as in Model (4). Additional constraints are often imposed to avoid
inconsistency in ML estimates. For example, subjects’ ideal points may be represented
as linear combinations of some demographic information about the subjects.

The distance model may not always be the best model for representing similarity data
(Tversky, 1977), and similarity models other than the distance model have been used in
the literature. These includes the feature matching model (Tversky, 1977), various kinds
of tree structures (Sattath & Tversky, 1977), and so on.

The d; defined above are assumed error-perturbed. The error model prescribes the

nature of this error perturbation process. The error models that have been most frequently
used are the normal error model,

8y = d;; + ey, where e, ~ N(0, 6,2), (6)
and the log-normal error model (Ramsay, 1977),
8y = djey» Where In e, ~ N(0, 6,2), )

where r indexes replications. The log-normal model is particularly attractive in MDS,
since §,, is always positive, it is positively skewed, and the variance increases with d;.
The log-normal error model was the one assumed for reaction time data in the previous
example. A variety of variance component models may further be assumed for (Sij2
(Ramsay, 1982). For example,

O'ijz = sz,'js, (8)
with s =0, 1 or 2, and
oijz =0’ + 0','27 9

etc.

There are a number of different ways in which similarity data are collected in MDS.
In the simplest case (dis)similarity data are taken on relatively continuous rating scales.
In this case, §; (or at least a simple transformation of it) may be assumed directly
observable (Ramsay, 1977). The likelihood function can then be stated in a relatively
straightforward manner. However, in other cases such as reaction time data (Takane &
Sergent, 1983), stimulus identification data (Takane & Shibayama, 1986, 1992),
categorical rating data (Takane, 1981), pair comparison data (Takane, 1978), rank-order
data (Takane, 1982; Takane & Carroll, 1981), etc., 8, is not directly observed. It is
transformed in a specific way depending on the particular methods for collecting the
similarity data. The response model describes this transformation mechanism.
Consequently, a specific response model has to be constructed for each specific data
collection method. Response models have been constructed for all types of similarity data
mentioned above. We refer to the papers cited above for specific response models.
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In the remainder of this section we briefly describe the response model for the
reaction time data (Takane & Sergent, 1983) as an example. For simplicity, we assume
Models (1) and (6) with a constant variance, 0%, and consider only different pairs. Let

1, if stimulus i and j are judged to be "same"

Yy = in replication r
0, otherwise
Ty : the observed reaction time for stimuli i and

j in replication r.

Let b denote the response threshold for the same-different judgments. It is assumed that
a "same" judgment is elicited whenever §;, < b, otherwise a "different” judgment is
observed. Let P; denote the probability that 8, < b. Then,

Vij

Pij = J' $(z)dz

-00

where ¢(.) is the density function of the standard normal distribution, and vy=(nb-In
dy/o. The reaction time is assumed to take its maximum when §;, = b, and decrease as
3, gets far away from b. Specifically,

In T, ~ N (q(ln d; - In b) + u, g%c?)
for a "same" judgment (i.e., when §; < b), and
In T, ~N(qIn b - In d,) + u, ¢°0%)

for a "different" judgment (i.e., when Sij, > b). (Here, q (< 0) and u are additional
parameters.) Let g;“(T;;) and g,“*(T;;) denote the density functions of T, conditional

on Yy =1 and Y;; = 0, respectively. The joint density of T;, and Y, is then given by
fijr(Tiijijr) = [gijr(s)(Tijr)P ij}Yijr {gijr(d)(Tijr)(l - Pij)}l‘Yijr-
Finally, the likelihood function for the entire set of observations is stated as
L=y fijr(Tijv Yijr)a (10
i jr .
assuming the independence among the observations.

The likelihood is maximized with respect to x;, (i = 1,..., n; a = 1,...,, A) in the
representation model, 6 in the error model and b, q, and u in the response model by
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some iterative optimization procedure. Once the maximum likelihood is obtained the
value of AIC for model p is readily calculated by

AIC(p) = -2 max(in L) + 2n(p), a1

where n(p) is the effective number of parameters.
The results reported in the previous section were obtained by the method just
described.

4. Various Model Comparisons in MDS

We are now in a position to overview applications of AIC in MDS in a wider perspective.
This review is bound to be somewhat sketchy, because any in-depth discussion of the
topic would necessarily involve substantive issues. Such an in-depth discussion is
impossible due to space limitation. The reader is encouraged to refer to original papers
for more details.

Selection of the best representation model provides a rich source of interesting model
comparisons in MDS. The two common ones are (1) selection of dimensionality and (2)
tests of specific structural hypotheses about stimulus configurations. Both of these have
been illustrated in the previous example. Linear structural hypotheses can generally be
expressed as

Cx =0, (12)

where x is the vector of stimulus coordinates (a matrix of stimulus coordinates strung out
in a vector form), and C a known constraint matrix. This form of constraints is
convenient for imposing equality constraints on certain stimulus coordinates, and hence
for incorporating factorial structures. Takane (1981) and Sergent & Takane (1987), for
example, used the above form of constraints in testing various hypotheses about perceived
similarities among such stimuli as rectangles, parallelograms, circles, colors, etc. Takane,
Bozdogan, & Shibayama (1987) and Takane (1987b) used the constraints in multi-sample
cluster analysis (Bozdogan, 1986), that is, in testing the equality among criterion groups
in discriminant analysis.
An alternative form of the constraints is stated as

x = Gw, (13)

where w is a vector of weights, and G a matrix of "predictor" variables. This is
analogous to regression analysis, where predictions on the dependent variable are
"constrained" to be a linear function of the predictor variables. This form of constraints
is sometimes more convenient, and is extensively used in ideal point discriminant analysis
(Takane, 1987b, 1989a, 1989b; Takane, Bozdogan, & Shibayama, 1987), where points
corresponding to rows of a data matrix are represented as a linear combination of the
predictor variables. By manipulating G in various ways, we may also investigate effects
of discretization of certain predictor variables, interactions among them, partialling out
of the effects of one set of variables from the other, etc.



388

Constraints of the above form can be combined with (12). That is, the weight vector
w in (13) may be further constrained by

C*'w =0. (14)

where C* is a known constraint matrix analogous to C in (12). This can be used .
effectively, for example, in testing a significance of the effects of certain predictor
variables in G.

The circularity constraint in the example discussed in section 2 can be handled by -
neither forms of constraints given above. It requires a re-expression of the stimulus
coordinate matrix in terms of the polar coordinate system, and to impose certain equality
constraints. See also Takane (1981).

There are other interesting comparisons of model specifications worth mentioning.
They include the comparison between the euclidean distance model (1) and the city-block
model (2) (Sergent & Takane, 1987), or more generally, selection of r in the Minkowski
power distance model (3) (Takane & Sergent, 1983), and the comparison between the
distance model and other models of similarity data (e.g., the feature matching model,
trees, etc.). The latter models can often be expressed as linear models by constructing
appropriate predictor matrices. The linear model used in section 2 is one such instance.
Set x,, = 1 if stimulus i owns feature (line segment) a, x,, = 0, otherwise. ~ Define the
n(n - 1)/2 by A matrix of | x,, - x| . The vector of predicted distances is then obtained
by a linear combination of the columns of this matrix. See Takane & Sergent (1983),
Takane & Shibayama (1986, 1992) for more examples of this kind.

For the error model, the normal error model (6) and the log-normal error model (7)
have been extensively compared. One general finding is that the former fits better to the
data collected by the methods that involve comparisons among two or more similarities,
such as the pair comparison method and the rank-order method (Takane, 1978, 1982;
Takane & Carroll, 1981), while the latter fits better to the rating data (Ramsay, 1977,
Takane, 1981). Variance component models, (8) and (9), can also be subjected to model
comparison.

The response model constructed for each specific form of similarity data is supposed
to simulate the process by which the particular form of the data are generated. A realistic
model of this process plays a crucial role in constructing a successful MDS procedure.
An important class of similarity data (e.g., stimulus identification data, pair comparison
data, rank-order data) requires the subject to compare similarities and choose the one that
best fits a criterion. Several choice models have been tried to capture the choice
processes, and have been compared in terms of GOF to actual data sets. These include: "
(1) Takane & Shibayama (1992) compared Luce’s (1959) similarity choice model and
Nakatani’s (1972) confusion choice model for stimulus identification data. The two
models were found to fit about equally well in all cases attempted. (2) Takane &
Shibayama (1992) also compared the exponential (exp(-d)) and the Gaussian (exp(-d;))
response strength models in Luce’s similarity choice model. Characteristics of situations
were identified which favored one model over the other. (3) Takane (1989a) compared
Luce’s choice model and Thurstone’s successive categories model (Torgerson, 1958) for
ordinal criterion variables (columns) in contingency table analysis. The former was found
to fit slightly but consistently better than the latter.
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5. Evaluation

AIC has been applied in a variety of model comparison situations in MDS. These
applications are reasonably successful, although still limited in scope. In this section we
first briefly discuss possible reasons for the apparent "success”, and then point out some
of the problems yet to be resolved.

The reasons for the "success" may be summarized into three points. First of all, the
stimuli used are relatively simple, constructed mostly by manipulating a few known
- physical attributes. The data analyzed are collected very carefully in controlled laboratory
environments. Secondly, an elaborate response model which closely simulates the data
generation process has been constructed for each specific kind of similarity data. Thirdly,
different distributional assumptions are incorporated under which different solutions can
be obtained. The most appropriate assumption can be chosen empirically by comparing
the GOF of the solutions.

Not everything is easy, however. There are difficult problems as well. In MDS,
sample size is often too small to rely on the large-sample theory for ML estimation.
Obtaining a large sample is not easy with the single-subject design. Employing the
between-subjects design leads to another kind of difficulty (see below). Observations are
assumed independent (see (10)), despite the use of multiple-judgment sampling within
subjects. The problem of correlated observations is less serious with the single-subject
design. It can also be mitigated by taking comparative judgments (Takane & Carroll,
1981) and by measuring asymptotic performance by providing enough training trials so
that subject’s performance no longer improves during a data collection session. Still, the
assumption of independence is at best only approximately satisfied.

Simultaneous analyses of between-subjects data with multiple-judgment sampling
within subjects are difficult due to systematic individual differences. If no provisions are
made jn the model to account for the differences, the problem of correlated observations
becomes more pronounced. If, on the other hand, parameters are introduced in the model
to account for the individual differences, another kind of difficulty arises. The number
of parameters may increase indefinitely with the number of observations, and no
asymptotic properties of ML estimates are obtained (Kiefer & Wolfowitz, 1956). There
are two possible ways to get out of the difficulty. One is to examine the small sample
behavior of ML estimates by the Monte-Carlo methods, and deduce appropriate correction
factors in AIC as functions of the number of stimuli and the number of subjects (see
Ramsay, 1980). The other is to make reasonable distributional assumptions on the
individual differences parameters (Basu, 1977; Kalbfleisch & Sprott, 1970) and
marginalize them out. Although this second approach is theoretically more appealing, it
creates additional problems of specifying reasonable prior distributions on the individual
differences parameters, and of developing an optimization procedure that may involve a
large number of numerical integrations.

6. Latent Variable Models

We now turn to the second major area of psychometrics; i.e., latent variable models such
as FA and ACOVS. FA postulates a set of latent variables to account for covariances (or
correlations) among observed (manifest) variables. Let t denote a random vector of n
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manifest variables. The FA model is stated as
t=m+ Gu +e, (15)

where m is the mean vector (m = E(t)), G is the matrix of factor loadings, u and e are
random vectors of common factors and error components, respectively, and

u M2 0
~ N (0, ). (16) -
e 0 Q

In the standard FA model, it is further assumed that V(e) = Q? is diagonal. This is called
(linear) local independence (LI) assumption. Matrix M? is the variancF-covariance matrix
of common factors. Without loss of generality, it may be assumed that the common
factors are uncorrelated, i.e., M2 =1 (an identity matrix). It follows that

T =V({t) =GG + Q% an

FA obtains estimates of G and Q?, given a sample estimate S of X. There is a rotational
indeterminacy in G, so that the effective number of parameters in Model (17) is equal to
n(A + 1) - A(A - 1)/2, where A is the number of common factors.

The following criteria are commonly used for estimating parameters in FA. The
maximum likelihood (ML) method amounts to the minimization of

Fe(Z, 8)=In|S| -In|Z| + t(SZ?) - n. (18)
The generalized least squares (GLS) criterion minimizes
Fgs(Z, S) = (1/2) (I - S'T)% (19)

The above two criteria are asymptotically equivalent under the multivariate normality
(MVN) of t. Furthermore, if (17) is correct, both (N-l)l’fML and ‘(N-l)f-’(m (where N is the
sample size, and a hat indicates the minimized value of the criterion) follows
asymptotically chi-square with degrees of freedom equal n(n + 1)/2 - n(A + 1) +A(A-1)/2
under suitable regularity conditions. A generalization of GLS is the weighted least
squares (WLS) criterion defined by

Fyis(Z, S) = (vec(S) - vec(Z)Wi(vec(S) - vec(T)), 20)

where W is a positive-definite weight matrix, and the vec vectorizes nonduplicated
elements of a symmetric matrix. When elements of W are taken to be covariances
between elements of vec(S), Fy,s reduces to Fg ¢ (which in turn is asymptotically |
equivalent to Fyz under the MVN). By modifying the weights in W appropriately,
however, Fy, s may be used under distributions other than the MVN, while still retaining
its asymptotic equivalence to Fy; and Fg ¢ (Browne, 1982, 1984; Kano, Berkane &
Bentler, 1990). Whichever criterion is employed, the value of AIC for model p can be
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calculated by
AIC(p) = (N - DF + 2n(p), (¥3))

where F is the minimized value of Fyg, Fg s, or Fy,s, and n(p) = n(A+1) - A(A-1)/2.
(Note that the values of AIC calculated from the different criteria are likely to differ for
a finite sample.) :

The basic FA model (15) can be generalized in various ways. We discuss two
possibilities here for later reference. First, just as the covariance matrix is structured in
FA, the mean vector m may also be structured. That is,

m = HCb, (22)

where H and b are a known matrix and a vector of "predictors”, respectively, and C a
matrix of parameters to be estimated.

Secondly, a model analogous to (15) may be assumed for u as well. This leads to
the second-order FA model or ACOVS (Joreskog, 1970) in which a FA model is nested
within another FA model. Let u = Bs + w be the FA model for u, where s, w and B are
analogous to u, ¢ and G in (15), respectively, and

s K? 0
~N (O, : ). (23)

w 0 R?

Then,
Fy

t=m+ G(Bs + w) +e¢, 24)
and

T = G(BK?B’ + RHYG’ + Q. 25)

In FA and ACOVS, AIC has been used to select the number of common factors
(latent variables) and to test a variety of structural hypotheses for the mean vector and the
covariance matrix.

7. ACOYVS Pair Comparison Models

We discuss two interesting special cases of ACOVS with structured means. There is a
phenomenon called similarity effect in pair comparison judgments. Similar stimuli are
easier to compare, and consequently pair comparison judgments involving similar stimuli
tend to be more extreme than those involving dissimilar stimuli, for a given difference
in preference values. Takane (1980) and Heiser and de Leeuw (1981) independently
proposed the so-called THL model that takes into account the differential comparabilities
among stimulus pairs. This model maps stimuli into a multidimensional space, and defines
the stimulus comparability as the reciprocal of the euclidean distance between the stimuli.
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De Soete and Carroll (1983) later proposed a similar model, called wandering vector
model (WVM), in which not only the stimulus comparabilities, but also preference values
are functions of the stimulus configuration. Specifically, they are assumed given by the
projections of the stimulus points onto a vector (called the mean subject preference
vector) pointing in a particular direction in the space.

Takane (1987a; see also Takane & de Leeuw, 1987) generalized both THL model and -
WVM to accommodate systematic individual differences in preference judgments. He
introduced a random vector pertaining to the systematic individual differences, which was
then marginalized (integrated) out, and arrived at ACOVS formulations of the two
models. We briefly describe them here for pairwise preference rating data. In the
pairwise preference rating method, two stimuli are presented to subjects in each trial. The
subjects are asked to indicate, on a relatively continuous rating scale, the degree to which
they prefer one stimulus over the other. Let G be a design matrix for pair comparisons.
Each row of G corresponds with a stimulus pair. If that pertains to stimuli i and j, the
row has 1 and -1 in the ith and the jth positions and 0’s elsewhere. An example of G is

1 -1 0 O
G= 1 0 -1 0
1 0 0 -1
0 1 -1 0
0 1 0 -1
0 0 1 -1

for n = 4.
Let c be the mean stimulus preference vector, and let X be the matrix of coordinates

of the stimulus points in a multidimensional space. Then, the ACOVS THL model may
be written as

m = Gc, (26)
and

T =GXX + KHG’ + Q% v2))
and the ACOVS WVM as

m = GXv, (28)

with the same covariance structure as (27), where v is the mean subject preference vector.
The WVM is a special case of the THL model in which ¢ in (26) is constrained to be Xv.
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8. An Example of ACOVS Analysis

The THL model and the WVM were fitted to an actual data set. The stimuli were nine
celebrities: 1. Brian Mulroney (Prime Minister of Canada), 2. Ronald Reagan (Ex-
President of the US), 3. Margaret Thatcher (Ex-Prime Minister of the UK), 4. Jacqueline
Gareau (twice winner of the Boston Marathon in the woman’s division), 5. Wayne
Gretzky (NHL hockey player), 6. Steve Podborski (former champion of the World Cup
downhill ski race), 7. Paul Anka, (male vocalist), 8. Tommy Hunter (country song singer),
9. Ann Murray (female vocalist). These stimuli were deliberately chosen to create
heterogeneity in- similarity among them to test the similarity effect in pair comparison
judgments. There are three politicians, three athletes, and three entertainers/singers, and
the stimuli in a same group are deemed more similar to each other than those in different
groups. Subjects were 119 McGill undergraduates who were asked, for each of 36 pairs
of stimuli, to indicate the extent to which they preferred one stimulus over the other on
a 25-point rating scale.

Figure 4 presents the two-dimensional ACOVS solution from the THL model. (The
ML method was used in all the analyses reported in this section.) This shows the plot
of stimulus coordinates (the X matrix). The three groups of people used as stimuli nicely
cluster together, as anticipated. This means that stimuli within a cluster are more
comparable (having larger covariances) than those in different clusters. Estimated mean
preference values are: 2.6(BM), 2.4(RR), 2.7(MT), -2.6(JG), 0.9(WG), 0.9(SP), -1.9(PA),
-4.2(TH), and -0.9(AM). It seems that they are fairly highly correlated with a particular
direction (lower right) in the space, although two least preferred stimuli, JG and TH, are
somewhat displaced. This motivates to fit the WVM.

AM PA

Entertainers

™
+ MT
g . .
Athletes M FA
WG Politicians
sp

Figure 4. Two-factor solution from the THL model for the celebrity data.
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Results from the WVM are displayed in Figure 5. This stimulus configuration is
quite similar to the previous one, though clusters are perhaps less distinct. Estimated
mean preference values (2.6 for BM, 2.5 for RR, 2.3 for MT, -2.0 for JG, 0.9 for WG,
0.9 for SP, -22.1 for PA, -3.4 for TH and -2.0 for AM) are now proportional to
projections of the stimulus points onto the mean subject preference vector depicted in the
configuration. JG and TH are now moved up somewhat to make them less preferable.
The correlation between these preference values and those from the THL model was .976.

Figure 5. The same as Figure 4 from the WVM.

The question now is how well these models fit overall, and how they compare with
each other. Two additional models were fitted to benchmark the models. One is a
completely unstructured saturated model in which sample means and covariances are used
as estimates of their population counterparts. The other model, called Model (0), is one
in which means are modelled by Gc, but covariances are left unstructured. To
summarize, the fitted models are:

1) Neither means nor covariances are structured. (Saturated Model)

2) Only means are structured by Gc. (Model 0)

3) In addition to 2) above, covariances are structured by (27). (Model 1: THL model)

4) In addition to 3) above, mean stimulus preference values are structured by ¢ = Xv.

(Model 2: WVM)
In 3) and 4) above, diagonal elements of Q are all assumed equal to avoid improper
solutions.

Results are reported in Table 2, which summarizes AIC. As it has turned out, Model
(0) is the best fitting model. This means that the structure on means is acceptable, but
covariances are rather poorly modelled by (27). We obtained three solutions each . the
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THL model and the WVM, varying the number of factors from one to three, but none of
them are anywhere near the GOF of Model (0).

Saturated Model

(Unconstrained AIC 6.3
sample means &  n(p) (702)
covariances)

Model (0)

(Only structured AIC 0.7*
means: G¢) n(p) (674)

Model (1) Model (2)
(THL Model) (WVYM)

dim =1 AIC 224.8 306.4
n(p) (18) an

dim =2 AIC 183.7 226.9
n(p) (25) 19)

dim =3 AIC 183.0 187.9
n(p) (31 (26)

*The minimum AIC solution.
Table 2. Summary of GOF statistics for the celebrity data.

Neither the THL model nor the WVM fits to the data very well. Obviously
something is missing in these models, yet what is missing is not obvious. Both THL
model and WVM are relatively well conceived models in that there is a strong theoretical
reason for the models. Structures expected under these models have been clearly borne
out in the resulting configurations (see Figures 4 and 5). Nonetheless the models provide
rather crude approximations to the data. '

9. Discussion

Latent variable models are currently very popular in social and behavioral science
research. As demonstrated in the previous section, they provide a rich source of
interesting model comparisons. Curiously, however, systematic applications of AIC in
this area have been rather scarce (see, however, Ichikawa, 1988). This, combined with
the finding in the previous section, may suggest some general difficulties in applying AIC
to FA and ACOVS.

Many phenomena in social and behavioral sciences are extremely complicated
involving so many intricate factors intertwined with each other. Models fitted are often
oversimplified relative to the complexity of the phenomena. They capture some, but not
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all aspects of data structures, providing only crude approximations to the data. Models
like FA and ACOVS (and MDS) tend to compensate for the lack of fit by increasing the
number of latent variables, whereas the cause for the misfit may lie elsewhere. What is
likely to happen then is that an increasingly more complex model tends to be chosen, as
the sample size increases, until one of the following events occurs:

1. An improper solution (i.e., a solution with negative estimates of variances) is
encountered, before a better model is found than the saturated model.

2. A better fitting proper solution is found, but some of the factors extracted are
uninterpretable.

3. No better solutions are found than the saturated model.

Event 3 indeed took place in the previous example, when the sample size was
subsequently increased from 119 to 501.

In FA and ACOVS subjects are usually taken as replications. This may be justified,
if they are randomly drawn from a homogeneous population of subjects. However, this
condition is rarely satisfied. Often, there are heterogeneous subsamples of subjects mixed
together in a sample. This may cause non-MVN of the distribution. Under such
circumstances, it may not be sensible to fit a single covariance matrix to the entire
sample. Subjects may have to be stratified, and a separate covariance matrix fitted to
each stratified sample. In practice, however, it may be difficult to identify the variable(s)
by which the subjects are to be stratified. Mixture models (e.g., DeSarbo, Howard, &
Jedidi, 1991) may be applied to avoid this difficulty. These models simultaneously
"stratify” the subjects, and fit the covariance structure models. No initial stratification of
the subjects is thus necessary. However, some difficulty arises in applying AIC to these
models, as discussed by McLachlan & Basford (1988).
~ In FA and ACOVS the MVN distribution is almost always assumed. However, this
assumption is often unrealistic. Micceri (1989), for example, examined distributions of
440 psychometric measures from achievement tests, attitude surveys, personality
inventories, etc., and found that none of them passed the test of univariate normality at
the prescribed significance level of .01. He concluded that in psychology the normal
distribution was just "as improvable as the unicorn." Figure 6 displays empirical
distributions of two of the variables from the previous example. These histograms were
constructed from the augmented data. They both look very similar to one of the
histograms presented by Micceri, and described as an "asymmetric, lumpy, multimodal
distribution."”
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Figure 6. Histograms of two variables from the celebrity data.

The problem of non-normal distributions in FA and ACOVS has been somewhat
alleviated by recent robustness studies on the normal likelihood (Anderson & Amemiya,
1988; Browne & Shapiro, 1988; Shapiro & Browne, 1987). There have also been
attempts to relax the distributional assumption. Several procedures have been developed
that require less stringent distributional assumptions than the MVN. These include the
ADF (Asymptotically Distribution-Free) method (Browne, 1984), and those based on
elliptical distributions (Browne, 1982; Kano, Berkane, & Bentler, 1990). While these
developments are certainly encouraging, even a larger sample size is necessary for the
asymptotic results to hold under the relaxed conditions. This brings us back to the state
of affairs described at the beginning of this section.

FA and ACOVS typically assume linear local independence (LI). That is, manifest
variables are assumed independent (uncorrelated) given the latent variables. This
assumption is often problematic. It tends to give rise to improper solutions when a large
number of latent variables have to be extracted. The problem is aggravated when the real
cause for the large number of latent variables is due to other misfits between the model
and the data. Akaike (1987) proposed an ingenious method to constrain estimates of
uniqueness variances to take only positive values, thereby avoiding the improper
solutions. An effort is yet necessary to make the method more widely available.

10. Concluding Remarks

This paper reviewed the use of AIC in two representative areas of psychometrics. The
message of the review seems clear. The model comparison approach plays an important
role in psychometrics, although, as has been pointed out, there are a number of difficult
problems yet to be resolved as well. Obviously, a lot more efforts have to be expended
for improving the quality of data and models.
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Finally, a comment is in order on so-called sample-size independent GOF indices
recently proposed for use in latent variable models (Bentler, 1990; McDonald, 1989;
McDonald & Marsh, 1990; Steiger, 1990). These indices are all based on the "bias”
incurred by approximating the true (saturated) model by a reduced model. Figure 7
depicts the relationships among AIC, the bias (Bias) and -2LLR (minus twice the log
likelihood ratio between the estimates of the reduced and the saturated models). This
figure was drawn by closely following the derivation of AIC in Bozdogan (1987). The
saturated model, ©,", has K parameters, and the reduced model, ©,’, k parameters with
the corresponding ML estimates, ©y and ék, respectively. Symbols such as K and k
indicate squared lengths of the sides of the prism. (To simplify the view, the figure was
drawn in the identity metric rather than in the metric of the Fisher information matrix.)
Asymptotic expectations were taken for the squared lengths of the sides of front and end
triangles, while no expectations were taken for the sides and diagonals connecting the two
triangles. The latter are estimates based on a particular sample, and vary over samples.
-2LLR corresponds with the squared distance between ©, and ©,. The bias (Bias)
corresponds with the squared distance between ©," and ©;". AIC corresponds with the
squared distance between é)k and ©;". Let -2LLR = d. Then, by the Pythagorean
theorem, Bias =d + k- Kand AIC =d + 2k - K.

A *
(~)K ML sstimate of O

o -
7 Oy Saturated
model

.’
o
o
.
.’
.’
.

Bias (d+k-K)

*  Reduced
model
ML estimate

of Bk

Figure 7. Geometric representation of AIC and the bias (noncentrality).
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It can be seen from Figure 7 that Bias lies somewhere between -2LLR and AIC.
However, it is known that it behaves much more like -2LLR (e.g., Cudeck & Henly,
1991). In particular, it decreases monotonically as k increases. Bias is thus similar to
R? (the coefficient of determination) in multiple regression analysis, and should be treated
like R% While I do not completely deny some descriptive value of R? as a GOF index
(after all every output from multiple regression analysis carries this information),
exclusive use of such an index is quite dangerous. With such an index it is possible to
select a model with an excellent fit to the data at hand, but with little predictability for
future data. The GOF to the data at hand can always be improved by increasing the
number of parameters. For better predictions, however, it may be better to select a model
with fewer parameters. This is precisely why AIC was called for in the first place. A
sensible compromising view is presented in Cudeck & Henly (1991) and by Browne &
Cudeck (1992).



400

References

Akaike , H. (1973). Information Theory and the Maximum Likelihood Principle, Second
International Symposium on Information Theory, (eds. B.N. Petrov and F. Csaki),
Akademiai Kiado, Budapest.

Akaike, H. (1987). Factor Analysis and AIC, Psychometrika, 52, 317-332.

Anderson, T.W., and Amemiya, Y. (1988). The Asymptotic Normal Distribution of
Estimators in Factor Analysis Under General Conditions, Annals of Statistics, 16,
759-771.

Basu, D. (1977). On Elimination of Nuisance Parameters. Journal of the American
Statistical Association, 72, 355-366.

Bentler, P. (1990). Comparative Fit Indices in Structural Equation Models, Psychological
Bulletin, 107, 238-246.

Bozdogan, H. (1986). Multi-Sample Cluster Analysis as an Alternative to Multiple
Comparison Procedures. Bulletin of Informatics and Cybernetics, 22, 95-130.

Bozdogan, H. (1987). Model Selection and Akaike’s Information Criterion (AIC): The
General Theory and Its Analytic Extensions, Psychometrika, 52, 345-370.

Browne, M.W. (1982). Covariance Structures, Topics in Applied Multivariate Analysis,
(ed. D.M. Hawkins), 72-141, Cambridge University Press, Cambridge.

Browne, M.W. (1984). Asymptotically Distribution-Free Methods for the Analysis of
Covariance Structures, British Journal of Mathematical and Statistical Psychology,
37, 62-83.

Browne, M.W., and Cudeck, R. (1992). Alternative Ways of Assessing Model Fit.
Sociological Methods and Research, 21, 230-258.

Browne, M.W., and Shapiro, A. (1988). Robustness of Normal Theory Methods in the
Analysis of Linear Latent Variable Models. British Journal of Mathematical and
Statistical Psychology, 41, 193-208.

Carroll, J.D., and Chang, JJ. (1970). Analysis of Individual Differences in
Multidimensional Scaling via an N-Way Generalization of "Eckart-Young"
Decomposition. Psychometrika, 35, 283-319.

Coombs, C.H. (1964). A Theory of Data. Wiley, New York.



401

Cudeck, R., and Henly, S.J. (1991). Model Selection in Covariance Structures Analysis
and the "Problem" of Sample Size: A Clarification, Psychological Bulletin, 109, 512-
519.

DeSarbo, W.S., Howard, D.J., and Jedidi, K. (1991). MULTICLUS: A New Method for
Simultaneously Performing Multidimensional Scaling and Cluster Analysis.
Psychometrika, 56, 121-136.

De Soete, G., and Carroll, J.D. (1983). A Maximum Likelihood Method for Fitting the
Wandering Vector Model. Psychometrika, 48, 553-566.

Heiser, W., and de Leeuw, J. (1981). Multidimensional Mapping of Preference Data,
Mathematique et Sciences Humaines, 19, 39-96.

Ichikawa, M. (1988). Empirical assessment of AIC procedure for model selection in
factor analysis. Behaviormetrika, 24, 33-40.

Joreskog, K.G. (1970). A General Method for Analysis of Covariance Structures,
Biometrika, 157, 239-251. v

Kalbfleisch, J.G., and Sprott, D.A. (1970). Application of Likelihood Methods to Models
Involving a Large Number of Parameters. Journal of the Royal Statistical Society,
Series B, 32, 175-208.

Kano, Y, Berkane, M., and Bentler, P.M. (1990). Covariance Structure Analysis with
Heterogeneous Kurtosis Parameters, Biometrika, 77, 575-585.

Kiefer, J., and Wolfowitz, J. (1956). Consistency of the Maximum Likelihood Estimator
in the Presence of Infinitely Many Incidental Parameters. Annals of Mathematical
Statistics, 27, 887-906.

Luce, R.D. (1959). Individual Choice Behavior: A Theoretical Analysis, Wiley, New
York.

McDonald, R.P. (1989). An Index of Goodness-of-Fit Based on Noncentrality, Journal
of Classification, 6, 97-103.

McDonald, R.P., and Marsh, H.W. (1990). Choosing a Multivariate Model: Noncentrality
and Goodness of Fit, Psychological Bulletin, 105, 156-166.

McLachlan, G.J., and Basford, K.E. (1988). Mixture models. New York: Marcel
Dekker.

Micceri,, T. (1989). The Unicorn, the Normal Curve, and Other Improvable Creatures.
Psychological Bulletin, 105, 156-166.



402

Nakatani, L.H. (1972). Confusion-Choice Model for Multidimensional Psychophysics,
Journal of Mathematical Psychology, 9, 104-127.

Ramsay, J.O. (1977). Maximum Likelihood Estimation in Multidimensional Scaling,
Psychometrika, 42, 241-266.

Ramsay, J.O. (1980). Some Small Sample Results for Maximum Likelihood Estimation
in Multidimensional Scaling. Psychometrika, 45, 141-146.

Ramsay, J.O. (1982). Some Statistical Approaches to Multidimensional Scaling Data.
Journal of the Royal Statistical Society, Series A, 145, 285-312.

Sattath, S., and Tversky, A. (1977). Additive Similarity Trees, Psychometrika, 42, 319-
345.

Sclove, S.L. (1987). Application of Model-Selection Criteria to Some Problems in
Multivariate Analysis. Psychometrika, 52, 333-343.

Sergent, J., and Takane, Y. (1987). Structures in Two-Choice Reaction Time Data,
Journal of Experimental Psychology, Human Perception and Performance, 13, 300-
315.

Shapiro, A., and Browne, M.W. (1987). Analysis of Covariance Structures Under
Elliptical Distributions, Journal of the American Statistical Association, 82, 1092-
1097.

Steiger, J.H. (1990). Structural Model Evaluation and Modification: An Interval
Estimation Approach. Multivariate Behavioral Research, 25, 173-180.

Takane, Y. (1978). A Maximum Likelihood Method for Nonmetric Multidimensional
Scaling: 1. The Case in Which All Empirical Pairwise Orderings are Independent-
Theory and Applications, Japanese Psychological Research, 20, 7-17 and 105-114.

Takane, Y. (1980). Maximum Likelihood Estimation in the Generalized Case of
Thurstone’s Model of Comparative Judgment, Japanese Psychological Research, 22,
188-196.

Takane, Y. (1981). Multidimensional Successive Categories Scaling: A Maximum
Likelihood Method, Psychometrika, 46, 9-28.

Takane, Y. (1982). The Method of Triadic Combinations: A New Treatment and Its
Applications, Behaviormetrika, 11, 37-48.

Takane, Y. (1984). Basic Concepts and Applications of Multidimensional Scaling,
Proc. 1984 Japan Applied Statistical Society Meeting, 30-41.



403

Takane, Y. (1987a). Analysis of Covariance Structures and Probabilistic Binary Choice
Data, Communication and Cognition, 20, 45-61. (Also, New Developments in
Psychological Choice Modelling (eds. G. De Soete et al.), 139-160, North Holland,
Amsterdam, 1989.)

Takane, Y. (1987b). Analysis of Contingency Tables by Ideal Point Discriminant
Analysis, Psychometrika, 52, 493-513.

Takane, Y. (1989a). Ideal Point Discriminant Analysis and Ordered Response Categories,
Behaviormetrika, 26, 31-46.

Takane, Y. (1989b). Ideal Point Discriminant Analysis: Implications for Multiway Data
Analysis, Multiway ’88, (eds. R. Coppi et al.), 287-299, North Holland, Amsterdam.

Takane, Y., Bozdogan, H., and Shibayama, T. (1987). Ideal Point Diécriminant Analysis,
Psychometrika, 52, 371-392.

Takane, Y., and Carroll, J.D. (1981). Nonmetric Maximum Likelihood Multidimensional
Scaling from Directional Rankings of Similarities, Psychometrika, 46, 389-405.

Takane, Y., and de Leeuw, J.(1987). On the relationship Between Item Response Theory
and Factor Analysis of Discretized Variables, Psychometrika, 52, 393-408.

Takane, Y., and Sergent, J. (1983). Multidimensional Scaling Models for Reaction Times
and Same-Different Judgments, Psychometrika, 48, 393-423.

Takane, Y., and Shibayama, T. (1986). Comparison of Models for Stimulus Recognition
Data, Multidimensional Data Analysis (eds. J. de Leeuw et al.), 119-148, DSWO
Press, The Netherlands (with discussion).

Takane, Y., and Shibayama, T. (1992). Structures in Stimulus Identification Data,
Probabilistic Multidimensional Models of Perception and Cognition (ed. F.G. Ashby),
335-362, Lawrence Erlbaum Associates, Hillsdale, NJ.

Torgerson, W.S. (1558). Theory and Methods of Scaling. Wiley, New York.

Tversky, A. (1977). Features of Similarity, Psychological Review, 84, 327-352.





